
STA8090FG

Fully integrated GPS/Galileo/GLONASS/BeiDou/QZSS receiver with embedded RF and in-package Flash

Datasheet - production data

Features

- STMicroelectronics positioning receiver with 48 tracking channels and 2 fast acquisition channels supporting GPS, Galileo, GLONASS, BeiDou and QZSS systems
- Single die standalone receiver embedding RF Front-End and low noise amplifier
- -162 dBm indoor sensitivity (tracking mode)
- Fast TTFF < 1 s in Hot start and 30 s in Cold Start
- High performance ARM946 MCU (up to 196 MHz)
- 256 Kbyte embedded SRAM
- In-Package SQI Flash Memory (16 or 32 Mbits)
- · Real Time Clock (RTC) circuit
- · 32-bit Watch-dog timer
- 3 UARTs
- 1 I²C master interface
- 1 Synchronous Serial Port (SSP, Motorola-SPI supported)
- USB2.0 full speed (12 MHz) with integrated physical layer transceiver
- 2 Controller Area Network (CAN)
- 2 channels ADC (10 bits)

- 1 Secure-Digital Multimedia Memory Card Interfaces (SDMMC)
- 1 Multichannel Serial Port (MSP)
- Power Management Unit (PMU) embedding switching regulator
- Operating condition:
 - Main voltage regulator (V_{INL}): 1.6V to 4.3V
 - Backup voltage (V_{INB}): 1.6V to 4.3V
 - Digital voltage (V_{DD}): 1.0 V to 1.32 V
 - RF core voltage (V_{CC}): 1.2 V ± 10%
 - IO Ring Voltage (V_{ddIO}): 1.8 V ± 5% or 3.3 V ± 10%
- Package:
 - TFBGA99 (5 x 6 x 1.2 mm) 0.5 mm pitch
- Operating temperature range: -40/+85°C

Description

STA8090FG belongs to Teseo III family products. STA8090FG is a single die standalone positioning receiver IC working on multiple constellations (GPS/Galileo/GLONASS/BeiDou/QZSS).

STA8090FG, thanks to the ARM9 and wide IOs availability, can be used as microcontroller with GNSS capability, allowing a very compact design offering 256 kByte of internal RAM and 16 Mbits or 32 Mbits of internal Flash.

The minimal BOM makes STA8090FG the ideal solution for cost competitive and small footprint products such as OBD dongle, insurance boxes, trackers, telematics, portable, hands-held portable and sports accessories.

STA8090FGBD can also run TESEO-DRAW the STMicroelectronics dead reckoning firmware.

Table 1. Device summary

Root Part Number	Package	Packaging
STA8090FG	TFBGA99 5x 6mm	Tape and Reel

STA8090FG Contents

Contents

1	Ove	view	
2	Pin (escription	
	2.1	Block diagram	
	2.2	TFBGA99 pin configuration	
	2.3	Power supply pins	
	2.4	Main function pins	
	2.5	Test/emulated dedicated pins	
	2.6	Communication interface pins	
	2.7		
	2.8	General purpose pins	
	2.9		
3	Gen	ral description	
	3.1	RF front end	
	3.2	GPS/Galileo/GLONASS/BeiDou B	ase Band (G3BB+) processor 18
	3.3	MCU Subsystem	
		3.3.1 AHB slaves	
	3.4	APB peripherals	
		3.4.1 CAN	20
		3.4.2 SSP	20
		3.4.3 UART	
			22
			22
			23
4	Elec	rical characteristics	
	4.1	Parameter conditions	24
		DS10719 Rev 6	3/41
		20.0.101101	5/11

	4.2	Minim	um and maximum values
	4.3	Typica	ıl values
	4.4	Typica	ll curves
	4.5	Absolu	ute maximum ratings
	4.6	Recon	nmended DC operating conditions
	4.7	DC ch	aracteristics
	4.8	AC ch	aracteristics
		4.8.1	RF electrical specifications
		4.8.2	Oscillator electrical specifications
		4.8.3	OSCI oscillator specifications
		4.8.4	ADC specifications
		4.8.5	Flash specifications
5	Pack	age an	d packing information
	5.1	ECOP	ACK packages
	5.2	TFBG	A99 5 x 6 x 1.2 mm package information
6	Orde	ering in	formation
7	Revi	sion his	story

STA8090FG List of tables

List of tables

Table 1.	Device summary	2
Table 2.	TFBGA99 connection diagram (with CAN)	
Table 3.	TFBGA99 connection diagram (no CAN)	
Table 4.	Power supply pins	. 10
Table 5.	Main function pins	. 11
Table 6.	Test/emulated dedicated pins	. 12
Table 7.	Communication interface pins	
Table 8.	Multimedia card pins	. 15
Table 9.	General purpose pins	. 16
Table 10.	RF Front-end pins	. 17
Table 11.	TCM Configuration	. 19
Table 12.	Voltage characteristics	. 24
Table 13.	Thermal characteristics	. 25
Table 14.	Frequency limits	. 25
Table 15.	Power consumption	
Table 16.	Recommended DC operating conditions	. 26
Table 17.	SMPS DC characteristics	
Table 18.	LDO1 DC characteristics	. 28
Table 19.	LDO2 DC characteristics	. 28
Table 20.	Low voltage detection thresholds	. 28
Table 21.	I/O buffers DC characteristics	. 29
Table 22.	1.0 V I/O buffers DC characteristics	
Table 23.	RFACHAIN – GALGPS filter and VGA	
Table 24.	RFCHAIN – GLONASS/BeiDou filter and VGA	
Table 25.	Synthesizer	
Table 26.	Crystal recommended specifications	. 32
Table 27.	Oscillator amplifier specifications	
Table 28.	Characteristics of external slow clock input	
Table 29.	SARADC specifications	. 34
Table 30.	Flash specifications	. 35
Table 31.	TFBGA99 package dimensions	
Table 32.	Document revision history	. 39

DS10719 Rev 6 5/41

List of figures STA8090FG

List of figures

Figure 1.	STA8090FG system block diagram	. 8
Figure 2.	32.768 kHz crystal connection	33
Figure 3.	SARADC connections	34
Figure 4.	TFBGA99 5 x 6 x 1.2 mm package dimension	37
Figure 5.	Ordering information scheme	38

47/

STA8090FG Overview

1 Overview

STA8090FG is one of the part number of Teseo III STA8090x series.

STA8090FG is a highly integrated single-chip standalone GNSS receiver designed for positioning system applications.

STA8090FG embeds the new ST GNSS positioning engine capable of receiving signals from multiple satellite navigation systems, including the US GPS, European Galileo, Russia's GLONASS, Chinese BeiDou and Japan's QZSS.

The STA8090FG ability of tracking simultaneously the signals from multiple satellites regardless of their constellation, makes this chip capable of delivering exceptional accuracy in urban canyons and in the environments where buildings and other obstructions make satellite visibility challenging.

STA8090FG embeds innovative power management with switching regulator for power consumption optimization.

The extended voltage supply ranges from 1.6 V to 4.3 V, the 1.8 V and 3.3 V I/O compliance support makes the STA8090FG the suitable solution for different user applications.

The STA8090FG combines a high performance ARM946 microprocessor with I/O capabilities and enhanced peripherals. It supports USB2.0 standard at full speed (12 Mbps) with on-chip PHY.

The chip embeds backup logic with real time clock.

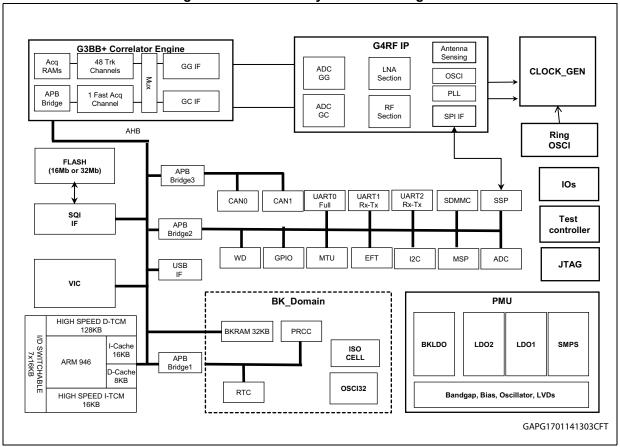
STA8090FG can host customer code on top of STMicroelectronics GNSS library.

Customers can develop on TeseoIII their application code by using a software development kit based on different real time operating systems.

STA8090FGBD can be offered also bundled with STMicroelectronics dead reckoning firmware called TESEO-DRAW; TESEO-DRAW firmware is a multi-sensors data fusion hub for Teseo family IC's.

