

Oxx15xx & Oxx16xHx Series

Description

This 15 Amp and 16 Amp bi-directional solid state switch series is designed for AC switching and phase control applications such as motor speed, temperature modulation controls, lighting controls, and static switching relays.

Standard type devices normally operate in Quadrants I & III triggered from AC line.

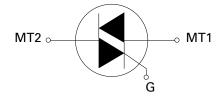
Standard alternistor triac components operate with in-phase signals in Quadrants I or III and ONLY unipolar negative gate pulses for Quadrant II or III. The alternistor triac will not operate in Quadrant IV. These are used in circuit applications requiring a high dv/dt capability.

Agency Approval

Agency	Agency File Number
<i>71</i>	E71639*

^{* -} L Package only

Features & Benefits


- RoHS Compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 200 A
- The L-package has an isolation rating of 2500V_{RMS}
- Solid-state switching eliminates arcing or

- contact bounce that create voltage transients
- No contacts to wear out from reaction of switching events
- Restricted (or limited) RFI generation, depending on activation point in sine wave
- Requires only a small gate activation pulse in each half-cycle

Main Features

Symbol	Value	Unit
I _{T(RMS)}	15 or 16	А
V_{DRM}/V_{RRM}	400, 600, 800 or 1000	V
Ι _{GT (Ω1)}	10, 20, 35, 50 or 80	mA

Schematic Symbol

Additional Information

rces Samples

Applications

Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls.

Typical applications are AC solid-state switches, light dimmers, power tools, lawn care equipment, home/brown goods and white goods appliances.

Alternistor Triacs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Absolute Maximum Ratings — Standard Triac

Symbol	Paramete	Value	Unit		
			T _C = 80°C	45	
I _{T(RMS)}	RMS on-state current (full sine wave)	Qxx15Ry Qxx15Ny	T _C = 90°C	15	Α
1	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	167	_
TSM	(full cycle, T _J initial = 25°C)	f = 60 Hz	t = 16.7 ms	200	A
l²t	I²t Value for fusing	-	$t_p = 8.3 \text{ ms}$	166	A ² s
di/dt	Critical rate of rise of on-state current	f = 120 Hz	T _J = 125°C	100	A/µs
I _{GTM}	Peak gate trigger current t _p =20µs		T _J = 125°C	4	А
P _{G(AV)}	Average gate power dissipation		T _J = 125°C	0.5	W
T _{stg}	Storage temperature range		-	-40 to 150	°C
T_{J}	Operating junction temperature range		-	-40 to 125	°C

Note: xx = voltage/10, y = sensitivity

Absolute Maximum Ratings — Alternistor Triac (3 Quadrants)

Symbol	Paramete		Value	Unit	
			T _C = 80°C		
I _{T(RMS)}	RMS on-state current (full sine wave)	Qxx16RHy Qxx16NHy	T _c = 90°C	16	А
	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	167	_
ITSM	(full cycle, T _J initial = 25°C)	f = 60 Hz	t = 16.7 ms	200	A
l²t	I ² t Value for fusing		t _p = 8.3 ms	166	A²s
di/dt	Critical rate of rise of on-state current	f = 120 Hz	T _J = 125°C	100	A/µs
I _{GTM}	Peak gate trigger current t _ρ =20μs		T _J = 125°C	4	А
$P_{G(AV)}$	Average gate power dissipation		T _J = 125°C	0.5	W
T _{stg}	Storage temperature range		-40 to 150	°C	
T_{J}	Operating junction temperature range			-40 to 125	°C

Note: xx = voltage/10, y = sensitivity

Electrical Characteristics (T_j = 25°C, unless otherwise specified) — Standard Triac

Symbol	Test Conditions		drant	Value	Unit
I _{GT}	$V_D = 12V R_L = 60 \Omega$	1 – 11 – 111	MAX.	50	mA
V _{GT}	$V_D = 12V R_L = 60 \Omega$	1 – 11 – 111	MAX.	2.0	V
$V_{\rm GD}$	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 125^{\circ}\text{C}$	1 – 11 – 111	MIN.	0.2	V
I _H	I _T = 100mA		MAX.	70	mA
		400V		275	
dv/dt	$V_D = V_{DRM}$ Gate Open $T_J = 125$ °C	600V	NAINI	225	VIII.
αν/αι		800V	MIN.	200	- V/μs
	$V_D = V_{DRM}$ Gate Open $T_J = 100$ °C	1000V		200	
(dv/dt)c	(di/dt)c = 8.1 A/ms T _J = 125°C		MIN.	4	V/µs
t _{gt}	$I_{g} = 2 \times I_{gT} \text{ PW} = 15 \mu s I_{T} = 22.6 \text{ A(pk)}$		TYP.	4	μs

