NTC/PTC Thermistors for Automotive

Innovator in Electronics

Murata Manufacturing Co., Ltd.

Cat.No.R03E-6

EU RoHS Compliant

- \cdot All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment."
- For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/info/rohs.html).

Part Numbering
Basic Characteristics of NTC Thermistor
Basic Characteristics of POSISTOR [®]
1 NTC Thermistor Chip Type 0402 (1005) Size (Meet AEC-Q200rev.C)
2 NTC Thermistor Chip Type 0603 (1608) Size (Meet AEC-Q200rev.C) 10
3 NTC Thermistor Chip Type 0603 (1608) Size for Conductive Glue 12
NTC Thermistors Chip Type Standard Land Pattern Dimensions
NTC Thermistors Chip Type Temperature Characteristics (Center Value) — 14
NTC Thermistors Chip Type Specifications and Test Methods 2
NTC Thermistors Chip Type Caution/Notice 24
4 NTC Thermistor Thermo String Type for Temperature Sensor 28
NTC Thermistors Thermo String Type Temperature Characteristics (Center Value) 29
NTC Thermistors Thermo String Type Specifications and Test Methods 30
● NTC Thermistors Thermo String Type ①Caution/Notice 32
5 PTC Thermistor (POSISTOR [®]) for Overheat Sensing Chip Type 0603 (1608) Size 33
● Chip Type of POSISTOR [®] for Overheat Sensing Specifications and Test Methods 38
6 PTC Thermistor (POSISTOR [®]) for Overcurrent Protection Chip Type 0805 (2012) Size — 40
• Chip Type of POSISTOR [®] for Overcurrent Protection Specifications and Test Methods — 42
POSISTOR [®] Chip Type ①Caution/Notice 46
7 PTC Thermistor (POSISTOR [®]) for Overcurrent Protection Lead Type 54
• POSISTOR [®] Lead Type for Overcurrent Protection Specifications and Test Methods — 64
● POSISTOR [®] Lead Type for Overcurrent Protection ①Caution/Notice67
NTC Thermistors Chip Type/Thermo String Type Package 68
POSISTOR [®] Chip Type Package 70
POSISTOR [®] Lead Type Package 77

muRata

(Part Number)

NC	Ρ	18	XH	103	J	0S	RB
0	2	6	4	6	6	0	8

Product ID

Product ID	
NC	NTC Thermistors Chip Type

2Series

Ocines	
Code	Series
G	Conductive Glue Series
Р	Plated Termination Series

3Dimensions (L×W)

Code	Dimensions (L×W)	EIA
15	1.00×0.50mm	0402
18	1.60×0.80mm	0603

4Temperature Characteristics

Code	Temperature Characteristics
WB	Nominal B-Constant 4050–4099K
WD	Nominal B-Constant 4150–4199K
WF	Nominal B-Constant 4250–4299K
WL	Nominal B-Constant 4450-4499K
WM	Nominal B-Constant 4500–4549K
XC	Nominal B-Constant 3100–3149K
XF	Nominal B-Constant 3250–3299K
ХН	Nominal B-Constant 3350–3399K
ХМ	Nominal B-Constant 3500–3549K
XQ	Nominal B-Constant 3650–3699K
XV	Nominal B-Constant 3900–3949K
XW	Nominal B-Constant 3950–3999K

BResistance

Expressed by three figures. The unit is ohm (Ω) . The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

Ex.)	Code	Resistance
	102	1kΩ
	103	10kΩ
	104	100kΩ

6 Resistance Tolerance

Code	Resistance Tolerance
D	±0.5%
E	±3%
F	±1%
J	±5%

Individual Specifications

Structures and others are expressed by two figures.

Code	Individual Specifications	
0S	for Automotive	

8Packaging

Code	Packaging
RB	Paper Taping 4mm Pitch (4000 pcs.)
RC	Paper Taping 2mm Pitch (10000 pcs.)

Product ID

Product ID	
NXF	NTC Thermistors Sensor Thermo String Type

Individual Specifications

Code	Individual Specifications
S	for Automotive

3Chip Dimensions

Code	Dimensions (LxT)	EIA
15	1.00 x 0.50mm	0402

Temperature Characteristics

Code	Temperature Characteristics	
WB	Nominal B-Constant 4050–4099K	
WF	Nominal B-Constant 4250–4299K	
ХН	Nominal B-Constant 3350–3399K	

5Resistance

Ex.