The STA8090FG, using STMicroelectronics CMOSRF Technology, is housed in a TFBGA99 (5 x 6 x 1.2 mm) package with stacked 16 Mbit or 32 Mbit Flash memory.

DS10719 Rev 6 7/41


Downloaded from **Arrow.com**.

Pin description STA8090FG

2 Pin description

2.1 Block diagram

Figure 1. STA8090FG system block diagram

57/

STA8090FG Pin description

2.2 TFBGA99 pin configuration

Table 2. TFBGA99 connection diagram (with CAN)

	1	2	3	4	5	6	7	8	9
Α	VINM	VINM	SPI_CLK	SPI_CSN	VINL1	VOL1	GND	VINB	VOB
В	VLX	VLX	SPI_DI	UART0_ TX	UART0_ CTS	UART2_ RX	GPIO1	GPIO0	GND
С	GND	GND	SPI_DO	VDDIO_ R1	UART2_ TX	UART0_ RTS	VDD_SQI	VDD_ ADC	Reserved
D	VOM	GND	TMS	UART0_ DSR	UART0_ DTR	GND	ADC_IN2	GND	RTC_XTO
E	VDD_ANA	TDO	TRSTn	UART0_ DCD	VDDD	UART0_ RX	ADC_IN1	WAKEUP0	RTC_XTI
F	GND	TDI	VDDD	VDDD	GND	GND	WAKEUP1	STDBYn	RSTn
G	USB_DP	TCK	VDDD	GND	GND	GND	STDBY_ OUT	PMU_ CFG	XTAL_ OUT
н	USB_DM	GPIO10	MMC_D3	MMC_ CLK	TP_IF_N	GND	GND	VCC_PLL	XTAL_IN
J	CAN0_TX	GPIO11	MMC_D2	MMC_ CMD	TP_IF_P	GND	GND	ANT_ SENSE2	VCC_ CHAIN
K	CAN0_RX	VDDIO_ R2	GPIO2	MMC_D1	GND_LNA	GND_LNA	GND_LNA	GND	ANT_ SENSE1
L	GND	I2C_SD	I2C_CLK	MMC_D0	VCC_RF	LNA_IN	VOL2	VINL2	GND

Pin description STA8090FG

Table 3. TFBGA99 connection diagram (no CAN)

	1	2	3	4	5	6	7	8	9
Α	VINM	VINM	SPI_CLK	SPI_CSN	VINL1	VOL1	GND	VINB	VOB
В	VLX	VLX	SPI_DI	UART0_ TX	UART0_ CTS	UART2_ RX	GPIO1	GPIO0	GND
С	GND	GND	SPI_DO	VDDIO_ R1	UART2_ TX	UART0_ RTS	VDD_SQI	VDD_ ADC	Reserved
D	VOM	GND	TMS	UART0_ DSR	UART0_ DTR	GND	ADC_IN2	GND	RTC_XTO
E	VDD_ANA	TDO	TRSTn	UART0_ DCD	VDDD	UART0_ RX	ADC_IN1	WAKEUP0	RTC_XTI
F	GND	TDI	VDDD	VDDD	GND	GND	WAKEUP1	STDBYn	RSTn
G	USB_DP	TCK	VDDD	GND	GND	GND	STDBY_ OUT	PMU_ CFG	XTAL_ OUT
н	USB_DM	GPIO10	MMC_D3	MMC_ CLK	TP_IF_N	GND	GND	VCC_PLL	XTAL_IN
J	UART0_ TX	GPIO11	MMC_D2	MMC_ CMD	TP_IF_P	GND	GND	ANT_ SENSE2	VCC_ CHAIN
K	UART0_ RX	VDDIO_ R2	GPIO2	MMC_D1	GND	GND	GND	GND_LNA	ANT_ SENSE1
L	GND	I2C_SD	I2C_CLK	MMC_D0	VCC_RF	LNA_IN	VOL2	VINL2	GND

2.3 Power supply pins

Table 4. Power supply pins

Symbol	I/O voltage	I/O	Description	STA8090FG
VCC_CHAIN	1.2 V	PWR	Analog supply voltage for RF chain (1.2V)	J9
VCC_PLL	1.2 V	PWR	Analog supply voltage for PLL RF (1.2V)	H8
VCC_RF	1.2 V	PWR	Analog supply voltage for RF (1.2V)	L5
VDD_ADC	1.8 V	PWR	Digital supply voltage for ADC (1.8V)	C8
VDD_SQI	1.8 V	PWR	Digital supply voltage for SQI	C7
VDDD	1.1 V	PWR	Digital supply voltage	E5, F3, F4, G3
VDDIO_R1	1.8 V or 3.3 V	PWR	Digital supply voltage for I/O ring 1 (1.8 V or 3.3 V)	C4
VDDIO_R2	3.3V	PWR	Digital supply voltage for I/O ring 2 (3.3 V)	K2
VINB	1.6 V - 4.3 V	PWR	Backup LDO input supply voltage (1.6 V to 4.3 V)	A8
VINL1	1.6 V - 4.3 V	PWR	LDO1 input supply voltage (1.6 V to 4.3 V)	A5
VINL2	1.6 V - 4.3 V	PWR	LDO2 input supply voltage (1.6 V to 4.3 V)	L8

STA8090FG Pin description

Table 4. Power supply pins (continued)

Symbol	I/O voltage	I/O	Description	STA8090FG
VINM	1.6 V - 4.3 V	PWR	SMPS coil input supply (1.6 V to 4.3 V)	A1, A2
VDD_ANA	1.6 V - 4.3 V	PWR	SMPS input supply (1.6 V to 4.3 V)	E1
VLX	0 V - 4.3 V	PWR	SMPS coil output	B1, B2
VOB	1.0V	PWR	LDO backup output voltage (1.0 V)	A9
VOL1	1.1 V or 1.8 V	PWR	LDO1 output voltage: PMU_CFG = high -> 1.1 V (it can be also configured to 1.2 V) PMU_CFG = low -> 1.8 V	A6
VOL2	1.2 V	PWR	LDO2 output voltage (1.2 V)	L7
VOM	1.1 V or 1.8 V	PWR	SMPS output voltage PMU_CFG = high -> 1.8 V PMU_CFG = low -> 1.1 V (it can be also configured to 1.2 V)	D1
GND	GND	GND	Ground	A7, B9, C1, C2, D2, D6, D8, F1, F5, F6, G4, G5, G6, H6, H7, J6, J7, K8, L1, L9
GND_LNA	GND	GND	Ground	K5, K6, K7

2.4 Main function pins

Table 5. Main function pins

Symbol	I/O voltage	I/O	Description	STA8090FG
ADC_IN1	1.4 V – 0 V typ range	I	ADC Analog input [1]	E7
ADC_IN2	1.4 V – 0 V typ range	I	ADC Analog input [2]	D7
PMU_CFG	1.0 V	ı	Power management unit config pin High -> VOL1 = 1.1 V, VOM = 1.8 V Low -> VOL1 = 1.8 V, VOM = 1.1 V	G8
RSTn	1.0 V	I	Reset Input with Schmitt-Trigger characteristics and noise filter.	F9
RTC_XTI	1.0 V (max)	I	Input of the 32 KHz oscillator amplifier circuit and input of the internal real time clock circuit.	E9
RTC_XTO	1.0 V (max)	0	Output of the oscillator amplifier circuit.	D9
STDBY_OUT	1.0 V	0	When low, indicates the chip is in Standby mode	G7
STDBYn	1.0 V	I	When low, the chip is forced in Standby Mode - All pins in high impedance except the ones powered by Backup supply	F8

DS10719 Rev 6 11/41

Pin description STA8090FG

Table 5. Main function pins (continued)

Symbol	I/O voltage	I/O	Description	STA8090FG
WAKEUP0	1.0 V	I	WAKEUP from STANDBY mode	E8
WAKEUP1	1.0 V	I	WAKEUP from STANDBY mode	F7

2.5 Test/emulated dedicated pins

Table 6. Test/emulated dedicated pins

Symbol	I/O voltage	I/O	Description	STA8090FG
TCK	VDDIO_R2	I	JTAG Test Clock	G2
TDI	VDDIO_R2	I	JTAG Test Data In	F2
TDO	VDDIO_R2	0	JTAG Test Data Out	E2
TMS	VDDIO_R2	I	JTAG Test Mode Select	D3
TRSTn	VDDIO_R2	I	JTAG Test Circuit Reset	E3
TP_IF_N	1.2 V	0	Diff.Test Point for IF – Negative	H5
TP_IF_P	1.2 V	0	Diff.Test Point for IF – Positive	J5

