High-Current, 25』, SPDT, CMOS Analog Switches

Abstract

General Description The MAX4659/MAX4660 are medium voltage CMOS analog switches with a low on-resistance of 25Ω max specifically designed to handle large switch currents. With a switch capability of up to 200 mA peak current and 150mA continuous current (MAX4660), and up to 150 mA peak current and 75 mA continuous current (MAX4659), these parts can switch loads as low as 50Ω. They can replace reed relays with a million times the speed and a virtually unlimited number of lifetime cycles. Normal power consumption is only 3 mW , whether the switch is on or off. These parts are TTL/CMOS compatible and will switch any voltage within their power-supply range. The devices are single-pole/double-throw (SPDT) switches. The MAX4659/MAX4660 contain one normally closed (NC) switch and one normally open (NO) switch. The MAX4659/MAX4660s' power-supply range is from $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for dual-supply operation and +9 V to +40 V for single-supply operation. These switches can operate from any combination of supplies, within a 40 V $\mathrm{V}+$ to V - range. They conduct equally well in either direction and can handle rail-to-rail analog signals. The off-leakage current is only 1 nA max at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. The MAX4659 is available in 8 -pin μ MAX ${ }^{\circledR}$ and SO packages. The MAX4660 is available in thermally enhanced exposed paddle $\mu \mathrm{MAX}$ and SO packages.

Applications

Relay Replacement
Test Equipment
Communication Systems
xDSL Modems
PBX, PABX Systems
Audio Signal Routing
Audio Systems
PC Multimedia Boards
Redundant/Backup Systems

- High Continuous Current Handling 150mA Continuous Current (MAX4660) 75mA Continuous Current (MAX4659)
- High Peak Current Handling 200mA Peak Current (MAX4660)
150mA Peak Current (MAX4659)
- 25Ω max On-Resistance ($\pm 15 \mathrm{~V}$ Supplies)
- VL Supply Not Required
- 1.5Ω max RoN Flatness ($\pm 15 \mathrm{~V}$ Supplies)
- Rail-to-Rail Signal Handling
- +12V Single Supply or $\pm 15 \mathrm{~V}$ Dual-Supply Operation
- Pin Compatible with DG419, MAX319

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX4659EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	$\mathrm{U} 8-1$
MAX4659ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	$\mathrm{S} 8-2$
MAX4660EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}-\mathrm{EP}^{*}$	$\mathrm{U} 8 \mathrm{E}-2$
MAX4660ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mathrm{SO}-\mathrm{EP}^{*}$	$\mathrm{~S} 8 \mathrm{E}-12$

Pin Configuration

TOP VIEW

*EXPOSED PADDLE CONNECTED
TO V+ OR LEFT UNCONNECTED

MAX4659/MAX4660		
LOGIC	NC	NO
0	ON	OFF
1	OFF	ON

SWITCH SHOWN FOR LOCIC "0" INPUT

High-Current, 25,, SPDT, CMOS
 Analog Switches

ABSOLUTE MAXIMUM RATINGS

V+ to GND ..-0.3V	3 V to +44 V
V - to GND	V to +0.3 V
V+ to V-	3 V to +44 V
All Other Pins to GND (Note 1) (V--0.3V) to	$\mathrm{V}++0.3 \mathrm{~V}$)
Continuous Current COM, NO, NC (MAX4660)	$\pm 150 \mathrm{~mA}$
Continuous Current COM, NO, NC (MAX4659).	$\pm 75 \mathrm{~mA}$
Continuous Current IN	$\pm 30 \mathrm{~mA}$
Peak Current COM, NO, NC	
MAX4660 (pulsed at 1ms, 10\% duty cycle)	$\pm 200 \mathrm{~mA}$
MAX4659 (pulsed at 1ms, 10\% duty cycle)	$\pm 150 \mathrm{~mA}$
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
8 -Pin μ MAX-EP (derate $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
MAX4660	.825mW