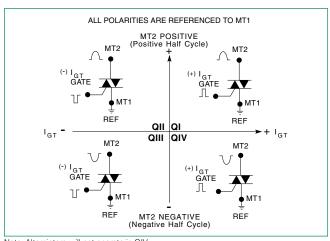
© 2018 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 12/04/18

Electrical Characteristics (T₁ = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants) Symbol Test Conditions Quadrant Qxx16xH2 Qxx16xH3 Qxx16xH4 Qxx16xH6

Thyristors

l _{GT}	$V_D = 12V R_L = 60 \Omega$	1 – 11 – 111	MAX.	10	20	35	80	mA
$V_{\rm GT}$	$V_D = 12V R_L = 60 \Omega$	1 – 11 – 111	MAX.		1.	3		V
$V_{\rm GD}$	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 125^{\circ}\text{C}$	1 – II – III	MIN.		0	.2		V
I _H	$I_{T} = 100 \text{mA}$		MAX.	15	35	50	70	mA
		400V		200	350	475	925	
1. (1)	$V_D = V_{DRM}$ Gate Open $T_J = 125$ °C	600V		150	250	400	850	,,,
dv/dt		800V	MIN.	100	200	350	475	V/µs
	$V_D = V_{DRM}$ Gate Open $T_J = 100$ °C	1000V		100	200	300	350	
(dv/dt)c	$(di/dt)c = 8.6 \text{ A/ms } T_J = 125^{\circ}C$		MIN.	2	20	25	30	V/µs
t _{gt}	$I_{g} = 2 \times I_{gT} \text{ PW} = 15 \mu s I_{T} = 22.6 \text{ A(pk)}$		TYP.	3	3	3	5	μs

Static Characteristics


Symbol	Test Conditions					Unit
V _{TM}	15A Device I _τ = 21.2A t _ρ = 380μs 16A Device I _τ = 22.6A t _ο = 380μs			MAX	1.60	V
		T _J = 25°C	400-1000V		5	μА
I _{DRM}	$V_{D} = V_{DRM} / V_{RRM}$	T _J = 125°C	400-800V	MAX	2	A
'RRM		T _J = 100°C	1000V		3	mA mA

Thermal			

Symbol	Parameter		Value	Unit
$R_{\Theta(J \cdot C)}$	Junction to case (AC)	Qxx15Ry Qxx15Ny Qxx16RHy Qxx16NHy	1.7	°C/W
		Qxx15Ly Qxx16LHy	2.1	
B	2 Junetian to ambient		45	°C/W
^{1 1} ⊕(J-A)	R _{e(J-A)} Junction to ambient	Qxx15Ly Qxx16LHy	50	C/VV

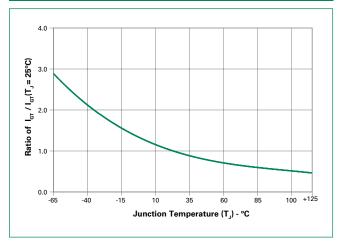

Note: xx = voltage/10; y = sensitivity

Figure 1: Definition of Quadrants

Note: Alternistors will not operate in QIV

Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

© 2018 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 12/04/18

Figure 3: Normalized DC Holding Current vs. Junction Temperature

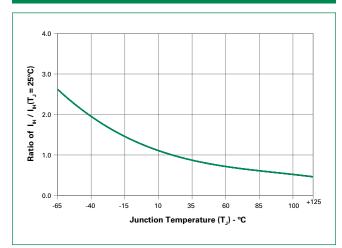


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

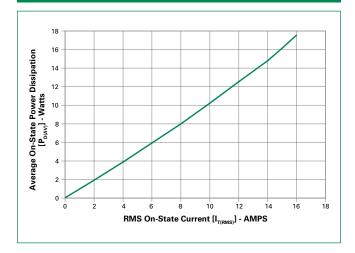
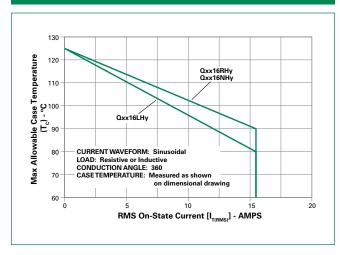



Figure 7: Maximum Allowable Case Temperature vs. On-State Current (16A devices)