2.6 Communication interface pins

Table 7. Communication interface pins

Symbol	I/O voltage	I/O	Alternative function	Function	Description	STA8090FG
		I	AF0 (default)	CAN0_RX ⁽¹⁾	CAN0 receive data input	
CAN0_RX ⁽¹⁾	VDDIO_R2	I	AF1	UART0_RX	UART0 Rx data	K1
CANO_IOC	VDDIO_I\Z	I	AF2	Tsense	External temperature capture port	KI
		I/O	AF3	I2C_SD	I2C serial data	
		0	AF0 (default)	CAN0_TX ⁽¹⁾	CAN0 transmit data output	
CAN0_TX ⁽¹⁾	VDDIO_R2	0	AF1	UART0_TX	UART0 Tx data	J1
		I/O	AF2	GPIO7	General purpose I/O #7	
		0	AF3	I2C_CLK	I2C clock	
		0	AF0 (default)	I2C_CLK	I2C clock	
I2C_CLK	VDDIO_R2	I/O	AF1	GPIO8	General purpose I/O #8	L3
	_	0	AF2	CAN1_TX ⁽¹⁾	CAN1 transmit data output	
		0	AF3	SPI_CLK	SPI clock	

STA8090FG Pin description

Table 7. Communication interface pins (continued)

Symbol	I/O voltage	I/O	Alternative function	Function	Description	STA8090FG	
		I/O	AF0 (default)	I2C_SD	I2C serial data		
I2C_SD	VDDIO_R2	I/O	AF1	GPIO9	General purpose I/O #9	L2	
		I	AF2	CAN1_RX ⁽¹⁾	CAN1 receive data input		
		0	AF3	SPI_CSN	SPI chip select active low		
		0	AF0 (default)	SPI_CLK	SPI clock		
SPI_CLK	VDDIO_R1	I/O	AF1	GPIO25	General purpose I/O #25	A3	
		0	AF2	SQI_CLK	SQI Flash clock		
		0	AF3	MMC_CLK	Multimedia Clock line		
		0	AF0 (default)	SPI_CSN	SPI chip select active low / IO_Power Sel Ring 1		
SPI_CSN	VDDIO_R1	I/O	AF1	GPIO24	General purpose I/O #24	A4	
	_		0	AF2	SQI_CEN	SQI Flash chip enable	
		I/O	AF3	MMC_CMD	Multimedia card command line		
		Į	AF0 (default)	SPI_DI	SPI serial data input / BOOT2		
SPI_DI	VDDIO_R1	I/O	AF1	Tsense	External temperature capture port	В3	
		I/O	AF2	SQI_SIO1/SO	SQI Flash data IO 1 / ser. output		
		I/O	AF3	MMC_D0	Multimedia card data 0		
		0	AF0 (default)	SPI_DO	SPI serial data output		
SPI_DO	VDDIO_R1	I/O	AF1	GPIO27	General purpose I/O #27	C3	
		I/O	AF2	SQI_SIO0/SI	SQI Flash data IO 0 / ser. input		
		I/O	AF3	MMC_D1	Multimedia card data 1		
		I	AF0 (default)	UART0_CTS	UART0 clear to send		
UART0_CTS	VDDIO_R1	I/O	AF1	GPIO15	General purpose I/O #15	B5	
_	_	0	AF2	i2s_out_sclk	MSP serial clock output		
		0	AF3	Clock GNSS	GNSS clock out		
		I	AF0 (default)	UART0_DCD	UART0 data carrier detect		
UART0_DCD	VDDIO_R1	VDDIO_R1	I/O	AF1	GPIO17	General purpose I/O #17	E4
		0	AF2	i2s_out_sdata	MSP serial data output		
		0	AF3	Clock GNSS	GNSS clock out		

DS10719 Rev 6 13/41

Pin description STA8090FG

Table 7. Communication interface pins (continued)

					e pins (continuea)		
Symbol	I/O voltage	I/O	Alternative function	Function	Description	STA8090FG	
		I	AF0 (default)	UART0_DSR	UART0 data set ready		
UARTO DSR	VDDIO R1	I/O	AF1	GPIO16	General purpose I/O #16	D4	
UARTO_DSR	VDDIO_K1	0	AF2	i2s_out_lrclk	MSP left/right clock output) D4	
		0	AF3	Sign GC	GLONASS and BeiDou 3-bit coding output (Sign)		
		0	AF0 (default)	UART0_DTR	UART0 data terminal read		
		I/O	AF1	GPIO18	General purpose I/O #18		
UART0_DTR	VDDIO_R1	I	AF2	Timer_ICAPA	Extended function timer - input capture A	D5	
		0	AF3	Mag_1 GG	GPS and Galileo 3-bit coding Output (MAG1)		
		0	AF0 (default)	UART0_RTS	UART0 request to send		
UARTO RTS	VDDIO_R1	VDDIO_R1	I/O	AF1	GPIO14	General purpose I/O #14	C6
UARIU_RIS			0	AF2	TCXO_OUT	TCXO out clock	Co
		0	AF3	Sign GG	GPS and Galileo 3-bit coding output (Sign)		
		I	AF0 (default)	UART0_RX	UART0 Rx data		
UARTO RX	VDDIO R1	0	AF1	SPI_DO	SPI serial data output	E6	
UARTO_RX	VDDIO_K1	I/O	AF2	SQI_SIO2	SQI Flash data IO 2		
		I	AF3	Timer_ICAPA	Extended Function Timer - Input Capture A		
		0	AF0 (default)	UART0_TX	UART0 Tx data / BOOT1		
UARTO TX	VDDIO_R1	I	AF1	SPI_DI	Serial data input	B4	
UARTO_TX	VDDIO_K1	I/O	AF2	SQI_SIO3	SQI Flash data IO 3	D4	
		0	AF3	Timer_OCMPA	Extended Function Timer – Output Compare A		
		ı	AF0 (default)	UART2_RX	UART 2 Rx data	B6	
UART2_RX	VDDIO_R1	I/O	AF1	GPIO28	General purpose I/O #28		
		I/O	AF2	I2C_SD	I2C serial data		
		I/O	AF3	MMC_D2	Multimedia card data 2		

STA8090FG Pin description

Table 7. Communication interface pins (continued)

Symbol	I/O voltage	I/O	Alternative function	Function	nction Description	
		0	AF0 (default)	UART2_TX	UART 2 Tx data / BOOT0	
UART2_TX	VDDIO_R1	I/O	AF1	GPIO29	General purpose I/O #29	C5
		0	AF2	I2C_CLK	I2C clock	
		I/O	AF3	MMC_D3	Multimedia card data 2	
		USB	AF0	USB_DM	USB D- signal	
USB_DM	VDDIO_R2	I	AF1 (default)	UART1_RX	UART1 Rx data	H1
		I	AF2	CAN1_RX ⁽¹⁾	CAN1 receive data input	
		I/O	AF3	I2C_SD	I2C serial data	
		USB	AF0	USB_DP	USB D+ signal	
USB_DP	VDDIO R2	0	AF1 (default)	UART1_TX	UART1 Tx data	G1
		0	AF2	CAN1_TX ⁽¹⁾	CAN1 transmit data output	
		0	AF3	I2C_CLK	I2C clock	

^{1.} Only for STA8090FGB and STA8090FGBD.