8-Pin μ MAX (derate $4.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) MAX4659	362 mW
$\begin{gathered} \text { 8-Pin SO-EP (derate } 18.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \text { above }+70^{\circ} \mathrm{C} \text {) } \\ \text { MAX4660.. } \end{gathered}$).......... 1509 mW
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) MAX4659	471 mW
Operating Temperature Ranges MAX4659/MAX4660.	..-40 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range-6	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{I H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 2,6$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			V-		V+	V
On-Resistance	Ron	$\begin{aligned} & \text { ICOM }=50 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		18	25	Ω
			TMIN to $\mathrm{T}_{\text {MAX }}$			30	
On-Resistance Matching Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{I}_{\mathrm{ICOM}}=50 \mathrm{~mA} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.4	1.2	Ω
			TMIN to TMAX			1.5	
On-Resistance Flatness (Note 3)	RFLAT (ON)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=50 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=-5 \mathrm{~V}, 0,+5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.5	1.5	Ω
			TMIN to TMAX			2	
NO or NC Off-Leakage Current (Note 4)	Ino(OFF) or InC(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=-14.5 \mathrm{~V},+14.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \\ & \text { or } \mathrm{V}_{\mathrm{NC}}=+14.5 \mathrm{~V},-14.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			TMIN to TMAX	-10		10	
COM On-Leakage Current (Note 4)	ICOM(ON)	$\mathrm{V}_{\mathrm{COM}}=+14.5 \mathrm{~V},-14.5 \mathrm{~V}$; V_{NO} or $\mathrm{V}_{\mathrm{NC}}=+14.5 \mathrm{~V}$, -14.5 V , or floating	$+25^{\circ} \mathrm{C}$	-2	0.02	2	nA
			TMIN to TMAX	-20		20	
DYNAMIC CHARACTERISTICS							
Transition Time	ttrans	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \text {; } \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, } \\ & C_{L}=35 \mathrm{pF} \text {; Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		85	150	ns
			TMIN to TMAX			200	
Break-Before-Make Delay	tBBM	$\begin{aligned} & V_{N O} \text { or } V_{N C}=10 \mathrm{~V} \text {; } \\ & R_{L}=300 \Omega \text {, } \\ & C_{L}=35 \mathrm{pF} \text {, Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$	10	20		ns
			TMin to TMAX	5			

High-Current, 25』, SPDT, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{I H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 2,6$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, \text { RGEN }=0, \\ & C_{L}=1 n F \text {, Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5		pC
-3dB Bandwidth	BW		$+25^{\circ} \mathrm{C}$		225		MHz
Off-Isolation (Note 5)	VISO	$f=1 \mathrm{MHz}, R_{L}=50 \Omega,$ Figure 5	$+25^{\circ} \mathrm{C}$		-70		dB
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{N}_{-}}= \\ & 5 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.005		\%
Crosstalk	VCROSS	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, \\ & f=1 \mathrm{MHz}, \text { Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-76		dB
NO or NC Off-Capacitance	CNO(OFF), CNC(OFF)	$f=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		6		pF
COM On-Capacitance	CCOM(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 8	$+25^{\circ} \mathrm{C}$		25		pF
DIGITAL I/O							
Input Logic High	V_{IH}		TMIN to $\mathrm{T}_{\text {MAX }}$	2.4			V
Input Logic Low	VIL		TMIN to TMAX			0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ or 2.4 V	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-1		1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range			TMIN to $\mathrm{T}_{\text {MAX }}$	± 4.5		± 20	V
Positive Supply Current	I+	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}_{-}}=3 \mathrm{~V} \text {, } \\ & \text { ISWITCH }=100 \mathrm{~mA} \text {, } \\ & \text { MAX4660; } \\ & \text { ISWITCH }=50 \mathrm{~mA} \text {, } \\ & \text { MAX4659 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		135	200	$\mu \mathrm{A}$
			TMIN to $\mathrm{T}_{\text {MAX }}$			300	
Negative Supply Current	I-	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}_{-}}=3 \mathrm{~V} \text {, } \\ & \mathrm{ISWITCH}=100 \mathrm{~mA} \text {, } \\ & \text { MAX4660; } \\ & \text { ISWITCH }=50 \mathrm{~mA} \text {, } \\ & \text { MAX4659 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		30	50	$\mu \mathrm{A}$
			TMIN to TMAX			75	
Ground Current	IGND	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}_{-}}=3 \mathrm{~V} \text {, } \\ & \text { ISWITCH }=100 \mathrm{~mA} \text {, } \\ & \text { MAX4660; } \\ & \text { ISWITCH }=50 \mathrm{~mA} \text {, } \\ & \text { MAX4659 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		100	175	$\mu \mathrm{A}$
			TMIN to TMAX			225	

