

Data Sheet

FEATURES

Latch-up proof 8 kV HBM ESD rating Low on resistance (<10 Ω) ±9 V to ±22 V dual-supply operation 9 V to 40 V single-supply operation 48 V supply maximum ratings Fully specified at ±15 V, ±20 V, +12 V, and +36 V V_{SS} to V_{DD} analog signal range

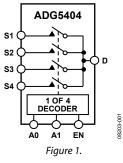
APPLICATIONS

Relay replacement Automatic test equipment Data acquisition Instrumentation Avionics Audio and video switching Communication systems

GENERAL DESCRIPTION

The ADG5404 is a complementary metal-oxide semiconductor (CMOS) analog multiplexer, comprising four single channels.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals.


The ADG5404 is designed on a trench process, which guards against latch-up. A dielectric trench separates the P and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.

The ADG5404 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action.

High Voltage, Latch-up Proof, 4-Channel Multiplexer

ADG5404

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. Trench Isolation Guards Against Latch-Up. A dielectric trench separates the P and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
- 2. Low Ron.
- 3. Dual-Supply Operation. For applications where the analog signal is bipolar, the ADG5404 can be operated from dual supplies of up to ±22 V.
- 4. Single-Supply Operation. For applications where the analog signal is unipolar, the ADG5404 can be operated from a single-rail power supply of up to 40 V.
- 5. 3 V logic-compatible digital inputs: $V_{INH} = 2.0$ V, $V_{INL} = 0.8$ V.
- 6. No V_L logic power supply required.

Rev. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

. 1
. 1
. 2
. 3
. 3
. 4
. 5
. 6
. 7
. 8

REVISION HISTORY

11/2017-Rev. A	to	Rev.	В
----------------	----	------	---

Changes to Table 1	3
Changes to Table 2	
Changes to Table 3	5
Changes to Table 4	6
Changes to Figure 3	9
Updated Outline Dimensions	
Change to Ordering Guide	20
5 5	

7/2011—Rev. 0 to Rev. A

Changes to Product Highlights	. 1
Change to Iss Parameter, Table 2	. 4
Updated Outline Dimensions	20

7/2010—Revision 0: Initial Version

ESD Caution8
Pin Configurations and Function Descriptions9
Truth Table9
Typical Performance Characteristics 10
Test Circuits
Terminology 17
Trench Isolation 18
Applications Information 19
Outline Dimensions
Ordering Guide 20