2.7 Multimedia card pins

Table 8. Multimedia card pins

Symbol	I/O voltage	I/O	Alternative function	Function	Description	STA8090FG		
		0	AF0 (default)	MMC_CLK	Multimedia Clock line			
MMC CLK	VDDIO R2	0	AF1	i2s_out_lrclk	MSP left/right clock output	H4		
WIWIO_CLK	VDDIO_R2	VDDIO_I\Z	VDDIO_IX2	I	AF2	Timer_ICAPA	Extended Function Timer - Input Capture A	1 14
		I/O	AF3	GPIO4	General purpose I/O #4			
		I/O	AF0 (default)	MMC_CMD	Multimedia card command line			
MMC_CMD	VDDIO_R2	0	AF1	i2s_out_sdata	MSP serial data output	J4		
		0	AF2	CAN0_TX ⁽¹⁾	CAN0 transmit data output			
		I/O	AF3	GPIO5	General purpose I/O #5			

Pin description STA8090FG

Table 8. Multimedia card pins (continued)

Symbol	I/O voltage	I/O	Alternative function	Function	Description	STA8090FG			
		I/O	AF0 (default)	MMC_D0	Multimedia card data 0				
MMC_D0	VDDIO_R2	0	AF1	i2s_out_sclk	MSP serial clock output	L4			
		I/O	AF2	I2C_SD	I2C serial data				
		I/O	AF3	GPIO20	General purpose I/O #20				
		I/O	AF0 (default)	MMC_D1	Multimedia card data 1				
MMC D1	VDDIO_R2	ı	AF1	i2s_in_sdata	MSP serial data input	K4			
IVIIVIC_D1		VDDIO_I\Z	VDDIO_I\Z	0	AF2	Sign GC	GLONASS and BeiDou 3-bit coding output (Sign)	7 14	
		I/O	AF3	GPIO21	General purpose I/O #21				
		I/O	AF0 (default)	MMC_D2	Multimedia card data 2				
MMC D2	VDDIO B3	VDDIO B3	VDDIO R2	VDDIO B3	I/O	AF1	Reserved	Reserved	J3
IVIIVIC_D2	VDDIO_R2	I	AF2	CAN0_RX ⁽¹⁾	CAN0 receive data input	- 33			
		I/O	AF3	Tsense	External temperature capture port				
		I/O	AF0 (default)	MMC_D3	Multimedia card data 2				
MMC_D3	VDDIO_R2	I/O	AF1	Reserved	Reserved	H3			
		0	AF2	Sign GG	GPS 3-bit coding output (Sign)]			
		I/O	AF3	GPIO23	General purpose I/O #23				

^{1.} Only for STA8090FGB.

2.8 General purpose pins

Table 9. General purpose pins

Symbol	I/O voltage	I/O	Alternative function	Function Description		STA8090FG
		I/O	AF0 (default)	GPIO0	General purpose I/O #0	
		I	AF1	PPS_IN	Pulse per second input	
GPIO0	VDDIO_R1	0	AF2	Timer_OCMPB	Extended Function Timer – Output Compare B	В8
		0	AF3	Mag_0 GC	GLONASS and BeiDou 3-bit coding Output (MAG0)	

STA8090FG Pin description

Table 9. General purpose pins (continued)

Symbol	I/O voltage	I/O	Alternative function	Function	Description	STA8090FG
		I/O	AF0 (default)	GPIO1	General purpose I/O #1 / BOOT3	
GPIO1	VDDIO B1	I	AF1	i2s_in_sdata	MSP serial data input	B7
GPIOT	VDDIO_R1	0	AF2	PPS_OUT	Pulse per second output	D/
		I/O	AF3	Tsense	External temperature capture port	
		I/O	AF0 (default)	GPIO2	General purpose I/O #2	
		I/O	AF1	Reserved	Reserved	
GPIO2	VDDIO_R2	/DDIO_R2		Timer_ICAPB	Extended Function Timer – Input Capture B	K3
		0	AF3	Mag_1 GC	GLONASS and BeiDou 3-bit coding Output (MAG1)	
		I/O	AF0 (default), AF1	GPIO10	General purpose I/O #10	
GPIO10	VDDIO_R2	I	AF2	Timer_ICAPA	Extended Function Timer – Input Capture A	H2
		0	AF3	Timer_OCMPB	Extended Function Timer – Output Compare B	
		I/O	AF0 (default), AF1	GPIO11	General purpose I/O #11	
GPIO11	VDDIO_R2	0	AF2	Timer_OCMPA	Extended Function Timer – Output Compare A	J2
		I	AF3	Timer_ICAPB	Extended Function Timer – Input Capture B	

2.9 RF Front-end pins

Table 10. RF Front-end pins

Symbol	I/O voltage	I/O	Description	STA8090FG
ANT_SENSE1	3.3 V	I	Antenna sensing input 1	К9
ANT_SENSE2	3.3 V	I	Antenna sensing input 2	J8
LNA_IN	1.2 V	I	Low Noise Amplifier Input	L6
XTAL_IN	1.2 V	I	Input Side of Crystal Oscillator or TCXO Input	H9
XTAL_OUT	1.2 V	0	Output Side of Crystal Oscillator	G9

General description STA8090FG

3 General description

3.1 RF front end

The RF front-end is able to down-convert both the GPS-Galileo signal from 1575.42 MHz to 4.092 MHz (4 Fo, being F0 = 1.023 MHz), the GLONASS signal from 1601.718 MHz to 8.57 MHz and the BeiDou signal from 1561.098 MHz to 10.23 MHz.

It embeds high performance LNA minimizing external component count and two LDOs to supply the internal core facilitating requirements for external power supply. A three bits ADC converts the IF signals to sign (SIGN) and magnitude (MAG0 and MAG1). They can be sampled or not by SPI. The magnitude bits are internally integrated in order to control the variable gain amplifiers. The VGA gain can be also set by the SPI interface.

The RF tuner accepts a wide range of reference clocks (10 to 52 MHz) and can generate 64 Fo sampling clock for the baseband and 192 Fo clock for MCU subsystem.

3.2 GPS/Galileo/GLONASS/BeiDou Base Band (G3BB+) processor

STA8090FG integrates G3BB+ proprietary IP, which is the ST last generation high-sensitivity Baseband processor fully compliant with GPS, Galileo, GLONASS and BeiDou systems.

The baseband receives, from the embedded RF Front-End, two separate IF signals coded in sign-magnitude digital format on 3 bits and the related clocks. The Galileo/GPS (GALGPS) and GLONASS/BeiDou (GNSCOM) signals at the base band inputs are centered on 4.092 MHz, 8.57 MHz and 10.23 MHz.

The baseband processes the two IF signals performing data codification, sample rate conversion and final frequency conversion to zero IF before acquisition and tracking correlations.

The baseband processor has the capability of acquiring and tracking the Galileo, GPS, GLONASS and BeiDou signals in a simultaneous or single way, or a combination of three, being GLONASS and BeiDou mutually exclusive. The number of tracking channels to be used is programmable; the unused tracking channels can be powered down.

A complete multi-OS software library is provided by ST to handle GPS processing, managing satellite acquisition, tracking, pseudo-range calculation and positioning, generating the output in the standard NMEA message format or in a ST binary format. The library includes support of ST self-trained assisted GPS (ST-AGPS), a complete and scalable solution for assisting GPS start-up with autonomous and server-based ephemeris prediction and extension.

3.3 MCU Subsystem

The implemented sub-system includes an AHB Lite bus matrix.

An ARM946 core is embedded in the sub-system and masters the AHB bus. The totally available TCM SRAM is 256 KB. The amount of memory on ITCM and DTCM can be

STA8090FG General description

configured by the ARM946 (see *Table 11: TCM Configuration*). ITCM can be configured as Ni x 16 KB; DTCM can be configured as $128 + Nd \times 16 KB$, where Ni + Nd = 8, Ni ≥ 1 .

TCMcfg [2] TCMcfq [1] **DTCM** TCMcfg [0] **ITCM** 0 0 0 16 KB 240 KB 0 0 1 32 KB 224 KB 1 0 0 48 KB 208 KB 0 1 1 64 KB 192 KB 1 0 0 80 KB 176 KB 1 0 1 96 KB 160 KB 1 1 0 112 KB 144 KB 1 1 1 128 KB 128 KB

Table 11. TCM Configuration

3.3.1 AHB slaves

- G3 APB port that allows to interface with the G3BB acquisition memory and control registers.
- 512 Kbytes ROM
- Vectored Interrupt Controller (VIC).
- SQI flash memory controller
- 3 x ARM946 APB peripheral bus (APB1, APB2, APB3).

Vectored Interrupt Controller (VIC)

This Vectored Interrupt Controller (VIC) allows the operative system interrupt handler to quickly dispatch interrupt service routines in response to peripheral interrupts. It provides a software interface to the interrupt system. There are up to 64 interrupt lines. The VIC uses a bit position for each different interrupt source.

The software can control each request line to generate software interrupts. Each interrupt line can be independently enabled and configured to trigger a non-vectored Normal Interrupt Request (IRQ) or Fast Interrupt Request (FIQ) to the ARM946 CPU. Sixteen interrupt lines can also be selected to trigger a vectored IRQ.

The VIC has two operation modes: the user mode and the privilege mode, in order to have the possibility to set (or not) one level of protection during execution.

FS USB device controller

Full speed USB device with transceiver.

It is an AHB slave. When active it requires a 48 MHz clock XTAL_IN.