High-Current, 25,, SPDT, CMOS
 Analog Switches

ELECTRICAL CHARACTERISTICS—Single Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{I H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 2,6$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VIN		TMIN to TMAX	0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{I} \mathrm{COM}=25 \mathrm{~mA} ; \\ & \mathrm{V}_{\text {NO }} \text { or } \mathrm{V}_{\mathrm{NC}}=+10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		38	50	Ω
			TMIN to ${ }_{\text {max }}$			60	
On-Resistance Matching Between Channels	$\triangle \mathrm{RoN}$	$\begin{aligned} & \mathrm{I} \mathrm{ICOM}=25 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.4	2	Ω
			TMIN to TMAX			2.5	
On-Resistance Flatness (Note 3)	RFLAT (ON)	$\begin{aligned} & \text { ICOM }=25 \mathrm{~mA} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2 \mathrm{~V},+6 \mathrm{~V} \text {, } \\ & +10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		4	7	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			9	
DYNAMIC CHARACTERISTICS							
Transition Time	ttrans	$\begin{aligned} & V_{N O} \text { or } V_{N C}=10 \mathrm{~V} ; \\ & R_{L}=300 \Omega ; \\ & C_{L}=35 \mathrm{pF} \text {, Figure 2 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		120	200	ns
			TMin to Tmax			250	
Break-Before-Make Delay	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \text {; } \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text {; } \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$	20	50		ns
			TMIN to TMAX	10			
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, \text { RGEN }=0, \\ & C L=1 n F, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		1		pC
POWER SUPPLY							
Power-Supply Range	V+			+9		+40	V
Positive Supply Current	I+	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { or } 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}_{-}}=3 \mathrm{~V} \text {; } \\ & \text { ISWITCH }=50 \mathrm{~mA}, \mathrm{M} A X 4660 ; \end{aligned}$	$+25^{\circ} \mathrm{C}$		50	100	$\mu \mathrm{A}$
		ISWITCH $=25 \mathrm{~mA}, \mathrm{MAX4659}$	TMIN to ${ }_{\text {max }}$			125	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}_{-}}=3 \mathrm{~V} ; \\ & \text { ISWITCH }=50 \mathrm{~mA}, \mathrm{MAX} 4660 ; \\ & \text { ISWITCH }=25 \mathrm{~mA}, \text { MAX4659 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		70	125	
			$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MaX }}$			150	

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 4: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 5: Off-isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 6: $-40^{\circ} \mathrm{C}$ specifications are guaranteed by design.

High-Current, 25,, SPDT, CMOS Analog Switches

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Current, 25,, SPDT, CMOS Analog Switches

BREAK-BEFORE-MAKE DELAY
vs. SUPPLY VOLTAGE

SUPPLY CURRENT
vs. VOLTAGE ACROSS SWITCH

Pin Description

PIN	NAME	FUNCTION
1	COM	Analog Switch Common
2	NC	Normally Closed Switch Terminal. NC is connected to COM when IN is low.
3	GND	Ground
4	V+	Positive Supply Voltage Input
5	N.C.	No Connection
6	IN	Digital Control Input
7	V-	Negative Supply Voltage Input
8	NO	Normally Open Switch Terminal. NO is connected to COM when IN is high.
-	EP	Exposed Paddle. Connect EP to V+ or leave unconnected.

High-Current, 25』, SPDT, CMOS Analog Switches

Abstract

Detailed Description The MAX4659/MAX4660 are single, single-pole/doublethrow (SPDT) CMOS analog switches. The CMOS switch construction provides rail-to-rail signal handling while consuming very little power. The switch is controlled by a TTL/CMOS level compatible digital input. The MAX4659/MAX4660 have a normally open switch and a normally closed switch.