© 2018 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 12/04/18

Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

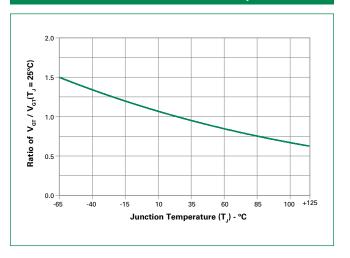
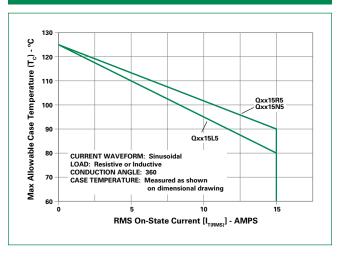
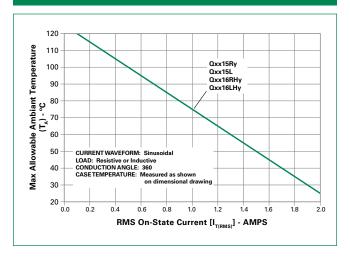
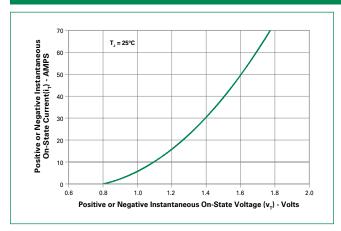


Figure 6: Maximum Allowable Case Temperature vs. On-State Current (15A devices)

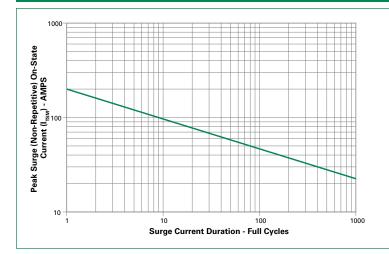
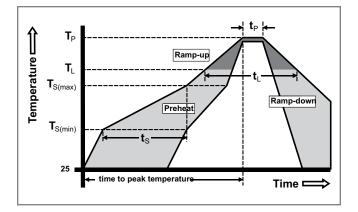

Figure 8: Maximum Allowable Ambient Temperature vs. On-State Current

Figure 9: On-State Current vs. On-State Voltage (Typical)

Figure 10: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal Load: Resistive


RMS On-State [$I_{T(RMS)}$]: Max Rated Value at Specific Case Temperature

Notes:

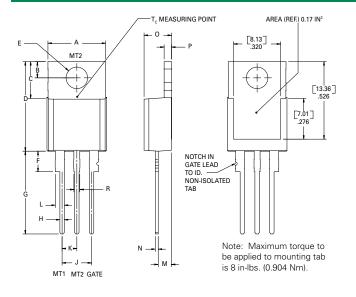
- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly
	-Temperature Min (T _{s(min)})	150°C
Pre Heat	-Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 180 secs
Average ra	amp up rate (LiquidusTemp) k	5°C/second max
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max
Reflow	-Temperature (T _L) (Liquidus)	217°C
nellow	-Temperature (t _L)	60 – 150 seconds
PeakTemp	erature (T _P)	260+ ^{0/-5} °C
Time within 5°C of actual peak Temperature (t _p)		20 - 40 seconds
Ramp-down Rate		5°C/second max
Time 25°C to peak Temperature (T _P)		8 minutes Max.
Do not exc	ceed	280°C

Physical Specifications

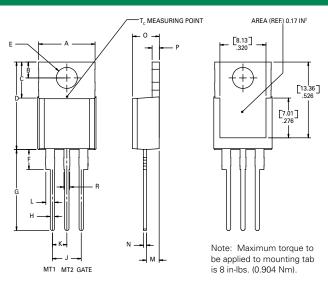
Terminal Finish	100% Matte Tin-plated
Body Material	UL Recognized compound meeting flammability rating V-0
Terminal Material	Copper Alloy


Design Considerations

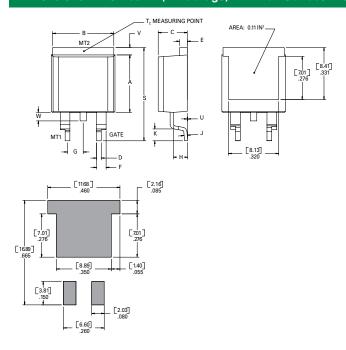
Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E


Dimensions — TO-220AB (R-Package) — Non-Isolated Mounting Tab Common with Center Lead

Dimension	Inc	hes	Millimeters	
Difficusion	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.66	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
Е	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22



Dimensions — TO-220AB (L-Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millimeters		
	Min	Max	Min	Max	
А	0.380	0.420	9.65	10.67	
В	0.105	0.115	2.67	2.92	
С	0.230	0.250	5.84	6.35	
D	0.590	0.620	14.99	15.75	
Е	0.142	0.147	3.61	3.73	
F	0.110	0.130	2.79	3.30	
G	0.540	0.575	13.72	14.60	
Н	0.025	0.035	0.64	0.89	
J	0.195	0.205	4.95	5.21	
K	0.095	0.105	2.41	2.67	
L	0.060	0.075	1.52	1.91	
М	0.085	0.095	2.16	2.41	
N	0.018	0.024	0.46	0.61	
0	0.178	0.188	4.52	4.78	
Р	0.045	0.060	1.14	1.52	
R	0.038	0.048	0.97	1.22	