DS10719 Rev 6 19/41

General description STA8090FG

3.4 APB peripherals

3.4.1 CAN

The 2 CAN^(a) cores perform communication according to the CAN protocol version 2.0 part A and B. The bit rate can be programmed to values up to 1 MBit/s. For the connection to the physical layer, additional transceiver hardware is required.

CAN consists of the CAN core, message RAM, message handler, control registers and module. For communication on a CAN network, individual message objects are configured. The message objects and identifier masks for acceptance filtering of received messages are stored in the message RAM. All functions concerning the handling of messages are implemented in the message handler. These functions include acceptance filtering, the transfer of messages between the CAN core and the message RAM, and the handling of transmission requests as well as the generation of the module interrupt.

The register set of the CAN can be accessed directly by the CPU through the module interface. These registers are used to control/configure the CAN core and the message handler and to access the message RAM.

CAN features

- Supports CAN protocol version 2.0 part A and B
- 32 messages objects
- Each message object has its own identifier mask
- Maskable interrupt
- Disabled automatic re-transmission mode for time triggered CAN applications
- Programmable loop-back mode for self-test operation
- Two 16-bit module interfaces to the AMBA APB bus from ARM

3.4.2 SSP

The SSP is a master interface for synchronous serial communication with peripheral devices that have Motorola SPI.

The SSP performs serial-to-parallel conversion on data received from a peripheral device on SPI_DI pin, and parallel-to-serial conversion on data written by CPU for transmission on SPI_DO pin. The transmit and receive paths are buffered with internal FIFO memories allowing up to 32 x 32-bit values to be stored independently in both transmit and receive modes. FIFOs may be burst-loaded or emptied by the system processor or DMA, from one to eight words per transfer. Each 32-bit word from the system fills one entry in FIFO.

The SSP includes a programmable bit rate clock divider and prescaler to generate the serial output clock SSPCLK from the on-chip clock. One combined interrupt is delivered, which is asserted from several internal maskable events.

a. STA8090FGB and STA8090FGBD only (see Figure 5: Ordering information scheme).

STA8090FG General description

SSP features

The SSP has the following features:

- Parallel-to-serial conversion on data written to an internal 32-bit wide, 32-location deep
- transmit FIFO
- Serial-to-parallel conversion on received data, buffering it in a 32-bit wide, 32-location
- deep receive FIFO
- Programmable data frame size from 4 to 32 bits
- Programmable clock bit rate and prescaler
- Programmable clock phase and polarity in SPI mode

3.4.3 UART

The UARTx (x = 0|1|2) performs serial-to-parallel conversion on data asynchronously received from a peripheral device on UARTx_RX pin, and parallel-to-serial conversion on data written by CPU for transmission on UARTx_TX pin. The transmit and receive paths are buffered with internal FIFO memories allowing up to 64 data byte for transmission, and 64 data byte with 4-bit status (break, frame, parity, and overrun) for receive.

UART features

The UARTx (x = 0|1|2) are Universal Asynchronous Receiver/Transmitter that support much of the functionality of the industry-standard 16C650 UART. The main features are:

- Programmable baud rates up to UARTCLK / 16 (1.5 Mbps with UARTCLK at 24 MHz), or up to UARTCLK / 8 (3.0 Mbps with UARTCLK at 24 MHz), with fractional baud-rate generator
- 5, 6, 7 or 8 bits of data
- Even, odd, stick or no-parity bit generation and detection
- 1 or 2 stop bit generation
- Support of the modem control functions CTS, RTS, plus DCD, DSR, RTS, DTS and RI (UART0 only)
- Support of software flow control using programmable Xon/Xoff characters
- False start bit detection
- Line break generation and detection
- Separate 8-bit wide, 64-deep transmit FIFO and 12-bit wide, 64-deep receive FIFO
- Programmable FIFO disabling for 1-byte depth data path

These UARTs vary from industry-standard 16C650 on some minor points which are:

- Receive FIFO trigger levels
- The internal register map address space, and the bit function of each register differ
- The deltas of the modem status signals are not available
- 1.5 stop bits is not supported
- Independent receive clock feature is not supported

DS10719 Rev 6 21/41

General description STA8090FG

3.4.4 Flash

The STA8090FG integrates 16 Mbits or 32 Mbits of Flash Memory. This eliminates the need of the external Flash simplifying the routing associated to integrate a GPS receiver into a customer board.

3.4.5 SDMMC

STA8090FG features an SD/MMC host.

3.4.6 MTU

The 2 Multi Timer Units provide access to eight interrupt generating programmable 32-bit Free-Running decrementing Counters (FRCs). The FRCs have their own clock input, allowing the counters to run from a much slower clock than the system clock.

The FRC is the part of the timer that performs the counting. There are four instantiations of the FRC block in each MTU, allowing eight counts to be performed in parallel. The 32-bit counter in the FRC is split up into two 16-bit counters.

3.4.7 WDT

Watchdog Timer (WDT) provides a way of recovering from software crashes. The watchdog clock is used to generate a regular interrupt (WDOGINT), depending on a programmed value.

The watchdog monitors the interrupt and asserts a reset signal (WDOGRES) if the interrupt remains unserviced for the entire programmed period. You can enable or disable the watchdog unit as required.

Note: Watchdog is stalled when the ARM processor is in Debug mode.

3.4.8 GPIO

The GPIO block provides twenty-one (21) programmable inputs or outputs. Each input or output can be controlled in two modes:

- software mode through an APB bus interface
- alternate mode, where GPIO becomes a peripheral input or output line

Any GPIO input can be independently enabled or disabled (masked) for interrupt generation. User can select for each GPIO which edge (rising, falling, both) will trigger an interrupt.

3.4.9 ADC

10 bit SAR ADC operating at 1.8 V analog supply. It can convert up to 2 single ended channels with analog input multiplexer at 500KSPS

3.4.10 RTC

This is an always-on power domain dedicated to RTC logic (backup system) with 32 Kbyte SRAM and supplied with a dedicated voltage regulator.

The RTC provides a high resolution clock which can be used for GPS. It keeps the time when the system is inactive and can be used to wake the system up when a programmed

STA8090FG General description

alarm time is reached. It has a clock trimming feature to compensate for the accuracy of the 32.768 kHz crystal and a secured time update.

RTC features

- 47-bit counter clocked by 32.768 kHz clock
- 32-bit for the integer part (seconds) and 15-bit for the fractional part
- The integer part and the fractional part are readable independently
- The counter, once enabled, can be stopped
- Integer part load register (32-bit)
- Fractional part load register (15-bit)
- Load bit to transfer the content of the entire load register (integer+fractional part) to the 47-bit counter. Once set by the MCU this bits is cleared by the hardware to signal to the MCU that the RTC has been updated.

3.4.11 MSP

The STA8090FG provides one MSP transmitter block.

- Element (data) size from 8 to 32 bits, LSB or MSB first
- Programmable frequency shift clock for data transfer
- Direct interface to:
 - Industry-standard codecs and serially connected A/D and D/A devices
 - IIS compliant devices
 - SPI compliant devices
- Transmit first-in, first-out memory buffers (FIFOs), 32 bits wide, 8 locations deep

DS10719 Rev 6 23/41

Electrical characteristics STA8090FG

4 Electrical characteristics

4.1 Parameter conditions

Unless otherwise specified, all voltages are referred to GND.

4.2 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C.

4.3 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{ddio} = 1.8$ V, $V_{dd} = 1.20$ V. They are given only as design guidelines and are not tested.

4.4 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

4.5 Absolute maximum ratings

This product contains devices to protect the inputs against damage due to high static voltages, however it is advisable to take normal precautions to avoid application of any voltage higher than the specified maximum rated voltages.

Table 12 lists the absolute maximum rating for STA8090FG.

