Resistive Product Solutions

Features:

- R Value extension of RMCF product
- Highly stable performance over time
- Power derating from 100% at 70°C to zero at 125°C
- E12 and E24 values
- Nickel barrier terminations
- RoHS compliant by means of exemption 7c-I
- Halogen free
- REACH compliant

	Electrical Specifications								
Type/Code	Power Rating (W) @ 70°C	Maximum Working	Maximum Overload	TCR (ppm/ºC)	Ohmie	c Range (Ω) and Tole	rance		
	(W) @ 70°C	Voltage (V) (1)	Voltage (V)		1%	5%	10%		
HMC0402	0.063	50	100	± 200	11M - 20M	-			
HIVIC0402	0.003	50	100	± 400		22M - 100M			
				± 200	11M - 20M	-			
HMC0603	0.1	50	100	± 400		22M - 100M			
				± 500	-	110M	- 1G		
				± 200	11M - 20M	-			
				± 400		22M - 100M			
HMC0805	0.125	150	300	± 500	-	110M - 500M			
				± 1000	-	510M - 1G			
				± 1500	-	1.2G - 10G			
				± 200	11M - 20M	-			
	0.25			± 400	22M - 100M	30M -	100M		
HMC1206		200	400	± 500	-	110M - 500M			
				± 1000	-	510M	- 1G		
				± 1500	-	1.2G ·	· 10G		
	0.33	200	400	± 200	11M - 20M	-	11M - 20M		
HMC1210	0.33	200	400	± 400	22M - 100M				
HMC2010	0.75	200	400	± 200	11M - 20M				
	0.75	200	400	± 400	22M - 100M				
	1	250	E00	± 200		11M - 20M			
HMC2512	1	250	500	± 400		22M - 100M			

(1) Lesser of $\sqrt{P^*R}$ or maximum working voltage.

Mechanical Specifications H a Image: Colspan="2">W M H M Body Width Body Width Body Height

Type/Code	Body Length	Body Width	Body Height	Top Termination	Bottom Termination	Unit
	0.039 ± 0.002	0.020 ± 0.002	0.014 ± 0.002	0.008 ± 0.004	0.008 ± 0.004	inches
	1.00 ± 0.05	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.20 ± 0.10	mm
	0.063 ± 0.004	0.031 ± 0.004	0.018 ± 0.004	0.012 ± 0.008	0.012 ± 0.008	inches
	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20	mm
	0.079 ± 0.008	0.049 ± 0.004	0.020 ± 0.004	0.016 ± 0.008	0.016 ± 0.008	inches
HIVIC0805	2.00 ± 0.20	1.25 ± 0.10	0.50 ± 0.10	0.40 ± 0.20	0.40 ± 0.20	mm
	HMC0402 HMC0603 HMC0805	HMC0402 0.039 ± 0.002 HMC0603 0.063 ± 0.004 HMC0603 0.063 ± 0.004 HMC0805 0.079 ± 0.008	Body Length Body Width HMC0402 0.039 ± 0.002 0.020 ± 0.002 1.00 ± 0.05 0.50 ± 0.05 HMC0603 0.063 ± 0.004 0.031 ± 0.004 1.60 ± 0.10 0.80 ± 0.10 HMC0805 0.079 ± 0.008 0.049 ± 0.004	HMC0402 0.039 \pm 0.002 0.020 \pm 0.002 0.014 \pm 0.002 HMC0603 0.063 \pm 0.004 0.031 \pm 0.004 0.018 \pm 0.004 HMC0805 0.079 \pm 0.008 0.049 \pm 0.004 0.020 \pm 0.004	HMC0402 0.039 \pm 0.002 0.020 \pm 0.002 0.014 \pm 0.002 0.008 \pm 0.004 HMC0603 0.063 \pm 0.004 0.031 \pm 0.004 0.018 \pm 0.004 0.012 \pm 0.008 HMC0603 0.063 \pm 0.004 0.031 \pm 0.004 0.018 \pm 0.004 0.012 \pm 0.008 HMC0805 0.079 \pm 0.008 0.049 \pm 0.004 0.020 \pm 0.004 0.016 \pm 0.008	HMC0402 0.039 ± 0.002 1.00 ± 0.05 0.020 ± 0.002 0.50 ± 0.05 0.014 ± 0.002 0.35 ± 0.05 0.008 ± 0.004 0.20 ± 0.10 0.008 ± 0.004 0.20 ± 0.10 HMC0603 0.063 ± 0.004 1.60 ± 0.10 0.031 ± 0.004 0.80 ± 0.10 0.018 ± 0.004 0.45 ± 0.10 0.012 ± 0.008 0.30 ± 0.20 0.012 ± 0.008 0.30 ± 0.20 HMC0805 0.079 ± 0.008 0.049 ± 0.004 0.020 ± 0.004 0.016 ± 0.008 0.016 ± 0.008