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
		l		
		V _{DD} to V _{SS}	V	
9.8			Ωtyp	$V_{s} = \pm 10 V$, $I_{s} = -10 mA$; see Figure 23
11	14	16	Ωmax	$V_{DD} = +13.5 \text{ V}, \text{ V}_{SS} = -13.5 \text{ V}$
0.35			Ωtyp	$V_s = \pm 10 V$, $I_s = -10 mA$
0.7	0.9	1.1	Ωmax	
1.2			Ωtyp	$V_{s} = \pm 10 \text{ V}, \text{ I}_{s} = -10 \text{ mA}$
1.6	2	2.2	Ωmax	
				$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
±0.05			nA typ	$V_s = V_s = \pm 10 V$, $V_D = \mp 10 V$; see Figure 24
+0.25	+0.75	+6	nA may	$v_{3} = v_{3} = \pm 10^{\circ} v_{1}^{\circ} v_{2}^{\circ} = \pm 10^{\circ} v_{1}^{\circ} 3ee + 19 are 24$
	10.75	±0		
				V_{S} = V_{S} = ± 10 V, V_{D} = ∓ 10 V; see Figure 24
±0.4	±2	±16	nA max	
±0.1			nA typ	$V_s = V_D = \pm 10 V$; see Figure 25
±0.4	±2	±16	nA max	
		2.0	V min	
		0.8	V max	
0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
		±0.1	μA max	
5			pF typ	
187			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
242	285	330	ns max	$V_s = 10 V$; see Figure 30
160			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
204	247	278	ns max	$V_s = 10 V$; see Figure 32
125			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
145	168	183	ns max	Vs = 10 V; see Figure 32
45			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		12	ns min	$V_{s1} = V_{s2} = 10 V$; see Figure 31
220			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 33
-78			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 26
-58			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
0.009			% typ	R_L = 1k Ω, 15 V p-p, f = 20 Hz to 20 kHz; see Figure 29
53			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 27
				$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
				$V_s = 0 V, f = 1 MHz$
92				$V_s = 0 V, f = 1 MHz$
				$V_{s} = 0 V, f = 1 MHz$
			r: 7M	$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
45			uA typ	Digital inputs = $0 \text{ V or } V_{DD}$
		70		
0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			MILLYN	
0.001		1	μA max	J H H H
	9.8 11 0.35 0.7 1.2 1.6 ±0.05 ±0.25 ±0.1 ±0.4 ±0.4 ±0.4 ±0.1 ±0.4 ±0.4 ±0.1 ±0.4 125 145 45 220 -78 -58 0.009 53 -0.7 19 92 132 45 55	9.8 14 0.35 0.9 1.1 14 0.35 0.9 1.2 2 1.6 2 ± 0.05 ± 0.75 ± 0.25 ± 0.75 ± 0.1 ± 2 ± 0.4 ± 2 ± 0.1 ± 2 ± 0.4 ± 2 0.002 5 5 -58 220 -78 -58 -0.77 92 132	9.8 14 V_{0D} to V_{SS} 9.8 14 16 0.7 0.9 1.1 1.2 2 2.2 1.6 2 2.2 ± 0.05 ± 0.75 ± 6 ± 0.1 ± 2 ± 16 ± 0.4 ± 2 ± 16 0.002 $-5000000000000000000000000000000000000$	9.8 11 0.35 14 V_{DD} to V_{SS} V Ω typ Ω max Ω typ 0.7 0.9 1.1 Ω max Ω typ 1.2 2 Ω 1.6 2 2.2 Ω max ± 0.05 ± 0.75 ± 6 nA typ ± 0.1 ± 2 ± 16 nA max 0.02 μ μ μ μ 0.002 μ μ μ μ 0.002 μ μ μ μ 187 285 330 ns typ 120 247 278 ns max 150 168 183 ns max 12 12 ns max ns typ 220 -78 12 ns 0.009 -58 </td

±20 V DUAL SUPPLY

 V_{DD} = 20 V \pm 10%, V_{SS} = –20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, Ron	9			Ωtyp	$V_s = \pm 15 V$, $I_s = -10 mA$; see Figure 23
	10	13	15	Ωmax	$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$
On-Resistance Match	0.35			Ωtyp	$V_s = \pm 15 V$, $I_s = -10 mA$
Between Channels, ΔR_{ON}					
	0.7	0.9	1.1	Ωmax	
On-Resistance Flatness, $R_{FLAT(ON)}$	1.5			Ωtyp	$V_s = \pm 15 V$, $I_s = -10 mA$
	1.8	2.2	2.5	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +22 V, V_{SS} = -22 V$
Source Off Leakage, I _s (Off)	±0.05			nA typ	$V_s = \pm 15 V$, $V_D = \mp 15 V$; see Figure 24
	±0.25	±0.75	±6	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_s = \pm 15 V$, $V_D = \mp 15 V$; see Figure 24
	±0.4	±2	±16	nA max	$v_{5} = \pm 15 v, v_{0} = \pm 15 v, see Figure 24$
Channel On Leakage, I _D , I _S (On)	±0.4 ±0.1	12	10	nA typ	$V_s = V_D = \pm 15 V$; see Figure 25
Channel On Leakage, 10, 15 (On)	±0.1 ±0.4	±2	±16	nA max	$v_{s} = v_{b} = \pm 15$ v, see Figure 25
DIGITAL INPUTS	10.4	±2	10		
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, VINI			0.8	V max	
Input Current, Inc or Inn	0.002		0.0	-	$V_{IN} = V_{GND} \text{ or } V_{DD}$
	0.002		±0.1	μA typ μA max	$\mathbf{v}_{\rm IN} = \mathbf{v}_{\rm GND} \mathbf{O} \mathbf{I} \mathbf{v}_{\rm DD}$
Digital Input Capacitance, C _№	5		±0.1	pF typ	
	5			рг тур	
	175			no turn	D 200 O C 25 mE
Transition Time, transition	175 224	262	301	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = +10 V$; see Figure 30
+(EN)	148	202	501	ns max	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
t _{on} (EN)	140	222	250	ns typ	$V_s = 10 V$; see Figure 32
t _{off} (EN)	120	222	250	ns max ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
	142	159	173	ns max	$V_s = 10 V$; see Figure 32
Break-Before-Make Time Delay, t₀	40	139	175	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
bleak-belole-make fine belay, to	40		10	ns min	$V_{s1} = V_{s2} = 10 V$; see Figure 31
Charge Injection, Q _{INJ}	290			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 33
Off Isolation	-78			dB typ	$R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 100 \text{ kHz};$
On isolation	-70			ub typ	see Figure 26
Channel-to-Channel Crosstalk	-58			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion +	0.008			% typ	$R_L = 1 \text{ k}\Omega$, 20 V p-p, f = 20 Hz to 20 kHz;
Noise	54				see Figure 29
–3 dB Bandwidth	54			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 27
Insertion Loss	-0.6			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
C _s (Off)	18			pF typ	$V_{s} = 0 V, f = 1 MHz$
C_{D} (Off)	88			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D , C _S (On)	129			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS	50				$V_{DD} = +22 V, V_{SS} = -22 V$
DD	50		110	µA typ	Digital inputs = $0 V \text{ or } V_{DD}$
	70		110	μA max	
lss	0.001		1	μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
N/			1	μA max	
V _{DD} /V _{SS}			±9/±22	V min/max	GND = 0 V