Table 12. Voltage characteristics

Symbol	Parameter	Min.	Max.	Unit
V _{CC_CHAIN}	Analog supply voltage for RF chain (1.2 V)	-0.3	1.32	V
V _{CC_PLL}	Analog supply voltage for PLL RF (1.2 V)	-0.3	1.32	V
V _{CC_RF}	Analog supply voltage for RF (1.2 V)	-0.3	1.32	V
V _{DD_ADC}	Digital supply voltage for ADC (1.8 V)	-0.3	1.98	V
V _{DD_SQI}	Digital supply voltage for SQI	-0.3	1.95	V
V_{DDD}	Power supply pins for the core logic.	-0.3	1.32	V
V _{DDIO_R1}	Digital supply voltage for I/O ring 1 (1.8 V or 3.3 V)	-0.3	3.63	V
V _{DDIO_R2}	Digital supply voltage for I/O ring 2 (3.3 V)	-0.3	3.63	V
V _{INB}	Backup LDO input supply voltage (1.6 V to 4.3 V)	-0.3	4.8	V
V _{INL1}	LDO1 input supply voltage (1.6 V to 4.3 V)	-0.3	4.8	V

Symbol	Parameter	Min.	Max.	Unit
V _{INL2}	LDO2 input supply voltage (1.6 V to 4.3 V)	-0.3	4.8	V
V _{INM}	SMPS coil input supply (1.6 V to 4.3 V)	-0.3	4.8	V
V _{DD_ANA}	SMPS input supply (1.6 V to 4.3 V)	-0.3	4.8	V
V _{ESD-HBM}	Electrostatic discharge, human body model ⁽¹⁾ .	-2	2	kV
V _{ESD-CDM}	Electrostatic discharge, charge device model ⁽²⁾ .	-250	250	V

Table 12. Voltage characteristics (continued)

Note:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 13. Thermal characteristics

Symbol	Parameter	Min.	Max.	Unit
T _{oper}	Operative temperature range	-40	85	°C
T _j	Operative junction temperature	-40	125	°C
T _{st}	Storage temperature	-55	150	°C
R _{j-amb}	Thermal resistance junction to ambient ⁽¹⁾		41	°C/W

^{1.} According to JEDEC specification on a 2 layers board.

Table 14. Frequency limits

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
F _{CLK}	Operating ARM9 CPU frequency	V _{DDD} = 1.2 V;	_	_	196	MHz
F _{AHB}	AHB frequency	T _C = 85 °C ⁽¹⁾			49	MHz

^{1.} Not tested in production.

Balls sustaining only ±500 V are: A1, A2, A5, A6, A7, A8, A9, B1, B2, B9, C1, C2, D1, D2, D9, E1, E9, F1, L7 and L8.

^{2.} Ball L6 (LNA_IN) sustains only ±150 V.

Electrical characteristics STA8090FG

Table 15. Power consumption

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		G2 = GPS/Galileo; T _{amb} = 25 °C; V _{INL2} = 1.8 V	_	25		mW
P _{RF}	RFIP power (total V _{INL2})	G2 + GLONASS; T _{amb} = 25 °C; V _{INL2} = 1.8 V	_	35		mW
		G2 + COMPASS; Beidou2 T _{amb} = 25 °C; V _{INL2} = 1.8 V	_	35		mW
P _{MVR} ⁽¹⁾	Switchable area power; (total V _{INL1})	$\begin{split} f_{ARM} &= 196 \text{ MHz;} \\ f_{AHB} &= 49 \text{ MHz;} \\ T_{amb} &= 25 \text{ °C;} \\ V_{INL1} &= 1.8 \text{ V; UART} \\ active; other peripherals} \\ inactive \end{split}$	_	90		mW
P _{LPVR} ⁽¹⁾	Always ON area power (total V _{INB})	f _{ARM} = 196 MHz; f _{AHB} = 49 MHz; T _{amb} = 25 °C; V _{INB} = 3.3 V		1		mW
P _{IO} ⁽¹⁾	IO rings power (total V _{DDIO_R1} + V _{DDIO_R2})	$\begin{split} f_{ARM} &= 196 \text{ MHz;} \\ f_{AHB} &= 49 \text{ MHz;} \\ T_{amb} &= 25 \text{ °C;} \\ V_{INL1} &= 1.8 \text{ V; UART} \\ active; other peripherals} \\ inactive \end{split}$	_	4		mW
I _{DStandby}	Standby mode supply current	RTC running = 32.768 KHz;		29		μA
I _{DDeepStandby}	Deep standby mode supply current ⁽²⁾	$T_{amb} = 25 \text{ °C; } V_{INB} = 1.8 \text{ V}$	_	7	_	μΑ

^{1.} Not tested in production.

4.6 Recommended DC operating conditions

Table 16 lists the functional recommended operating DC parameters for STA8090FG.

Table 16. Recommended DC operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{CC_CHAIN}	Analog supply voltage for RF chain (1.2 V)	1.08	1.20	1.32	V
V _{CC_PLL}	Analog supply voltage for PLL RF (1.2 V)	1.08	1.20	1.32	V
V _{CC_RF}	Analog supply voltage for RF (1.2 V)	1.08	1.20	1.32	V
V _{DD_ADC}	Digital supply voltage for ADC (1.8 V)	1.71	1.80	1.89	V
V _{DD_SQI}	Flash power supply.	1.71	1.80	1.89	V

^{2.} STDBY_OUT pin not supported in deep standby.

Table 16. Recommended DC operating conditions (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{DDD}	Power supply pins for the core logic.	1.00	1.10	1.32	V
V	Digital supply voltage for I/O ring 1 (1.8 V)	1.71	1.80	1.89	V
V _{DDIO_R1}	Digital supply voltage for I/O ring 1 (3.3 V)	3.00	3.30	3.60	V
V _{DDIO_R2}	Digital supply voltage for I/O ring 2 (3.3 V)	3.00	3.30	3.60	V
V _{INB}	Backup LDO input supply voltage (1.6 V to 4.3 V)	1.60		4.30	V
\/	LDO1 input supply voltage to generate 1.1 V and 1.2 V	1.60		4.30	V
V _{INL1}	LDO1 input supply voltage to generate 1.8 V	2.10		4.30	V
V _{INL2}	LDO2 input supply voltage to generate 1.2 V	1.60		4.30	V
V _{INM}	SMPS coil input supply voltage to generate 1.1 V and 1.2 V	1.60		4.30	V
	SMPS coil input supply voltage to generate 1.8 V	2.10		4.30	٧
V _{DD_ANA}	SMPS input supply (1.6 V to 4.3 V)	1.60		4.30	V
T _C	Operating temperature range	-40		85	°C

4.7 DC characteristics

Table 17 specifies the SMPS voltage regulator characteristics.

Table 17. SMPS DC characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
	Output voltage (1.2 V)	$1.6 \text{ V} \le \text{V}_{\text{INM}} \le 4.3 \text{ V};$ $\text{I}_{\text{OM}} \le 100 \text{ mA}$	1.08	1.20	1.32	V
V _{OM}	Output voltage (1.1 V)	1.6 V \leq V _{INM} \leq 4.3 V; I _{OM} \leq 100 mA	1.0	1.10	1.21	V
	Output voltage (1.8 V)	2.1 V ≤ V _{INM} ≤ 4.3 V; I _{OM} ≤ 100 mA	1.71	1.80	1.89	V
I _{OM}	Output current		0	_	100	mA

Table 18 specifies the LDO1 voltage regulator characteristics.

Electrical characteristics STA8090FG

Table 18. LDO1 DC characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{OL1}	Output voltage (1.2V)	$1.6 \text{ V} \le \text{V}_{\text{INL1}} \le 4.3 \text{ V};$ $\text{I}_{\text{OL1}} \le 70 \text{ mA}$	1.08	1.20	1.32	٧
	Output voltage (1.1V)	$1.6 \text{ V} \le \text{V}_{\text{INL1}} \le 4.3 \text{ V};$ $\text{I}_{\text{OL1}} \le 70 \text{ mA}$	1	1.10	1.21	٧
	Output voltage (1.8V)	$2.1 \text{ V} \le \text{V}_{\text{INL1}} \le 4.3 \text{ V};$ $\text{I}_{\text{OL1}} \le 70 \text{ mA}$	1.71	1.80	1.89	٧
I _{OL1}	Output current		0		70	mA

Table 19 specifies the LDO2 voltage regulator characteristics.

Table 19. LDO2 DC characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{OL2}	Output voltage	$1.6 \text{ V} \le \text{V}_{\text{INL2}} \le 4.3 \text{ V};$ $\text{I}_{\text{OL2}} \le 30 \text{ mA}$	1.08	1.20	1.32	٧
I _{OL2}	Output current		0	_	30	mA

Table 20 specifies the low voltage detection thresholds

Table 20. Low voltage detection thresholds

	Parameter	Min.	Тур.	Max.	Unit
Input LVD always	Upper voltage threshold	_	1.680	_	V
on and main VRs ⁽¹⁾	Lower voltage threshold	_	1.650	_	V
Output LVD always	Upper voltage threshold	_	0.995	_	V
on VR ⁽¹⁾	Lower voltage threshold	_	0.935	_	V
	Upper voltage threshold @ $V_{OL1/M}$ = 1.2 V	_	1.142	_	V
Output LVD main	Lower voltage threshold @ $V_{OL1/M}$ = 1.2 V	_	1.076	_	V
VR ⁽¹⁾	Upper voltage threshold @ V _{OL1/M} = 1.1 V	_	1.048	_	V
	Lower voltage threshold @ $V_{OL1/M}$ = 1.1 V	_	0.986	_	V
Output LVD main	Upper voltage threshold @ $V_{OL1/M}$ = 1.8 V	_	1.645	_	V
VR ⁽¹⁾	Lower voltage threshold @ $V_{OL1/M}$ = 1.8 V	_	1.626	_	V

^{1.} Not tested in production.

