SiT1618 Preliminary Automotive Grade, Standard Frequency Oscillator

Features

- 33 standard frequencies between 7.3728 MHz and 75 MHz
- Operating temperature up to 125 °C (Contact SiTime for ACEQ100 compliance)
- 100% pin-to-pin drop-in replacement to quartz-based XO
- Excellent total frequency stability as low as ±25 PPM
- Superior G-sensitivity of 0.1 PPB/
- Low power consumption of 3.6 mA typical
- Standby mode for longer battery life
- Fast startup time of 5 ms
- LVCMOS/HCMOS compatible output
- Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5, 5.0 x 3.2, 7.0 x 5.0 mm

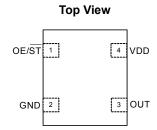
Applications

- High reliability automotive, medical and industrial electronics
- Industrial sensors, control boards, infortainment systems

Electrical Characteristics

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition	
Output Frequency Range	f	(Refer to the frequency list page 5)		MHz	33 standard frequencies between 1MHz and75MHz		
Frequency Stability	F_stab	-25	-	+25	PPM	Inclusive of: Initial stability, operating temperature, rated power,	
		-50	-	+50	PPM	supply voltage change, load change, shock and vibration	
Operating Temperature Range	T_use	-40	-	-105	°C	Extended Commercial	
		-40	-	+125	°C	Industrial	
Supply Voltage	Vdd	1.62	1.8	1.98	V	Any voltage between 2.5V and 3.3V is supported with 1 decimal	
		2.25	2.5	2.75	V	point resolution.	
		2.52	2.8	3.08	V		
		2.7	3.0	3.3	V		
		2.97	3.3	3.63	V		
Current Consumption	ldd	-	3.9	5	mA	No load condition, f = 20 MHz, Vdd = 2.5V, 2.8V or 3.3V	
		-	3.6	4.5	mA	No load condition, f = 20 MHz, Vdd = 1.8V	
Standby Current	I_std	-	2	10	μA	ST = GND, Vdd = 3.3V, Output is Weakly Pulled Down.	
		-	2	10	μA	ST = GND, Vdd = 2.5V or 2.8V, Output is Weakly Pulled Down	
		-	1	5	μΑ	ST = GND, Vdd = 1.8V, Output is Weakly Pulled Down	
Duty Cycle	DC	45	50	55	%	All Vdds	
Rise/Fall Time	Tr, Tf	-	1.2	2	ns	20% - 80% Vdd = 2.5V, 2.8V or 3.3V	
		-	1.5	2.5	ns	20% - 80% Vdd =1.8V	
Output High Voltage	VOH	90%	-	-	Vdd	IOH = -4 mA (Vdd = 3.3V) IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V) IOH = -2 mA (Vdd = 1.8V)	
Output Low Voltage	VOL	-	-	10%	Vdd	IOL = 4 mA (Vdd = 3.3V) IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V) IOL = 2 mA (Vdd = 1.8V)	
Input High Voltage	VIH	70%	-	-	Vdd	Pin 1, OE or ST	
Input Low Voltage	VIL	-	-	30%	Vdd	Pin 1, OE or ST	
Input Pull-up Impedance	Z_in	-	100	250	kΩ		
Startup Time	T_start	-	-	5	ms	Measured from the time Vdd reaches its rated minimum value	
Resume Time	T_resume	-	-	5	ms	Measured from the time ST pin crosses 50% threshold	
RMS Period Jitter	T_jitt	-	2	4	ps	f = 20 MHz, Vdd = 2.5V, 2.8V or 3.3V	
		-	2	4.5	ps	f = 20 MHz, Vdd = 1.8V	
Pk-Pk Period Jitter	T_djitt	-	15	30	ps	Measured over 10000 hits	
RMS Phase Jitter (random)	T_phj	-	0.7	1	ps	f = 20 MHz, Integration bandwidth = 900 kHz to 7.5 MHz, Vdd =1.8V, 2.5V, 2.8V, or 3.3V	
		-	1.5	3	ps	f = 20 MHz, Integration bandwidth = 12 kHz to 7.5 MHz, Vdd = 1.8V, 2.5V, 2.8V, or 3.3V	
Aging	Ag	-1.5	-	1.5	PPM	1st year at 25°C	

Note:


1. All electrical specifications in the above table are specified with 15 pF ±10% output load and for all Vdd(s) unless otherwise stated.