Expressed by three figures. The unit is (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

Code	Resistance
103	10kΩ
473	47kΩ
104	100kΩ

6 Resistance Tolerance

Code	Resistance Tolerance
F	±1%

Lead Wire Type

Code	Lead Wire Type
Α	ø0.3 Copper Lead Wire with Polyurethane Coa

8 Shape of the Lead Wire Kink

Code	Shape of the Lead Wire Kink	
1	The Twist of Lead Wire Type	
2	Standard Type	

Packaging

Code	Packaging
В	Bulk

Dimensions (Full Length)

	-
Code	Dimensions (Full Length)
025	25mm
030	30mm
040	40mm
050	50mm
060	60mm
070	70mm
080	80mm
090	90mm
100	100mm
110	110mm
120	120mm
130	130mm
140	140mm
150	150mm

Product ID

Product ID	
PR	PTC Thermistors Chip Type
2 Series	

Goenes	
Code	Series
F	for Overheat Sensing

3 Dimensions (LXW)

Code	Dimensions (L×W)
18	1.60×0.80mm

4Temperature Characteristics

Code	Temperature Characteristics-Curie Point
AR	120°C
AS	130°C
BA	110°C
BB	100°C
BC	90°C
BD	80°C
BE	70°C
BF	60°C
BG	50°C

5Resistance

Expressed by three figures. The unit is ohm ($\Omega\!\!\!$). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

Ex.)	Code	Resistance
	471	470Ω

6 Resistance Tolerance

Code		Resistance Tolerance	Sensing Temp. Tolerance
	Q	Special Tolerance	±5°C
	R	Special Tolerance	±3°C

Individual Specifications

Code	Individual Specifications
S2	for Automotive
S5	TOI AUTOMOTIVE

8Packaging

Code	Packaging
RB	Paper Taping (4mm Pitch) (4000 pcs.)

PTC Thermistors (POSISTOR®) for Overcurrent Protection Chip Type

(Part Number)

Product ID

Product ID

PR PTC Thermistors Chip Type

2Series

Code	Series
G	for Overcurrent Protection

3 Dimensions (LXW)

Code	Dimensions (L×W)
21	2.00×1.25mm

4Temperature Characteristics

Code	Temperature Characteristics
AR	Curie Point 120°C

5Resistance

Expressed by three-digit alphanumerics. The unit is ohm (\Omega). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures. If there is a decimal point, it is expressed by the capital letter "R." In this case, all figures are significant digits.

Ex.)	Code	Resistance
	4R7	4.7Ω
	420	42Ω

6Resistance Tolerance

Code	Resistance Tolerance
м	±20%
Q	Special Tolerance

Individual Specifications

Ex.)	Code	Individual Specifications
	S1	for Automotive

8Packaging

Code	Packaging
RA	Embossed Taping (4mm Pitch) (4000 pcs.)
RK	Embossed Taping (4mm Pitch) (3000 pcs.)

for Overcurrent Protection Lead Type

Product ID

•	
Product ID	
PT	PTC Thermistors
2 Series	
Code	Series

3Dimensions

GL

Code	Dimensions				
4	Nominal Body Diameter 4mm Series				
5	Nominal Body Diameter 5mm Series				
6	Nominal Body Diameter 6mm Series				
7	Nominal Body Diameter 7mm Series				
9	Nominal Body Diameter 9mm Series				
Α	Nominal Body Diameter 10mm Series				
С	Nominal Body Diameter 12mm Series				
E	Nominal Body Diameter 14mm Series				

Individual Specifications

Code	Individual Specifications			
S	for Automotive			

6Temperature Characteristics

Code	Temperature Characteristics			
AR	Curie Point 120°C			
AS	Curie Point 130°C			

6 Resistance

Expressed by three-digit alphanumeric. The unit is ohm (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures. If ther is a decimal point, it is expressed by the capital letter "**R**." In this case, all figures are significant digits.

Ex.)	Code	Resistance
	R22	0.22Ω
	2R2	2.2Ω
	220	22Ω

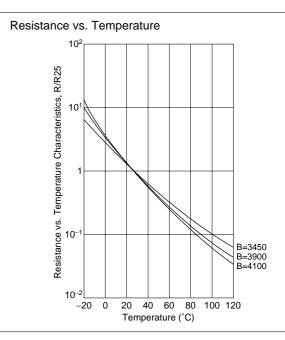
Resistance Tolerance

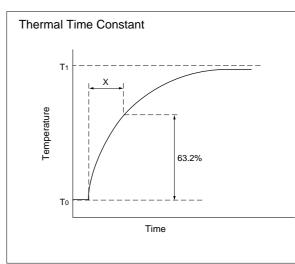
Code	Resistance Tolerance				
к	±10%				
м	±20%				