+12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, Ron	19			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$; see Figure 23
	22	27	31	Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On-Resistance Match Between Channels, ΔR _{on}	0.4			Ωtyp	$V_s = 0$ V to 10 V, $I_s = -10$ mA
	0.8	1	1.2	Ωmax	
On-Resistance Flatness, R _{FLAT(ON)}	4.4		1.2	Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	5.5	6.5	7.5	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, \text{ V}_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_s = 1 V/10 V$, $V_D = 10 V/1 V$; see Figure 24
	±0.25	±0.75	±6	nA max	······································
Drain Off Leakage, I _D (Off)	±0.05	_00		nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V}; \text{ see Figure 24}$
	±0.4	±2	±16	nA max	· · · · · · · · · · · · · · · · · · ·
Channel On Leakage, I _D , I _s (On)	±0.05			nA typ	$V_s = V_D = 1 \text{ V}/10 \text{ V}$; see Figure 25
	±0.4	±2	±16	nA max	· · · · · · · · · · · · · · · · · · ·
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			µA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	266			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	358	446	515	ns max	$V_s = +8 V$; see Figure 30
t _{on} (EN)	260			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	339	423	485	ns max	$V_s = 8 V$; see Figure 32
t _{off} (EN)	135			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	162	189	210	ns max	$V_s = 8 V$; see Figure 32
Break-Before-Make Time Delay, t _D	125			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			45	ns min	$V_{s1} = V_{s2} = 8 V$; see Figure 31
Charge Injection, Q _{INJ}	92			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 33
Off Isolation	-78			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	-58			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion + Noise	0.075			% typ	$R_L = 1k \Omega$, 6 V p-p, f = 20 Hz to 20 kHz; see Figure 29
–3 dB Bandwidth	43			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 27
Insertion Loss	-1.36			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Cs (Off)	22			pF typ	$V_s = 6 V, f = 1 MHz$
C _D (Off)	105			pF typ	$V_{s} = 6 V, f = 1 MHz$
C _D , C _s (On)	140			pF typ	$V_{s} = 6 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 13.2 V$
lod	40			µA typ	Digital inputs = $0 V$ or V_{DD}
	50		65	µA max	
V _{DD}			9/40	V min/max	$GND = 0 V, V_{SS} = 0 V$