Rev Date: 5/12/2023

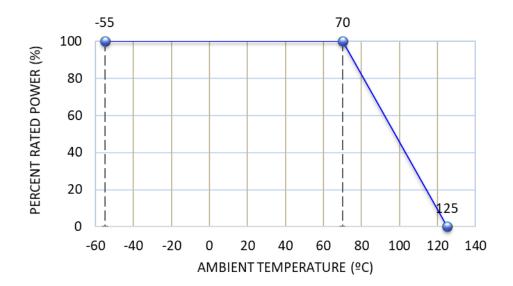
1

www.seielect.com marketing@seielect.com

This specification may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

HMC Series High Value Thick Film Chip Resistor

Stackpole Electronics, Inc.


Resistive Product Solutions

	Mechanical Specifications (cont.)								
Type/Code	L Body Length	W Body Width	H Body Height	a Top Termination	b Bottom Termination	Unit			
HMC1206	0.122 ± 0.006	0.061 ± 0.004	0.022 ± 0.006	0.020 ± 0.010	0.020 ± 0.008	inches			
	3.10 ± 0.15	1.55 ± 0.10	0.55 ± 0.15	0.50 ± 0.25	0.50 ± 0.20	mm			
HMC1210	0.126 ± 0.008	0.102 ± 0.006	0.022 ± 0.004	0.020 ± 0.008	0.020 ± 0.008	inches			
	3.20 ± 0.20	2.60 ± 0.15	0.55 ± 0.10	0.50 ± 0.20	0.50 ± 0.20	mm			
HMC2010	0.197 ± 0.008	0.098 ± 0.006	0.022 ± 0.004	0.024 ± 0.010	0.020 ± 0.008	inches			
	5.00 ± 0.20	2.50 ± 0.15	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20	mm			
HMC2512	0.250 ± 0.008	0.126 ± 0.006	0.022 ± 0.004	0.024 ± 0.010	0.020 ± 0.008	inches			
	6.35 ± 0.20	3.20 ± 0.15	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20	mm			

_								
	Performance Characteristics							
I	Test	Test Condition (JIS C 5202)	Test Result					
I	Long Term Stability	Nominal temperature & humidity for 1000 hours	± 0.5%					
	High Temperature Loading	15 VDC, 1.5 hour ON, 0.5 hour OFF, 1000 hours 70°C	± 3%					
	Resistance to Solder Heat	260°C ± 5°C, 10 seconds +1/-0	± 1%					
ſ	Short Time Overload	5 seconds at maximum overload voltage	± 2%					

Operating temperature range is -55°C to +125°C

Power Derating Curve:

High Value Thick Film Chip Resistor

Resistive Product Solutions

	Recommen	ded Pad Layouts		
		▲		
Type/Code	А	В	С	Unit
HMC0402	0.020	0.018	0.024	inches
	0.50	0.45	0.60	mm
HMC0603	0.035	0.024	0.035	inches
111100000	0.90	0.60	0.90	mm
HMC0805	0.047	0.028	0.051	inches
11000005	1.20	0.70	1.30	mm
HMC1206	0.079	0.035	0.063	inches
HIVIC 1206	2.00	0.90	1.60	mm
1004040	0.079	0.035	0.110	inches
HMC1210	2.00	0.90	2.80	mm
1000040	0.150	0.035	0.110	inches
HMC2010	3.80	0.90	2.80	mm
	0.193	0.063	0.138	inches
HMC2512	4.90	1.60	3.50	mm

Recommended Solder Profile

This information is intended as a reference for solder profiles for Stackpole resistive components. These profiles should be compatible with most soldering processes. These are only recommendations. Actual numbers will depend on board density, geometry, packages used, etc., especially those cells labeled with "*".

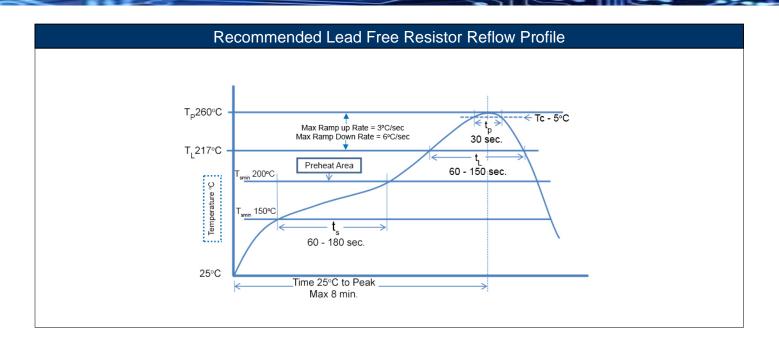
100% Matte Tin / RoHS Compliant Terminations

Soldering iron recommended temperatures: 330°C to 350°C with minimum duration. Maximum number of reflow cycles: 3.