BIndividual Specifications

Ex.)	Code	Individual Specifications
	4B51	Lead Type, others

Packaging

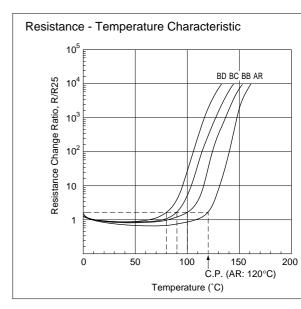

Code	Packaging
A0	Ammo Pack
B0	Bulk

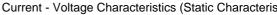


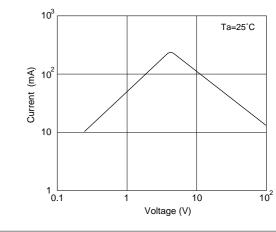
- Zero-power Resistance of Thermistor: R Measured by zero-power in specified ambient temperatures. R=R₀ expB (1/T-1/T₀)(1) R: Resistance in ambient temperature T (K) (K: absolute temperature) R₀: Resistance in ambient temperature T₀ (K) B: B-constant of Thermistor
 B-Constant as (1) formula B= l n (R/R₀) / (1/T-1/T₀)(2)
- 3. Thermal Dissipation Constant
 When electric power P (mW) is spent in ambient
 temperature T₁ and thermistor temperature rises T₂, the formula is as follows;
 P=C (T₂-T₁)(3)
 C: Thermal dissipation constant (mW/°C)
 Thermal dissipation constant varies with dimensions, measurement conditions, etc.
- Thermal Time Constant
 Period in which Thermistor's temperature will change 63.2% of its temperature difference from ambient temperature T₀ (°C) to T₁ (°C).
- 5. Rated Electric Power

Shows necessary electric power for Thermistor's temperature to rise 100°C by self heating in ambient temperature 25°C.

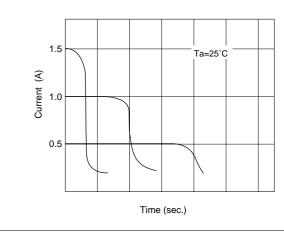
 Permissive Operating Current It is possible to keep Thermistor's temperature rising max. 1°C.




6


- POSISTOR[®] has three main characteristics.
- Resistance Temperature Characteristics
 Although there is a negligible difference between the normal and "Curie Point" temperature, POSISTOR[®] shows almost constant resistance temperature characteristics. Yet they have resistance temperature characteristics that cause resistance to sharply increase when the temperature exceeds the Curie Point.

 The Curie Point (C.P.) is defined as the temperature at which the resistance value is twice the one at 25 °C.


2. Current - Voltage Characteristics (Static Characteristics) This shows the relation between applied voltage when voltage applied to POSISTOR[®] causes balancing of inner heating and outer thermal dissipation and stabilized current. This has both a maximum point of current and constant output power.

 Current - Time Characteristics (Dynamic Characteristics) This shows the relation between current and time before inner heating and outer thermal dissipation arrive at equilibrium state. This features having large initial current and abruptly continuous attenuating portion.

muRata

0402/0603 sized Chip NTC Thermistors have Ni barrier termination, provide excellent solderability and offer high stability in environment due to unique inner construction.

Features

- 1. Excellent solderability and high stability in environment
- 2. Excellent long time aging stability
- 3. High accuracy in resistance and B-constant
- 4. Reflow soldering possible
- 5. Lead is not contained in the product
- NCP series are recognized by UL/cUL. (UL1434, File No.E137188)

Applications

- 1. Car audio, car navigation
- 2. Various engine control units
- 3. Circuits for ETC equipment

Part Number

NCP15XW152D0SRC

NCP15XW222D0SRC

NCP15XW332D0SRC

NCP15XW472 OSRC

NCP15XW68200SRC

NCP15XH103D0SRC

NCP15XH103F0SRC

NCP15XH103 OSRC

NCP15XV103D0SRC

NCP15XW153D0SRC

NCP15XW223 OSRC

NCP15WL223 OSRC

NCP15WB333D0SRC

NCP15WL333 OSRC

NCP15WB473D0SRC

NCP15WB473F0SRC

NCP15WB473 OSRC

NCP15WL473 OSRC

NCP15WD683 OSRC

NCP15WL683D0SRC

NCP15WF104D0SRC

NCP15WF104F0SRC

NCP15WF104 OSRC

NCP15WL104 OSRC

NCP15WL154D0SRC

NCP15WM154 OSRC

- 4. Various motor driving circuits
- 5. Temperature compensation for various circuits

Resistance

(25°C)

(ohm)

1.5k

2.2k

3.3k

4.7k

6.8k

10k ±0.5%

10k ±1%

10k

10k

15k

22k

22k

33k

33k

47k ±0.5%

47k ±1%

47k

47k

68k

68k

100k ±0.5%

100k ±1%

100k

100k

150k

150k

Operating Temperature Range: -40°C to +150°C

B-Constant

(25-50°C)

(K)

3950 ±3%

3950 ±3%

3950 ±3%

3950 ±3%

3950 ±3%

3380 ±0.7%

3380 ±1%

3380 ±1%

3900 ±3%

3950 ±3%

3950 ±3%

4485 ±1%

4050 ±3%

4485 ±1%

4050 ±0.5%

4050 ±1%

4050 ±1%

4485 ±1%

4150 ±3%

4485 ±1%

4250 ±0.5%

4250 ±1%

4250 ±1%

4485 ±1%

4485 ±1%

4500 ±3%

B-Constant

(25-80°C)