Table 21 lists the DC characteristics for all the IO digital buffers expect for the following input buffers: STBYn (F8), STDBY_OUT (G7), WAKEUP0 (E8), WAKEUP1 (F7), PMU_CFG (G8) and RSTn (F9).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{II} ⁽¹⁾	Logical input low level voltage	V _{DDIO} = 1.8 V	-0.3		0.3 * V _{DDIO}	V
VIL.	Logical input low level voltage	$V_{\rm DDIO} = 3.3V$	-0.3		0.8	V
V _{IH} ⁽¹⁾	Logical input high level voltage	V _{DDIO} = 1.8 V	0.7 * V _{DDIO}		V _{DDIO} + 0.3	V
VIH.		V _{DDIO} = 3.3V	2.0		V _{DDIO} + 0.3	V
V _{HYST} ⁽²⁾	Schmitt-trigger hysteresis	_	50	_		mV
V	Low lovel output voltage	V _{DDIO} = 1.8 V		_	0.4	V
V _{OL}	Low level output voltage	V _{DDIO} = 3.3V		_	0.4	V
V	I link lavel autout valtage	V _{DDIO} = 1.8 V	V _{DDIO} - 0.4			V
V _{OH}	High level output voltage	V _{DDIO} = 3.3V	V _{DDIO} - 0.4			V

Table 21. I/O buffers DC characteristics

Table 22 lists the DC characteristics for the 1.0 V IO digital buffers input buffers: STBYn (F8), STDBY_OUT (G7), WAKEUP0 (E8), WAKEUP1 (F7), PMU_CFG (G8) and RSTn (F9).

Symbol Test conditions Min. Unit **Parameter** Тур. Max. 0.35 * V_{OB} -0.3 V_{II} Logical input low level voltage $V_{OB} = 1.0 V$ 0.65 * V_{OB} $V_{OB} + 0.3$ Logical input high level voltage $V_{OB} = 1.0 V$ ٧ V_{IH} V_{OB} = 1.0 V V_{OL} Low level output voltage 0.2 ٧ V_{OH} $V_{OB} = 1.0 V$ ٧ High level output voltage V_{OB} - 0.2

Table 22. 1.0 V I/O buffers DC characteristics

4.8 AC characteristics

4.8.1 RF electrical specifications

Table 23. RFACHAIN - GALGPS filter and VGA

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
S11 ⁽¹⁾	Input return loss	GPS band	_	-8		dB
f _{IF}	IF frequency	PLL in default condition with 26Mhz as reference	_	4.045		MHz
NF	Noise figure	NF overall chain with AGC set at 0 dB	_	2 ⁽¹⁾		dB
C-	Conversion gain from	VGA at max gain		119		dB
C_{G}	RF input to ADC input	VGA at min gain	_	69		dB

DS10719 Rev 6 29/41

^{1.} Excludes oscillator inputs RTC_XTI and XTAL_IN. Refer to oscillator electrical specifications.

^{2.} Apply to all digital inputs unless specified otherwise.

Electrical characteristics STA8090FG

Table 23. RFACHAIN – GALGPS filter and VGA (continued)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
IP _{1dB}	RF-IF-VGA input compression point	VGA min	_	-80		dBm
IRR	Image rejection ratio		_	20		dB
BW _{GPS}	-3dB IF bandwidth	GPS mode	_	2.4		MHz
BW _{GAL}	-30B IF balluwidili	Galileo mode	_	4.8		MHz
ATT	Alias frequency rejection	F = 60 MHz (fs = 65.474 MHz)	_	30		dB
T _{gGPS}	IF filter group delay	GPS mode	_		200 ⁽¹⁾	ns
T _{gGAL}	variation	Galileo mode	_		30 ⁽¹⁾	ns

^{1.} Not tested in production.

Table 24. RFCHAIN - GLONASS/BeiDou filter and VGA

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
S11 ⁽¹⁾	Input return loss	GLONASS band		-10		dB
311\7	input return ioss	BeiDou band		-7		uБ
f _{IFGNS/BDU}	IF frequency for GLONASS	PLL in default condition with 26 Mhz as	_	8.519		MHz
	IF frequency for BeiDou	reference	_	10.277		
NF	Noise figure	NF overall chain with AGC set at 0 dB	_	2 ⁽¹⁾		dB
	Conversion gain from	VGA at max gain	_	118		dB
C _G	RF input to ADC input	VGA at min gain	_	68		dB
IP _{1dB}	RF-IF-VGA input compression point	VGA min	_	-80		dBm
IRR	Image rejection ratio		_	25		dB
BW _{GNS/BDU}	-3dB IF bandwidth		_	10		MHz
ATT	Alias frequency rejection	F = 53 MHz (fs = 65.474 MHz)	_	30		dB
T _{gGNS/BDU}	IF filter group delay variation		_		20 ⁽¹⁾	ns

^{1.} Not tested in production.

Table 25. Synthesizer

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{TCXO_XTAL} Input frequency for xtal amplifier ⁽¹⁾		10		52	MHz
R _{DIV}	Reference divider range	1		63	
N _{DIV}	Loop divider range	56		2047	
F _{LO}	LO operating frequency		3142.656		MHz

^{1.} That amplifier can be used as a TCXO input buffer.

Electrical characteristics STA8090FG

4.8.2 Oscillator electrical specifications

This device contains two oscillators:

- a 32.768 kHz oscillator/buffer for RTC circuit.
- an OSCI oscillator/buffer in the RF Front-End

When used in oscillator mode, each oscillator requires a specific crystal, with parameters that must be as close as possible to the following recommended values. When used in input buffer mode, an external clock source must be applied.

32.768 kHz OSCI32 oscillator specifications

The 32.768 kHz OSCl32 oscillator is connected between RTC_XTI (oscillator amplifier input) and RTC_XTO (oscillator amplifier output). It also requires two external capacitors of 18 pF^(b), as shown on *Figure 2*.

OSCI32 is disabled by default and must be enabled by setting bit28-OSCI_EN of PRCC_BACKUP_REG0 to have 32.768KHz oscillation when an XTAL pi-network is connected to RTC_XTI/RTC_XTO pins.

The recommended oscillator specifications are shown in *Table 26*:

Symbol Parameter Min. Max. Unit Тур. Crystal frequency⁽¹⁾ 32.768 **F**SXTAL kHz Motion inductance⁽¹⁾ 5 kΗ **LM_{SXTAL}** Motional capacitance⁽¹⁾ **CM_{SXTAL}** 5.0 fF Shunt capacitance⁽¹⁾ CO_{SXTAL} 1.3 pF **ESR** Resonance resistance⁽¹⁾ 80 kΩ External load capacitance⁽¹⁾ CL 18 pF

Table 26. Crystal recommended specifications

The oscillator amplifier specifications are shown in the following table:

Table 27. Oscillator amplifier specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _S	Startup time ⁽¹⁾	_	0.3	0.6	s
DL	Drive level ⁽¹⁾	_	_	<0.1	μW
RLC	Required load capacitance ⁽¹⁾	_	12.5	_	pF
GM	Startup transconductance	22.5	33.6	_	μA/V

^{1.} Not tested in production.

^{1.} Not tested in production.

b. Using crystal with recommended characteristics as per Table 26.

RTC_XTII RCT_XTO

CL = 18 pF ____ 32.768 kHz ___ CL = 18 pF

Crystal ____ CL = 18 pF

Figure 2. 32.768 kHz crystal connection

To drive the 32.768 kHz crystal pins from an external clock source:

- Disable the oscillator (bit28-OSCI_EN = 0b in PRCC_BACKUP_REG0 register). This
 disables the internal inverter, thus reducing the power consumption to minimum.
- Drive the RTC_XTI pin with a square signal or a sine wave.

rable 20. Characteriolice of external clost clock input					
Symbol	ol Parameter		Тур.	Max.	Unit
T _{JIT} (cc)	Cycle-to-cycle jitter		_	70	ps
T _{JIT} (per)	Period jitter	-70	_	70	ps
	Variation	-500	_	500	ppm
T _{DUTY}	Duty cycle	45	_	55	%

Table 28. Characteristics of external slow clock input

4.8.3 OSCI oscillator specifications

The supported values of the embedded BOOT ROM are 16.368 MHz, 24.00 MHz, 26.00 MHz and 48.00 MHz.