+36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, Ron	10.6			Ωtyp	$V_s = 0 V$ to 30 V, $I_s = -10 mA$; see Figure 23
	12	15	17	Ωmax	$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match	0.35			Ωtyp	$V_s = 0 V$ to 30 V, $I_s = -10 mA$
Between Channels, ΔR_{ON}					
	0.7	0.9	1.1	Ωmax	
On-Resistance Flatness, R _{FLAT(ON)}	2.7			Ωtyp	$V_s = 0 V$ to 30 V, $I_s = -10 mA$
	3.2	3.8	4.5	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 39.6 V, V_{SS} = 0 V$
Source Off Leakage, Is (Off)	±0.05			nA typ	$V_{s} = 1 \text{ V}/30 \text{ V}, V_{D} = 30 \text{ V}/1 \text{ V}; \text{ see Figure 24}$
-	±0.25	±0.75	±6	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_{s} = 1 \text{ V}/30 \text{ V}, V_{D} = 30 \text{ V}/1 \text{ V}; \text{ see Figure 24}$
5 • • • •	±0.4	±2	±16	nA max	
Channel On Leakage, I _D , I _S (On)	±0.1			nA typ	$V_{s} = V_{D} = 1 \text{ V}/30 \text{ V}$; see Figure 25
5, -, -, -, -,	±0.4	±2	±16	nA max	
DIGITAL INPUTS				-	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			µA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
	0.002		±0.1	µA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
	5			p: 0p	
Transition Time, transition	196			ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
Hanshon Hine, transmon	256	276	314	ns max	$V_s = 18 V_i$; see Figure 30
t _{on} (EN)	170	270	514	ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
	214	247	273	ns max	$V_s = 18 V$; see Figure 32
t _{off} (EN)	130	277	275	ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
	172	167	176	ns max	$V_s = 18 V_i$; see Figure 32
Break-Before-Make Time Delay, t₀	52	107	170		$R_L = 300 \Omega, C_L = 35 pF$
break-berore-make fille belay, to	52		13	ns typ ns min	$V_{s1} = V_{s2} = 18 V$; see Figure 31
Charge Injection, Q _{INJ}	280		15		$V_{s1} = V_{s2} = 18 \text{ V}$, see Figure 31 $V_s = 18 \text{ V}$, $R_s = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 33
Off Isolation	-78			pC typ dB typ	$R_c = 50 \Omega$, $C_c = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	-78				$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion +	-58			dB typ	
Noise	0.03			% typ	$R_L = 1k \Omega$, 18 V p-p, f = 20 Hz to 20 kHz; see Figure 29
–3 dB Bandwidth	47			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 27
Insertion Loss	-0.85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Cs (Off)	18			pF typ	$V_{s} = 18 V, f = 1 MHz$
C _D (Off)	89			pF typ	$V_{s} = 18 V, f = 1 MHz$
C _D , C _s (On)	128			pF typ	$V_{s} = 18 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 39.6 V$
I _{DD}	80			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
	100		130	μA max	
V _{DD}			9/40	V min/max	$GND = 0 V, V_{SS} = 0 V$

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5.

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, S OR D				
$V_{DD} = +15 V$, $V_{SS} = -15 V$				
TSSOP ($\theta_{JA} = 112.6^{\circ}C/W$)	165	96	49	mA max
LFCSP ($\theta_{JA} = 30.4^{\circ}C/W$)	290	141	57	mA max
$V_{DD} = +20 V$, $V_{SS} = -20 V$				
TSSOP ($\theta_{JA} = 112.6^{\circ}C/W$)	176	101	51	mA max
LFCSP ($\theta_{JA} = 30.4^{\circ}C/W$)	282	146	58	mA max
$V_{DD} = 12 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 112.6^{\circ}C/W$)	114	72	42	mA max
LFCSP ($\theta_{JA} = 30.4^{\circ}C/W$)	203	112	53	mA max
$V_{DD} = 36 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 112.6^{\circ}C/W$)	149	89	48	mA max
LFCSP ($\theta_{JA} = 30.4^{\circ}C/W$)	263	133	56	mA max

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

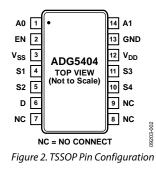
Table 6.

	1
Parameter	Rating
V _{DD} to V _{SS}	48 V
V _{DD} to GND	–0.3 V to +48 V
Vss to GND	+0.3 V to -48 V
Analog Inputs ¹	V _{ss} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	V _{ss} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, Sx or D Pins	515 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D ²	Data + 15%
Operating Temperature Range	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ_{JA}	
16-Lead TSSOΡ, θ _{JA} Thermal Impedance (4-Layer Board)	112.6°C/W
16-Lead LFCSP, θ _{JA} Thermal Impedance (4-Layer Board)	30.4°C/W
Reflow Soldering Peak Temperature, Pb Free	260(+0/-5)°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

¹ Overvoltages at the Sx and D pins are clamped by internal diodes. Limit current to the maximum ratings given.