(Reference Value) (K)

3982

3982

3982

3982

3982

3428

3428

3428

3930

3982

3982

4537

4101

4537

4101

4101

4101

4537

4201

4537

4303

4303

4303

4537

4537

4571

B-Constant

(25-85°C)

(Reference Value) (K)

3987

3987

3987

3987

3987

3434

3434

3434

3934

3987

3987

4543

4108

4543

4108

4108

4108

4543

4209

4543

4311

4311

4311

4543

4543

4582

B-Constant

(25-100°C)

3998

3998

3998

3998

3998

3455

3455

3455

3944

3998

3998

4557

4131

4557

4131

4131

4131

4557

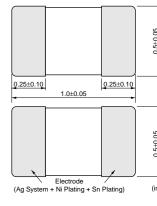
4232

4557

4334

4334

4334


4557

4557

4614

(Reference Value) (K

4	4)

Typical Di

Constan

(mW

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Rated Electric

Power (25°C)

(mŴ)

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

Permissive Operating Current (25°C)

(mÀ)

0.81

0.67

0.55

0.46

0.38

0.31

0.31

0.31

0.31

0.25

0.21

0.21

0.17

0.17

0.14

0.14

0.14

0.14

0.12

0.12

0.10

0.10

0.10

0.10

0.08

0.08

3		100	
	Conti	inued on the fo	llowing p

A blank column is filled with resistance tolerance codes (E: $\pm 3\%$, J: $\pm 5\%$).

Rated Electric Power is necessary electric power for Thermistor's temperature to rise 100°C by self heating at 25°C in still air.

Operating Temperature Range: -40°C to +125°C

Part Number	Resistance (25°C) (ohm)	B-Constant (25-50°C) (K)	B-Constant (25-80°C) (Reference Value) (K)	B-Constant (25-85°C) (Reference Value) (K)	B-Constant (25-100°C) (Reference Value) (K)	Permissive Operating Current (25°C) (mA)	Rated Electric Power (25°C) (mW)	Typical Di Constan (mW)
NCP15XC220 OSRC	22	3100 ±3%	3126	3128	3136	6.70	100	1
NCP15XC330 OSRC	33	3100 ±3%	3126	3128	3136	5.50	100	1
NCP15XC470 OSRC	47	3100 ±3%	3126	3128	3136	4.60	100	1
NCP15XC680 OSRC	68	3100 ±3%	3126	3128	3136	3.80	100	1
NCP15XF101 OSRC	100	3250 ±3%	3282	3284	3296	3.10	100	1
NCP15XF151 0SRC	150	3250 ±3%	3282	3284	3296	2.50	100	1
NCP15XM221D0SRC	220	3500 ±3%	3539	3545	3560	2.10	100	1
NCP15XM331D0SRC	330	3500 ±3%	3539	3545	3560	1.70	100	1
NCP15XQ471D0SRC	470	3650 ±2%	3688	3693	3706	1.40	100	1
NCP15XQ681D0SRC	680	3650 ±3%	3688	3693	3706	1.20	100	1
NCP15XQ102D0SRC	1.0k	3650 ±2%	3688	3693	3706	1.00	100	1
NCP15XM47200SRC	4.7k	3500 ±2%	3539	3545	3560	0.46	100	1

A blank column is filled with resistance tolerance codes (E: $\pm 3\%$, J: $\pm 5\%$).

Rated Electric Power is necessary electric power for Thermistor's temperature to rise 100°C by self heating at 25°C in still air.

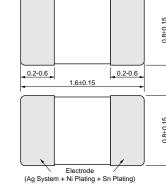
0402/0603 sized Chip NTC Thermistors have Ni barrier termination, provide excellent solderability and offer high stability in environment due to unique inner construction.

Features

- 1. Excellent solderability and high stability in environment
- 2. Excellent long time aging stability
- 3. High accuracy in resistance and B-constant
- 4. Flow/Reflow soldering possible
- 5. Lead is not contained in the product
- 6. NCP series are recognized by UL/cUL. (UL1434, File No.E137188)

Applications

- 1. Car audio, car navigation
- 2. Various engine control units
- 3. Circuits for ETC equipment
- 4. Various motor driving circuits
- 5. Temperature compensation for various circuits