These devices can be operated with either single power supplies or dual power supplies. Operation at up to $\pm 20 \mathrm{~V}$ supplies allows users a wide switching dynamic range. Additionally, asymmetrical operation is possible to tailor performance to a particular application. These switches have been specifically designed to handle high switch currents, up to 200 mA peak current and 150 mA continuous currents. In order to do this, a new technique is used to drive the body of the output N -channel device. (Note: The basic switch between the input, NC/NO terminal and the output common terminal consists of an N -channel MOSFET and a P-channel MOSFET in parallel.) The standard method limits operation to approximately a 600 mV drop across the switch. More than 600 mV causes an increase in Idon leakage current (due to the turn-on of on-chip parasitic diodes), and an increase in $V+$ supply current. With this new sensing method, there is no limitation to the voltage drop across the switch. Current and voltage are limited only by the power dissipation rating of the package and the absolute maximum ratings of the switch. When the analog input voltage drop is approximately 7 mV there is an increase in power supply current from $90 \mu \mathrm{~A}$ to 2 mA (typ) within a 1 mV to 7 mV range, caused by the new sensing/driving circuitry.

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. First, connect GND, followed by $\mathrm{V}+$, V -, and the remaining pins. If power-supply sequencing is not possible, add two small-signal diodes (D1, D2) in series with
supply pins (Figure 1). Adding diodes reduces the analog signal range to one diode drop below $V+$ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between $V+$ and V - should not exceed 44 V . The protection diode for the negative supply is not required when V - is connected to GND.

Off-Isolation at High Frequencies In 50Ω systems, the high-frequency on-response of these parts extends from DC to above 100 MHz , with a typical loss of -2 dB . When the switch is turned off, however, it behaves like a capacitor and off-isolation decreases with increasing frequency. This effect is more pronounced with higher source and load impedances. Above 5 MHz , circuit board layout becomes critical. The graphs shown in the Typical Operating Characteristics were taken using a 50Ω source and load connected with BNC connectors.

Figure 1. Overvoltage Protection Using Blocking Diodes

High-Current, 25@, SPDT, CMOS Analog Switches

Figure 2. Functional Diagram

Figure 3. Break-Before-Make Time

Figure 4. Charge Injection

High-Current, 25,, SPDT, CMOS

 Analog SwitchesTest Circuits/Timing Diagrams (continued)

Figure 5. Off-Isolation

Figure 6. Crosstalk

Figure 7. Channel Off-Capacitance

Figure 8. Channel On-Capacitance

Chip Information
TRANSISTOR COUNT: 45 PROCESS: CMOS

High-Current, 25,, SPDT, CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

TDP VIEW
BOTTDM VIEW

INCHES			MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.037	0.043	0.940	1.100
A1	0.000	0.006	0.000	0.150
A2	0.030	0.037	0.750	0.950
B	0.010	0.014	0.250	0.360
C	0.005	0.007	0.130	0.180
D	0.116	0.120	2.950	3.050
e	0.0256 BSC		0.65 BSC	
E	0.116	0.120	2.950	3.050
H	0.188	0.198	4.780	5.030
L	0.016	0.026	0.410	0.660
L1	0.037 REF .		0.940 REF.	
α	$0 \cdot$	6°	0°	6°
*X	0.087	0.099	2.210	2.515
*Y	0.062	0.074	1.575	1.880
			EXPD	D P

NDTES,

1. D\&E DO NDT INCLUDE MDLD FLASH.
2. MOLD FLASH OR PROTRUSIDNS NDT TO EXCEED 0.15MM (.006").
3. CINTRILLING DIMENSIUN: MILLIMETERS.
4. MEETS JEDEC MO-187.
5. EXPOSED PAD FLUSH WITH BDTTZM DF PACKAGE WITHIN . $00{ }^{*}$
6. MARKING IS FUR PACKAGE पRIENTATIUN REFERENCE $\square N L Y$.
7. CIPLANARITY SHALL NDT EXCEED 0.10 mm .
-DRAWING NDT TQ SCALE-

掮DALLAS $/$ VINKI/VI

PACKAGE QUTLINE, 8L uMAX/USDP, EXPISED PAD | APPROVAL | $\begin{array}{c}\text { DOCUIENT CONTRL } \\ 21-0107\end{array}$ | CE. | $1 / 1$ |
| :--- | :---: | :---: | :---: |

High-Current, 25』, SPDT, CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Current, 25@, SPDT, CMOS
 Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 1: 1, 6, 12

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
$\underline{\text { MAX4660EUA }+}$ MAX4660ESA + MAX4660ESA + T MAX4660EUA + T