² See Table 5.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 7. Pin Function Descriptions

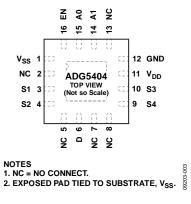


Figure 3. LFCSP Pin Configuration

F	Pin No.		
TSSOP	LFCSP	Mnemonic	Description
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.
3	1	Vss	Most Negative Power Supply Potential.
4	3	S1	Source Terminal. Can be an input or an output.
5	4	S2	Source Terminal. Can be an input or an output.
6	6	D	Drain Terminal. Can be an input or an output.
7 to 9	2, 5, 7, 8, 13	NC	No Connection.
10	9	S4	Source Terminal. Can be an input or an output.
11	10	S3	Source Terminal. Can be an input or an output.
12	11	V _{DD}	Most Positive Power Supply Potential.
13	12	GND	Ground (0 V) Reference.
14	14	A1	Logic Control Input.
	EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V _{SS} .

TRUTH TABLE

Table 8.

EN	A1	A0	S1	S2	S3	S4	
0	X ¹	X ¹	Off	Off	Off	Off	
1	0	0	On	Off	Off	Off	
1	0	1	Off	On	Off	Off	
1	1	0	Off	Off	On	Off	
1	1	1	Off	Off	Off	On	

 1 X = don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

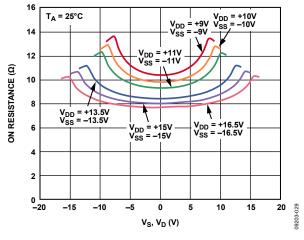
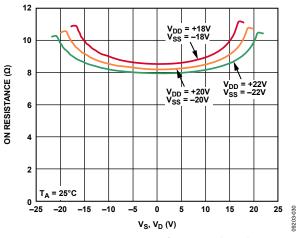



Figure 4. Ron as a Function of VD (Vs), Dual Supply

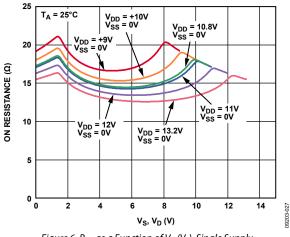


Figure 6. R_{ON} as a Function of V_D (V_S), Single Supply

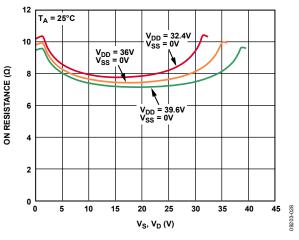


Figure 7. RON as a Function of VD (Vs), Single Supply

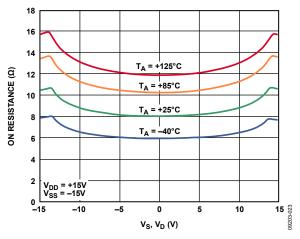
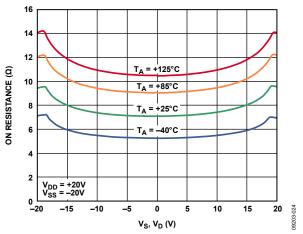
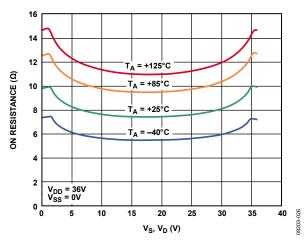
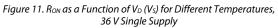


Figure 8. R_{ON} as a Function of V_D (V_S) for Different Temperatures, ± 15 V Dual Supply


Figure 9. R_{ON} as a Function of V_{D} (Vs) for Different Temperatures, ± 20 V Dual Supply

Data Sheet

30 V_{DD} = 12V V_{SS} = 0V 25 T_A = +125°C ON RESISTANCE (Ω) 20 T_A = +85°C 15 +25°C т⊿ = T_A = -40°C 10 5 0 ` 0 09203-025 2 4 6 8 10 12 VS, VD (V)

Figure 10. Ron as a Function of V_D (V_s) for Different Temperatures, 12 V Single Supply

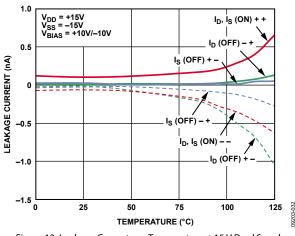
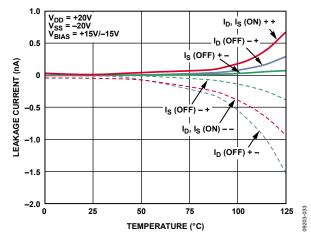