Operating Temperature Range: -40°C to +150°C

Part Number	Resistance (25°C) (ohm)	B-Constant (25-50°C) (K)	B-Constant (25-80°C) (Reference Value) (K)	B-Constant (25-85°C) (Reference Value) (K)	B-Constant (25-100°C) (Reference Value) (K)	Permissive Operating Current (25°C) (mA)	Rated Electric Power (25°C) (mW)	Typical Di Constan (mW)
NCP18XF101D0SRB	100	3250 ±3%	3282	3284	3296	3.10	100	1
NCP18XF151D0SRB	150	3250 ±3%	3282	3284	3296	2.50	100	1
NCP18XQ471□0SRB	470	3650 ±2%	3688	3693	3706	1.40	100	1
NCP18XQ681 OSRB	680	3650 ±3%	3688	3693	3706	1.20	100	1
NCP18XQ102□0SRB	1.0k	3650 ±2%	3688	3693	3706	1.00	100	1
NCP18XW152D0SRB	1.5k	3950 ±3%	3982	3987	3998	0.81	100	1
NCP18XW222D0SRB	2.2k	3950 ±3%	3982	3987	3998	0.67	100	1
NCP18XW332D0SRB	3.3k	3950 ±3%	3982	3987	3998	0.55	100	1
NCP18XW472□0SRB	4.7k	3950 ±3%	3982	3987	3998	0.46	100	1
NCP18XW682□0SRB	6.8k	3950 ±3%	3982	3987	3998	0.38	100	1
NCP18XH103D0SRB	10k ±0.5%	3380 ±0.7%	3428	3434	3455	0.31	100	1
NCP18XH103F0SRB	10k ±1%	3380 ±1%	3428	3434	3455	0.31	100	1
NCP18XH103□0SRB	10k	3380 ±1%	3428	3434	3455	0.31	100	1
NCP18XV103D0SRB	10k	3900 ±3%	3930	3934	3944	0.31	100	1
NCP18XW153D0SRB	15k	3950 ±3%	3982	3987	3998	0.25	100	1
NCP18XW223D0SRB	22k	3950 ±3%	3982	3987	3998	0.21	100	1
NCP18WB333D0SRB	33k	4050 ±3%	4101	4108	4131	0.17	100	1
NCP18WB473D0SRB	47k ±0.5%	4030 ±0.5%	4101	4108	4131	0.14	100	1
NCP18WB473F1SRB	47k ±1%	4050 ±1.5%	4101	4108	4131	0.14	100	1
NCP18WB473D0SRB	47k	4050 ±2%	4101	4108	4131	0.14	100	1
NCP18WD683D0SRB	68k	4150 ±3%	4201	4209	4232	0.12	100	1
NCP18WF104D0SRB	100k ±0.5%	4200 ±0.5%	4255	4260	4282	0.10	100	1
NCP18WF104F3SRB	100k ±1%	4200 ±1%	4255	4260	4282	0.10	100	1
NCP18WF104□0SRB	100k	4250 ±2%	4303	4311	4334	0.10	100	1
NCP18WM154D0SRB	150k	4500 ±3%	4571	4582	4614	0.08	100	1
NCP18WM224D0SRB	220k	4500 ±3%	4571	4582	4614	0.06	100	1

Operating Temperature Range: -40°C to +125°C

Part Number	Resistance (25°C) (ohm)	B-Constant (25-50°C) (K)	B-Constant (25-80°C) (Reference Value) (K)	B-Constant (25-85°C) (Reference Value) (K)	(25-100°C)	Permissive Operating Current (25°C) (mA)	Rated Electric Power (25°C) (mW)	Typical Di Constan (mW
NCP18XM221 OSRB	220	3500 ±3%	3539	3545	3560	2.10	100	1
NCP18XM331D0SRB	330	3500 ±3%	3539	3545	3560	1.70	100	1
NCP18XM472 OSRB	4.7k	3500 ±2%	3539	3545	3560	0.46	100	1

A blank column is filled with resistance tolerance codes (E: $\pm 3\%$, J: $\pm 5\%$).

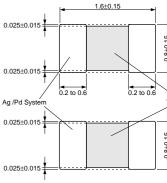
Rated Electric Power is necessary electric power for Thermistor's temperature to rise 100°C by self heating at 25°C in still air.

NCG18, 0603 sized Chip NTC Thermistor enables conductive glue mounting.

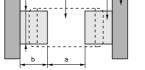
Features

- 1. Excellent solderability and high stability in environment
- 2. Excellent long time aging stability
- 3. High accuracy in resistance and B-constant
- 4. Glue mounting possible
- 5. Lead is not contained in the product

Applications


- 1. Various engine control units
- 2. ABS control unit
- 3. High power devices (IGBT)
- 4. Various circuits requiring low temperature mounting below solder melting point.
- 5. Temperature compensation for various circuits requiring high temperature.

Part Number	Resistance (25°C) (ohm)	B-Constant (25-50°C) (K)	B-Constant (25-80°C) (Reference Value) (K)	B-Constant (25-85°C) (Reference Value) (K)	B-Constant (25-100°C) (Reference Value) (K)	Permissive Operating Current (25°C) (mA)	Rated Electric Power (25°C) (mW)	Typical Di Constan (mW
NCG18XH103F0SRB	10k ±1%	3380 ±1%	3428	3434	3455	0.31	100	1
NCG18WF104F0SRB	100k ±1%	4200 ±1%	4255	4260	4282	0.10	100	1


Operating Temperature Range: -55°C to +150°C

Rated Electric Power is necessary electric power for Thermistor's temperature to rise 100°C by self heating at 25°C in still air.