The default values supported by the GNSS binary image is 26 MHz and 48 MHz, to enable USB peripheral the 48 MHz is mandatory.

4.8.4 ADC specifications

This section gives the AC specification of the 10 bit Successive Approximation Register ADC embedded in STA8090FG device. It is controlled by the ARM9 MCU through a wrapper and an APB bridge as depicted in *Figure 3* and it has a maximum conversion rate of 1MSPS with 8 muxed analog input channels capability. An internal voltage reference is used and analog/digital power supplies connections are implemented inside the device without any needs of dedicated external pins.

577

DS10719 Rev 6

Electrical characteristics STA8090FG

VINL1 VDD12_MVR SARADC AIN0 N N ADC_IN1 AIN1 VREF REFP ADC IN2 D[9:0] SEL[2:0] REFN AIN7 ADC_IN8 **ADC WRAPPER**

Figure 3. SARADC connections

Table 29. SARADC specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{ADCIN}	ADC_IN input range	V _{GND} -0.3	_	V _{INL1} +0.3	V
V _{ADCCR}	Conversion range	V_{GND}	_	V_{REF}	V
V _{REF}	Voltage reference	1.35	1.4	1.45	V
C _{IN}	Input capacitance ⁽¹⁾	5.5	7.0	8.5	pF
R _{IN}	Input mux resistance (total equivalent sampling resistance) ⁽²⁾	1.5	2.0	2.5	kΩ
F _{CLK}	Clock frequency	2.5		15	MHz
δ_{CLK}	Clock duty cycle	45	50	55	%
T _{SUP}	Start up time ⁽¹⁾⁽³⁾	_	_	20	μs
T _C	Conversion time	_	14		cycles
T _S	Sampling time	_	3		cycles
INL	Performance			< +/- 2	LSB
DNL	i chomance			< +/- 2	LSB

^{1.} Not tested in production.

^{2.} Pad input capacitance included.

^{3.} From EN=1.

4.8.5 Flash specifications

This section gives the AC specification of the embedded Flash in STA8090FG device.

Table 30. Flash specifications

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
f _C	Serial clock frequency	QPI mode - 4 read instructions	_		78	MHz
+.	Sector erase cycle time	Size = 16 Mb	_	60	200	ms
t _{SE}		Size = 32 Mb	_	35	200	ms
+	Block erase (32 KB) cycle time	Size = 16 Mb	_	0.25	1	S
t _{BE32}	Block erase (32 KB) cycle time	Size = 32 Mb	_	0.2	1	S
4	Block erase (64 KB) cycle time	Size = 16 Mb	_	0.5	2	S
t _{BE}	Block erase (64 KB) cycle time	Size = 32 Mb	_	0.35	2	S
t _{CE}	Chip erase time	Size = 16 Mb	_	12.5	25	S
		Size = 32 Mb	_	25	50	S
t _{PP}	Page program cycle time	Size = 16 Mb	_	0.008 + (n x 0.004)	3	ms
		Size = 32 Mb	_	0.008 + (n x 0.004)	3	ms

5 Package and packing information

5.1 ECOPACK packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

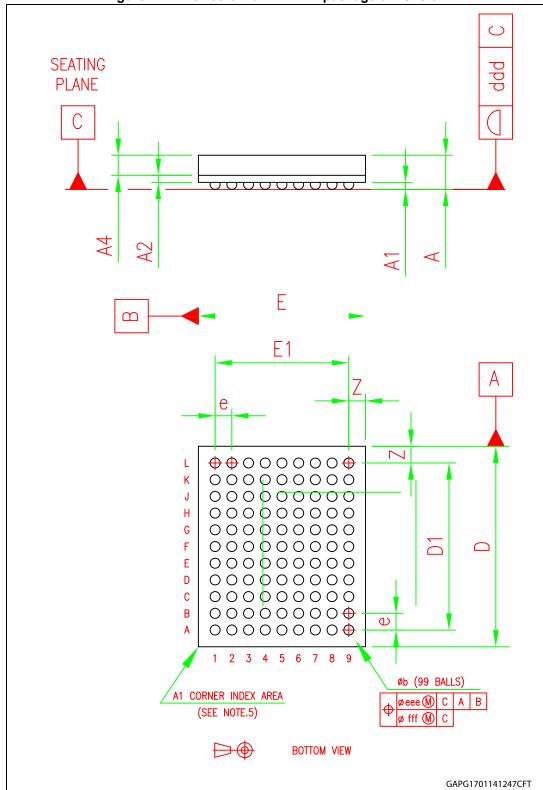
5.2 TFBGA99 5 x 6 x 1.2 mm package information

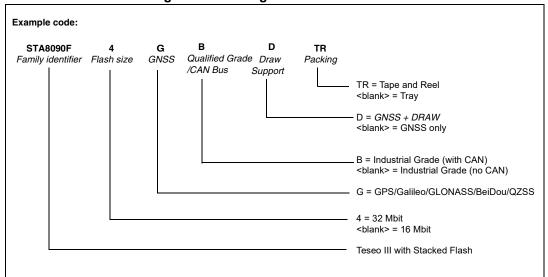
Table 31. TFBGA99 package dimensions

Symbol	Min.	Тур.	Max
А			1.20
A1	0.15		
A2		0.28	
A4			0.60
b	0.25	0.30	0.35
D	5.85	6.00	6.15
D1		5.00	
E	4.85	5.00	5.15
E1		4.00	
е		0.50	
F		0.50	
ddd			0.08
eee			0.15
fff			0.05

DS10719 Rev 6

36/41




Figure 4. TFBGA99 5 x 6 x 1.2 mm package dimension

DS10719 Rev 6

Ordering information STA8090FG

6 Ordering information

Figure 5. Ordering information scheme

STA8090FG Revision history

7 Revision history

Table 32. Document revision history

Date	Revision	Changes
21-Nov-2014	1	Initial release.
04-Dec-2014	2	Table 6: Test/emulated dedicated pins - TDI, TMS: updated description Table 7: Communication interface pins - SPI_DI: updated description Table 9: General purpose pins - GPIO1: updated description Table 20: Low voltage detection thresholds - Input LVD always on and main VRs: removed minimum and maximun values
05-Nov-2015	3	Updated Features and Description Updated Chapter 1: Overview Updated Figure 1: STA8090FG system block diagram Table 4: Power supply pins: VOL1 VOM, VDDD: updated description Updated Section 3.4.3: UART and Section 3.4.4: Flash Added Section 3.4.5: SDMMC and Section 3.4.11: MSP Table 12: Voltage characteristics: VESD-HBM, VESD-CDM: updated values Table 15: Power consumption: PRF: updated typical value for GPS/Galileo PMVR, PLPVR, Plo: added note IDSLEEP: Updated value Table 16: Recommended DC operating conditions: VINL1, VINL2, VINM: updated parameter Table 17: SMPS DC characteristics: VOM: set min and max values as TBD, removed condition for Output voltage at 1.0 V Table 18: LDO1 DC characteristics: VOL1: set min and max values as TBD Table 20: Low voltage detection thresholds: Output LVD main VR: removed condition for Output voltage at 1.0 V Table 23: RFACHAIN – GALGPS filter and VGA: S11: Added note CG: updated values Table 27: Oscillator amplifier specifications: TS: updated minimum value Updated Section 4.8.3: OSCI oscillator specifications, Section 4.8.5: Flash specifications and Chapter 6: Ordering information

DS10719 Rev 6 39/41

Revision history STA8090FG

Table 32. Document revision history (continued)

Date	Revision	Changes
22-Mar-2017	4	Added STA8090FGBD option for DRAW support. Updated Section 1: Overview Table 15: Power consumption - Updated Min., Typ. and Max. values Table 17: SMPS DC characteristics - Updated Min., Typ. and Max. values Table 18: LDO1 DC characteristics - Updated Min., Typ. and Max. values Table 19: LDO2 DC characteristics
		Updated Min., Typ. and Max. values Updated Figure 5: Ordering information scheme
29-May-2017	5	Updated: <i>Table 15: Power consumption</i> : removed I _{DSLEEP} and added I _{DStandby} and I _{DDeepStandby} parameters.
05-Jun-2020	6	Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

DS10719 Rev 6 41/41