Wave Soldering							
Description	Maximum	Recommended	Minimum				
Preheat Time	80 seconds	70 seconds	60 seconds				
Temperature Diff.	140°C	120°C	100°C				
Solder Temp.	260°C	250°C	240°C				
Dwell Time at Max	10 seconds	5 seconds	*				
Ramp DN (°C/sec)	N/A	N/A	N/A				

Temperature Diff. = Difference between final preheat stage and soldering stage.

Convection IR Reflow							
Description	Maximum	Recommended	Minimum				
Ramp Up (°C/sec)	3°C/sec	2°C/sec	*				
Dwell Time > 217°C	150 seconds	90 seconds	60 seconds				
Solder Temp.	260°C	245°C	*				
Dwell Time at Max.	30 seconds	15 seconds	10 seconds				
Ramp DN (°C/sec)	6°C/sec	3°C/sec	*				


This specification may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

HMC Series

Stackpole Electronics, Inc.

Resistive Product Solutions

High Value Thick Film Chip Resistor

Resistive Product Solutions

Part Marking Instructions

1% Marking The nominal resistance is marked on the surface of the overcoating with the use of 4 digit markings. 0201 and 0402 are not marked.

5% Marking The nominal resistance is marked on the surface of the overcoating with the use of 3 digit markings. 0201 and 0402 are not marked.

For shared E24/E96 values, 1% tolerance product may be marked with three-digit marking instead of the standard four-digit marking for all other E96 values. All E24 values available in 1% tolerance are also marked with three-digit marking.

Marking Instructions for 0603 1% Chip Resistors (per EIA-J)

A two-digit number is assigned to each standard R-Value (E96) as shown in the chart below. This is followed by one alpha character which is used as a multiplier. Each letter represents a specific multiplier as follows:

Z = 0.01	A = 10	D = 10,000
Y = 0.1	B = 100	E = 100,000
X = 1	C = 1,000	F = 1,000,000

EXAMPLE:

Chip Marking	Explanation	Value		
01B	01 means 10.0 and B = 100	10.0 x 100 = 1 Kohm		
25C	25 means 17.8 and C = 1,000	17.8 x 1,000 = 17.8 Kohm		
93D	93 means 90.9 and D = 10,000	90.9 x 10,000 = 909 Kohm		

	E96										
#	R-Value										
01	10.0	17	14.7	33	21.5	49	31.6	65	46.4	81	68.1
02	10.2	18	15.0	34	22.1	50	32.4	66	47.5	82	69.8
03	10.5	19	15.4	35	22.6	51	33.2	67	48.7	83	71.5
04	10.7	20	15.8	36	23.2	52	34.0	68	49.9	84	73.2
05	11.0	21	16.2	37	23.7	53	34.8	69	51.1	85	75.0
06	11.3	22	16.5	38	24.3	54	35.7	70	52.3	86	76.8
07	11.5	23	16.9	39	24.9	55	36.5	71	53.6	87	78.7
08	11.8	24	17.4	40	25.5	56	37.4	72	54.9	88	80.6
09	12.1	25	17.8	41	26.1	57	38.3	73	56.2	89	82.5
10	12.4	26	18.2	42	26.7	58	39.2	74	57.6	90	84.5
11	12.7	27	18.7	43	27.4	59	40.2	75	59.0	91	86.6
12	13.0	28	19.1	44	28.0	60	41.2	76	60.4	92	88.7
13	13.3	29	19.6	45	28.7	61	42.2	77	61.9	93	90.9
14	13.7	30	20.0	46	29.4	62	43.2	78	63.4	94	93.1
15	14.0	31	20.5	47	30.1	63	44.2	79	64.9	95	95.3
16	14.3	32	21.0	48	30.9	64	45.3	80	66.5	96	97.6

Rev Date: 5/12/2023

5

This specification may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

Resistive Product Solutions

RoHS Compliance

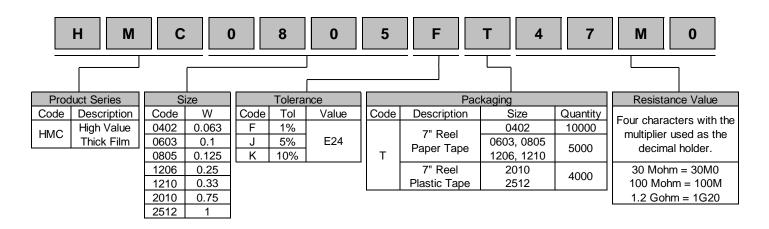
Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status								
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)			
HMC	High Value Thick Film Surface Mount Chip Resistor	SMD	YES(1)	100% Matte Sn over Ni	Jan-04	04/01			

Note (1): RoHS Compliant by means of exemption 7c-I.

"Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.


Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

How to Order

Rev Date: 5/12/2023

This specification may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.