3

(in mm)

Part Number	Mounting	Dimensions (mm)				
Part Number	Methods	Chip (L×W)	а	b	с	
NCP15	Reflow Soldering	1.0×0.5	0.4	0.4-0.5	0.5	
NCP18	Flow Soldering	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8	
NCFIO	Reflow Soldering	1.0×0.0	0.6-0.8	0.6-0.7	0.6-0.8	
NCG18	Conductive Glue	1.6×0.8	0.6	0.6	1.0	

Part Number	NCP18XF101	NCP18XF151	NCP18XQ471	NCP18XQ681	NCP18XQ102	NCPDDXW152	NCPDDXW222	
Resistance	100Ω	150Ω	470Ω	680Ω	1.0kΩ	1.5kΩ	2.2kΩ	3.3k
B-Constant	3250K	3250K	3650K	3650K	3650K	3950K	3950K	3950
Temp. (°C)	Resistance (Ω)	Resistance ($k\Omega$)	Resistance (k Ω)	Resistance (kΩ)	Resistan			
-40	1824.175	2736.262	11822.473	17104.854	25.154	51.791	75.961	113.9
-35	1390.685	2086.028	8767.745	12685.248	18.655	37.172	54.520	81.7
-30	1070.653	1605.979	6570.224	9505.855	13.979	27.005	39.607	59.4 ⁻
-25	831.138	1246.708	4971.784	7193.219	10.578	19.843	29.103	43.6
-20	650.960	976.440	3796.933	5493.436	8.079	14.728	21.601	32.40
-15	514.441	771.661	2923.400	4229.599	6.220	11.044	16.198	24.29
-10	409.700	614.550	2269.599	3283.675	4.829	8.362	12.264	18.39
-5	328.877	493.315	1775.225	2568.411	3.777	6.389	9.370	14.0
0	265.759	398.639	1399.050	2024.158	2.977	4.922	7.219	10.82
5	215.785	323.677	1110.220	1606.275	2.362	3.825	5.609	8.41
10	176.395	264.592	887.257	1283.691	1.888	2.994	4.391	6.58
15	145.161	217.742	713.463	1032.245	1.518	2.361	3.463	5.19
20	120.152	180.228	577.375	835.351	1.229	1.876	2.751	4.12
25	100.000	150.000	470.000	680.000	1.000	1.500	2.200	3.30
30	83.669	125.503	384.800	556.733	0.819	1.207	1.771	2.65
35	70.361	105.541	316.757	458.287	0.674	0.978	1.434	2.15
40	59.456	89.184	262.177	379.320	0.558	0.797	1.169	1.75
45	50.470	75.705	218.069	315.504	0.464	0.653	0.958	1.43
50	43.029	64.543	182.297	263.749	0.388	0.538	0.789	1.18
55	36.830	55.246	153.150	221.579	0.326	0.446	0.654	0.98
60	31.649	47.473	129.249	186.998	0.275	0.371	0.545	0.81
65	27.364	41.045	109.551	158.499	0.233	0.311	0.456	0.68
70	23.756	35.634	93.281	134.960	0.199	0.261	0.383	0.57
75	20.651	30.976	79.750	115.383	0.170	0.221	0.324	0.48
80	18.011	27.016	68.446	99.029	0.146	0.187	0.275	0.41
85	15.800	23.700	58.996	85.356	0.126	0.160	0.234	0.35
90	13.908	20.862	51.036	73.839	0.109	0.137	0.200	0.30
95	12.263	18.394	44.332	64.140	0.094	0.117	0.172	0.25
100	10.844	16.265	38.640	55.905	0.082	0.101	0.149	0.22
105	9.622	14.434	33.790	48.888	0.072	0.088	0.129	0.19
110	8.563	12.844	29.664	42.918	0.063	0.076	0.112	0.16
115	7.648	11.472	26.123	37.795	0.056	0.067	0.098	0.14
120	6.850	10.275	23.091	33.409	0.049	0.058	0.085	0.12
125	6.162	9.243	20.472	29.618	0.044	0.051	0.075	0.11
130	5.557	8.336	18.200	26.332	0.039	0.045	0.066	0.09
135	5.025	7.537	16.225	23.475	0.035	0.040	0.059	0.08
140	4.554	6.832	14.502	20.982	0.031	0.035	0.052	0.07
145	4.138	6.206	13.007	18.819	0.028	0.032	0.046	0.06
150	3.768	5.561	11.696	16.922	0.025	0.028	0.041	0.06