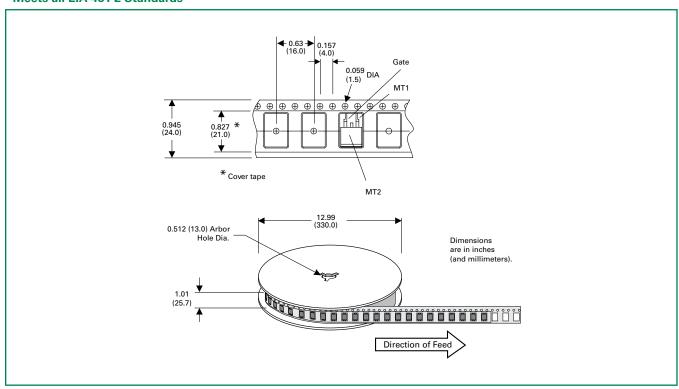
Dimensions — TO-263AB (N-Package) — D²Pak Surface Mount

Dimension	Inc	hes	Millimeters	
	Min	Max	Min	Max
А	0.360	0.370	9.14	9.40
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
Е	0.045	0.060	1.14	1.52
F	0.060	0.075	1.52	1.91
G	0.095	0.105	2.41	2.67
Н	0.092	0.102	2.34	2.59
J	0.018	0.024	0.46	0.61
K	0.090	0.110	2.29	2.79
S	0.590	0.625	14.99	15.88
V	0.035	0.045	0.89	1.14
U	0.002	0.010	0.05	0.25
W	0.040	0.070	1.02	1.78

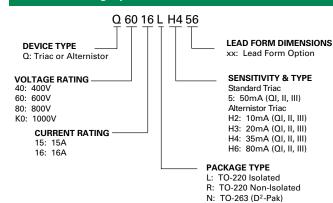
Product Selector

Dard Name have		Voltage			Gate Sensitivity Quadrants		
Part Number	400V	600V	800V	1000V	1 – 11 – 111	Туре	Package
Qxx15L5	Х	Х	Х	Х	50 mA	Standard Triac	TO-220L
Qxx15R5	Х	Х	Х	×	50 mA	Standard Triac	TO-220R
Qxx15N5	Х	Х	Х	×	50 mA	Standard Triac	TO-263 D²-PAK
Qxx16LH2	Х	Х	Х	X	10 mA	Alternistor Triac	TO-220L
Qxx16RH2	X	Х	Х	×	10 mA	Alternistor Triac	TO-220R
Qxx16NH2	Х	Х	Х	×	10 mA	Alternistor Triac	TO-263 D²-PAK
Qxx16LH3	Х	Х	Х	×	20 mA	Alternistor Triac	TO-220L
Qxx16RH3	Х	Х	Х	×	20 mA	Alternistor Triac	TO-220R
Qxx16NH3	Х	Х	Х	×	20 mA	Alternistor Triac	TO-263 D²-PAK
Qxx16LH4	X	Х	Х	×	35 mA	Alternistor Triac	TO-220L
Qxx16RH4	X	Х	Х	×	35 mA	Alternistor Triac	TO-220R
Qxx16NH4	Х	X	Х	Х	35 mA	Alternistor Triac	TO-263 D²-PAK
Qxx16LH6	Х	Х	Х	Х	80 mA	Alternistor Triac	TO-220L
Qxx16RH6	Х	Х	Х	Х	80 mA	Alternistor Triac	TO-220R
Qxx16NH6	X	Х	Х	Х	80 mA	Alternistor Triac	TO-263 D²-PAK

Packing Options


Part Number	Marking	Weight	Packing Mode	Base Quantity	
Qxx15L/RyTP	Qxx15L/Ry	2.2 g	Tube Pack	500 (50 per tube)	
Qxx15NyTP	Qxx15Ny	1.6 g	Tube	500 (50 per tube)	
Qxx15NyRP	Qxx15Ny	1.6 g	Embossed Carrier	500	
Qxx16L/RHyTP	Qxx16L/RHy	2.2 g	Tube Pack	500 (50 per tube)	
Qxx16NHyTP	Qxx16NHy	1.6 g	Tube	500 (50 per tube)	
Qxx16NHyRP	Qxx16NHy	1.6 g	Embossed Carrier	500	

Note: xx = Voltage/10; y = Sensitivity



TO-263 Embossed Carrier Reel Pack (RP)

Meets all EIA-481-2 Standards

Part Numbering System

Part Marking System

TO-263 AB - (N Package)

Q6016RH4

YMXXX

TO-220 AB - (L and R Package)

Date Code Marking Y:Year Code M: Month Code XXX: Lot Trace Code

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.