Figure 12. Leakage Currents vs. Temperature, ± 15 V Dual Supply

ADG5404

Figure 13. Leakage Currents vs. Temperature, ±20 V Dual Supply

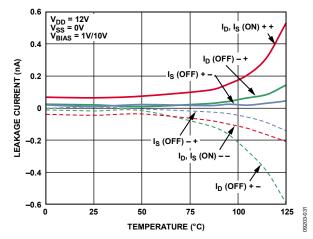
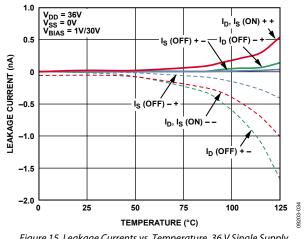
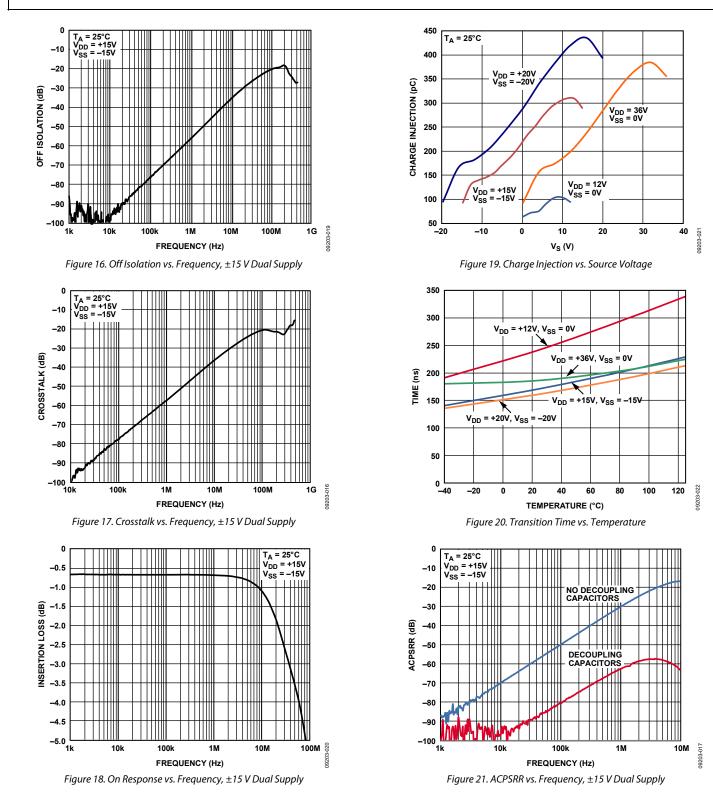




Figure 14. Leakage Currents vs. Temperature, 12 V Single Supply

Data Sheet

ADG5404

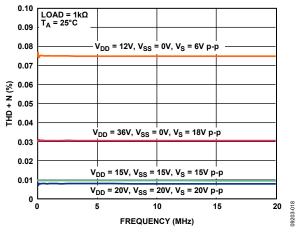
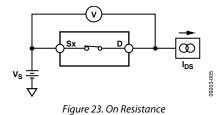
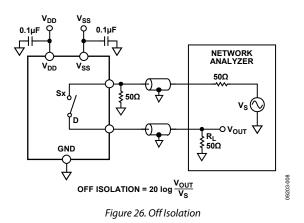




Figure 22. THD + N vs. Frequency, ± 15 V Dual Supply

TEST CIRCUITS

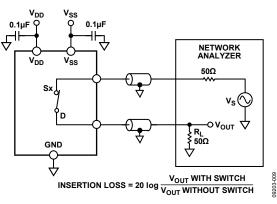
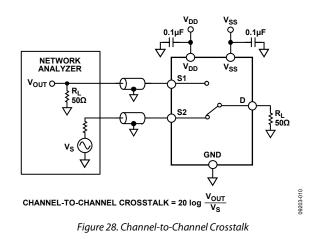
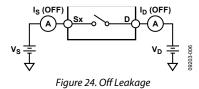
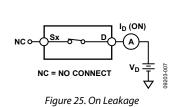
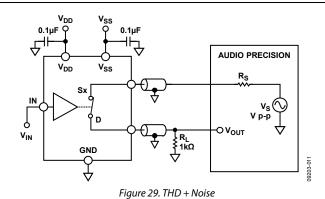