http://search.murata.co.jp/Ceramy/CatsearchAction.do?sLang=en

Part Number	NCPDDXW472	NCPDDXW682	NCP	NCP XH103	NCP XV103	NCPDDXW153	NCPDDXW223	NCP15V
Resistance	4.7kΩ	6.8kΩ	10kΩ±0.5%	10kΩ	10kΩ	15kΩ	22kΩ	22k
B-Constant	3950K	3950K	3380K±0.7%	3380K	3900K	3950K	3950K	448
Temp. (°C)	Resistance ($k\Omega$)	Resistance ($k\Omega$)	Resistance (kΩ)	Resistance ($k\Omega$)	Resistance ($k\Omega$)	Resistance (kΩ)	Resistance (kΩ)	Resistan
-40	162.279	234.787	197.390	195.652	328.996	517.912	759.605	1073.
-35	116.474	168.515	149.390	148.171	237.387	371.724	545.196	753.9
-30	84.615	122.422	114.340	113.347	173.185	270.048	396.070	535.0
-25	62.173	89.953	88.381	87.559	127.773	198.426	291.025	383.5
-20	46.147	66.766	68.915	68.237	95.327	147.278	216.008	277.6
-15	34.604	50.066	54.166	53.650	71.746	110.439	161.977	202.8
-10	26.200	37.906	42.889	42.506	54.564	83.617	122.638	149.4
-5	20.018	28.963	34.196	33.892	41.813	63.888	93.702	111.0
0	15.423	22.313	27.445	27.219	32.330	49.221	72.191	83.2
5	11.984	17.338	22.165	22.021	25.194	38.245	56.093	62.8
10	9.380	13.571	18.010	17.926	19.785	29.936	43.907	47.8
15	7.399	10.705	14.720	14.674	15.651	23.613	34.633	36.6
20	5.877	8.503	12.099	12.081	12.468	18.756	27.509	28.3
25	4.700	6.800	10.000	10.000	10.000	15.000	22.000	22.0
30	3.783	5.474	8.309	8.315	8.072	12.074	17.709	17.2
35	3.064	4.434	6.939	6.948	6.556	9.780	14.344	13.5
40	2.497	3.613	5.824	5.834	5.356	7.969	11.688	10.7
45	2.046	2.961	4.911	4.917	4.401	6.531	9.578	8.56
50	1.686	2.440	4.160	4.161	3.635	5.382	7.894	6.87
55	1.397	2.022	3.539	3.535	3.019	4.459	6.540	5.54
60	1.164	1.683	3.024	3.014	2.521	3.713	5.446	4.49
65	0.974	1.409	2.593	2.586	2.115	3.108	4.559	3.66
70	0.819	1.185	2.233	2.228	1.781	2.613	3.832	3.00
75	0.692	1.001	1.929	1.925	1.509	2.208	3.239	2.47
80	0.587	0.849	1.673	1.669	1.284	1.873	2.748	2.05
85	0.500	0.724	1.455	1.452	1.097	1.597	2.342	1.70
90	0.428	0.620	1.270	1.268	0.941	1.367	2.004	1.42
95	0.368	0.532	1.112	1.110	0.810	1.174	1.722	1.19
100	0.318	0.459	0.976	0.974	0.701	1.013	1.486	1.00
105	0.275	0.398	0.860	0.858	0.608	0.878	1.287	0.85
110	0.239	0.346	0.759	0.758	0.530	0.763	1.119	0.72
115	0.208	0.302	0.673	0.672	0.463	0.665	0.975	0.61
120	0.182	0.264	0.598	0.596	0.406	0.582	0.854	0.52
125	0.160	0.232	0.532	0.531	0.358	0.511	0.750	0.45
130	0.141	0.204	0.476	0.474	0.316	0.451	0.661	0.39
135	0.125	0.181	0.426	0.424	0.280	0.399	0.585	0.33
140	0.111	0.160	0.383	0.381	0.249	0.354	0.519	0.29
145	0.099	0.143	0.344	0.342	0.222	0.315	0.462	0.25
150	0.088	0.127	0.311	0.309	0.198	0.281	0.412	0.22