SiT1618 Automotive Grade, Standard Frequency Oscillator

Pin Description

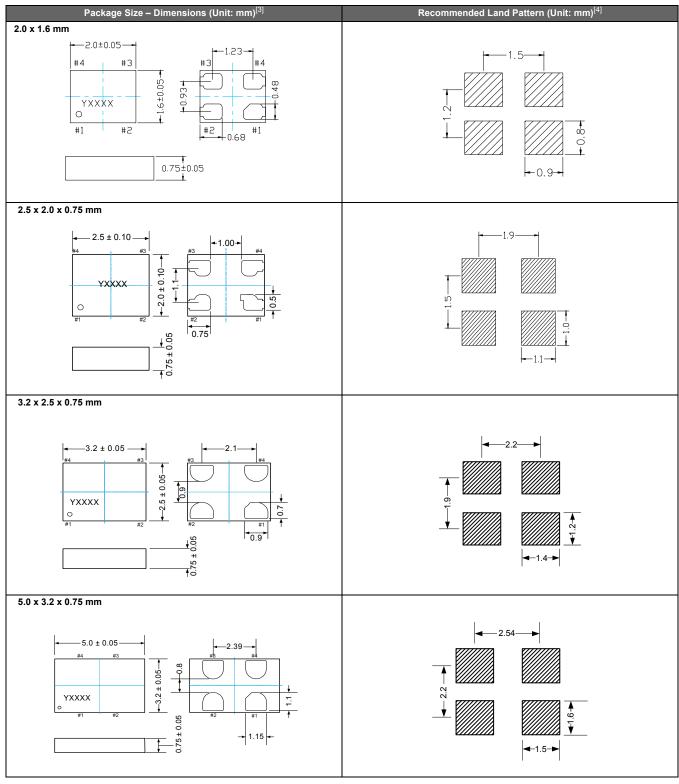
Pin	Мар	Functionality			
1 OE		Input	H or Open ^[2] : specified frequency output L: output is high impedance		
	ST	Input	H or Open ^[2] : specified frequency output L: output is low level (weak pull down). Oscillation stops		
2	GND	NA	VDD Power Supply Ground		
3	CLK	Power	Output Oscillator		
4	VDD	Output	Power Supply Voltage		

Note:

2. A pull-up resistor of <10 k Ω between OE/ \overline{ST} pin and Vdd is recommended in high noise environment

Absolute Maximum

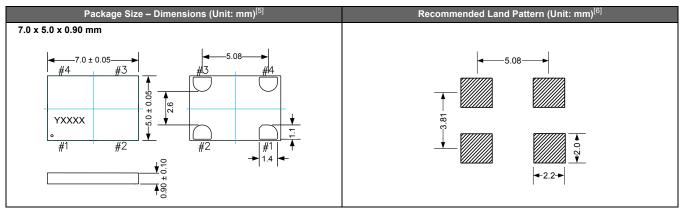
Attempted operation outside the absolute maximum ratings of the part may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.


Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
VDD	-0.5	4	V
Electrostatic Discharge (HBM)	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	_	260	°C

Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002
Mechanical Vibration	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL1 @ 260°C

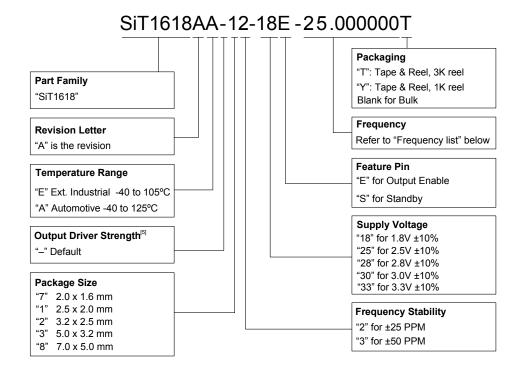
Dimensions and Patterns


Notes:

Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
A capacitor of value 0.1 μF between Vdd and GND is recommended.

Downloaded from Arrow.com.

Dimensions and Patterns



Notes:

5. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
6. A capacitor of value 0.1 μF between Vdd and GND is recommended.

Ordering Information

Note:

7. Contact SiTime for the SoftEdge™ option that can be used to either drive higher (or multiple) loads or reduce EMI.

Supported Frequencies

7.3728 MHz	8 MHz	8.192 MHz	9.8304 MHz	9.84375 MHz	11.0592 MHz	12 MHz	12.288 MHz	13 MHz
13.225625 MHz	13.52127 MHz	24.56 MHz	14.31818 MHz	14.7456 MHz	15 MHz	16 MHz	16.384 MHz	18.432 MHz
19.6608 MHz	20 MHz	22.1184 MHz	24 MHz	24.576 MHz	25 MHz	26 MHz	27 MHz	29.4912 MHz
30 MHz	32 MHz	33 MHz	36 MHz	40 MHz	48 MHz			

Note:

8. Contact SiTime for frequencies that are not listed in the above table

© SiTime Corporation 2012. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.