Figure 27. Bandwidth

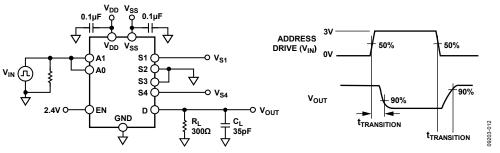


Figure 30. Address to Output Switching Times

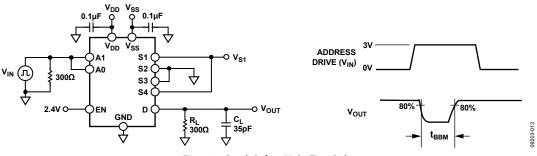


Figure 31. Break-Before-Make Time Delay

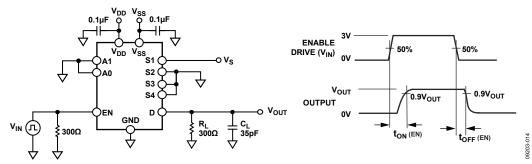


Figure 32. Enable-to-Output Switching Delay

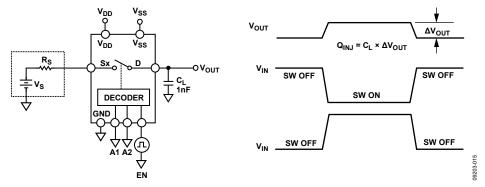


Figure 33. Charge Injection

TERMINOLOGY

 \mathbf{I}_{DD}

The positive supply current.

Iss

The negative supply current.

 V_D (Vs) The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between Terminal D and Terminal S.

RFLAT(ON)

Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off) The drain leakage current with the switch off.

 $I_{\rm D}, I_{\rm S} \left(On \right)$ The channel leakage current with the switch on.

 $V_{\mbox{\scriptsize INL}}$ The maximum input voltage for Logic 0.

 \mathbf{V}_{INH} The minimum input voltage for Logic 1.

IINL (IINH) The input current of the digital input.

Cs (Off) The off switch source capacitance, which is measured with reference to ground.

 C_D (Off) The off switch drain capacitance, which is measured with reference to ground.

 C_D , C_S (On) The on switch capacitance, which is measured with reference to ground.

Cin

The digital input capacitance.

tTRANSITION

The delay time between the 50% and 90% points of the digital input and switch-on condition when switching from one address state to another.

ton (EN)

The delay between applying the digital control input and the output switching on. See Figure 32.

 t_{OFF} (EN) The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

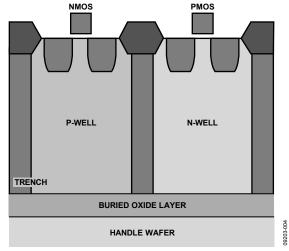
ACPSRR (AC Power Supply Rejection Ratio)

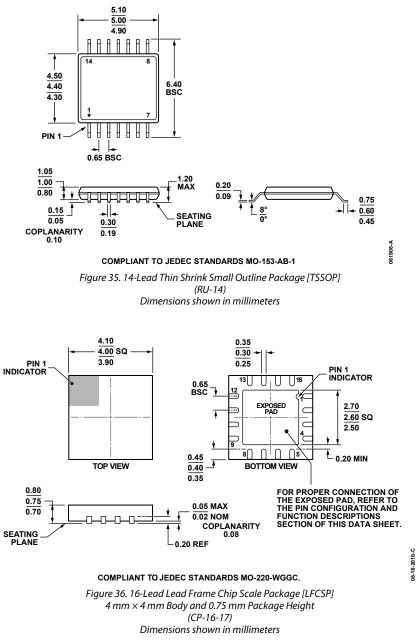
The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the part's ability to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

TRENCH ISOLATION

In the ADG5404, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.




Figure 34. Trench Isolation

APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5404 high voltage multiplexer allows

single-supply operation from 9 V to 40 V and dual-supply operation from ± 9 V to ± 22 V. The ADG5404, as well as three other ADG54xx family members, ADG5412/ADG5413 and ADG5436, achieve an 8 kV human body model ESD rating that provides a robust solution and eliminates the need for separate protection circuitry designs in some applications.

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG5404BRUZ	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG5404BRUZ-REEL7	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG5404BCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-17

¹ Z = RoHS Compliant Part.

©2010–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09203-0-11/17(B) www.analog.com

Rev. B | Page 20 of 20