http://search.murata.co.jp/Ceramy/CatsearchAction.do?sLang=en

Part Number	NCPDDWB333	NCP15WL333	NCP15WB473D	NCP18WB473D	NCPDDWB473	NCP15WL473	NCPDDWD683	NCP15V
Resistance	33kΩ	33kΩ	47kΩ±0.5%	47kΩ±0.5%	47kΩ	47kΩ	68kΩ	68k
B-Constant	4050K	4485K	4050K±0.5%	4030K±0.5%	4050K	4485K	4150K	448
Temp. (°C)	Resistance (k Ω)	Resistan						
-40	1227.263	1610.154	1690.586	1743.085	1747.920	2293.249	2735.359	3317.
-35	874.449	1130.850	1215.318	1241.814	1245.428	1610.605	1937.391	2330.
-30	630.851	802.609	882.908	896.201	898.485	1143.110	1389.345	1653.
-25	460.457	575.385	647.911	654.460	655.802	819.487	1008.014	1185.
-20	339.797	416.464	480.069	483.172	483.954	593.146	738.978	858.1
-15	253.363	304.219	359.009	360.367	360.850	433.281	547.456	626.8
-10	190.766	224.193	270.868	271.363	271.697	319.305	409.600	461.9
-5	144.964	166.623	206.113	206.204	206.463	237.312	309.217	343.3
0	111.087	124.850	158.126	158.051	158.214	177.816	235.606	257.2
5	85.842	94.287	122.267	122.145	122.259	134.287	180.980	194.2
10	66.861	71.747	95.256	95.145	95.227	102.184	140.139	147.8
15	52.470	54.996	74.754	74.676	74.730	78.327	109.344	113.3
20	41.471	42.455	59.075	59.038	59.065	60.467	85.929	87.4
25	33.000	33.000	47.000	47.000	47.000	47.000	68.000	68.0
30	26.430	25.822	37.636	37.667	37.643	36.776	54.167	53.2
35	21.298	20.335	30.326	30.381	30.334	28.962	43.421	41.9
40	17.266	16.115	24.583	24.654	24.591	22.952	35.016	33.2
45	14.076	12.849	20.043	20.124	20.048	18.301	28.406	26.4
50	11.538	10.306	16.433	16.518	16.433	14.679	23.166	21.2
55	9.506	8.317	13.545	13.631	13.539	11.845	18.997	17.1
60	7.870	6.748	11.223	11.306	11.209	9.610	15.657	13.9
65	6.549	5.504	9.345	9.424	9.328	7.839	12.967	11.3
70	5.475	4.513	7.818	7.892	7.798	6.427	10.794	9.29
75	4.595	3.718	6.571	6.639	6.544	5.296	9.021	7.66
80	3.874	3.078	5.548	5.609	5.518	4.384	7.575	6.34
85	3.282	2.560	4.704	4.759	4.674	3.646	6.387	5.27
90	2.789	2.139	4.004	4.054	3.972	3.046	5.407	4.40
95	2.379	1.794	3.422	3.468	3.388	2.555	4.598	3.69
100	2.038	1.511	2.936	2.977	2.902	2.152	3.922	3.11
105	1.751	1.278	2.528	2.566	2.494	1.820	3.359	2.63
110	1.509	1.085	2.184	2.220	2.150	1.546	2.887	2.23
115	1.306	0.925	1.893	1.927	1.860	1.318	2.489	1.90
120	1.134	0.792	1.646	1.679	1.615	1.128	2.155	1.63
125	0.987	0.681	1.436	1.468	1.406	0.970	1.870	1.40
130	0.862	0.587	1.256	1.288	1.227	0.836	1.629	1.20
135	0.755	0.508	1.102	1.133	1.075	0.724	1.423	1.04
140	0.663	0.441	0.969	0.999	0.945	0.628	1.247	0.90
145	0.584	0.384	0.854	0.884	0.831	0.546	1.096	0.79
150	0.516	0.335	0.755	0.783	0.735	0.477	0.966	0.69

http://search.murata.co.jp/Ceramy/CatsearchAction.do?sLang=en

Part Number	NCP15WF104D	NCP18WF104D	NCP18WF104F	NCPDDWF104	NCP15WL104	NCP15WL154	NCPDDWM154	
Resistance	100kΩ±0.5%	100kΩ±0.5%	100kΩ±1%	100kΩ	100kΩ	150kΩ	150kΩ	220
B -Constant	4250K±0.5%	4200K±0.5%	4200K±1%	4250K	4485K	4485K	4500K	4500
Temp. (°C)	Resistance ($k\Omega$)	Resistance (k Ω)	Resistance ($k\Omega$)	Resistance (k Ω)	Resistan			
-40	4221.283	4205.686	4205.686	4397.119	4879.254	7318.881	7899.466	11585
-35	2995.044	2966.436	2966.436	3088.599	3426.818	5140.228	5466.118	8016.
-30	2146.996	2118.789	2118.789	2197.225	2432.149	3648.224	3834.499	5623.
-25	1554.599	1531.319	1531.319	1581.881	1743.590	2615.385	2720.523	3990.
-20	1136.690	1118.422	1118.422	1151.037	1262.012	1893.018	1951.216	2861.
-15	839.019	825.570	825.570	846.579	921.875	1382.813	1415.565	2076.
-10	624.987	615.526	615.526	628.988	679.373	1019.059	1036.984	1520.
-5	469.678	463.104	463.104	471.632	504.919	757.379	767.079	1125.
0	355.975	351.706	351.706	357.012	378.333	567.499	572.667	839.9
5	272.011	269.305	269.305	272.500	285.717	428.575	431.264	632.5
10	209.489	207.891	207.891	209.710	217.414	326.121	327.405	480.1
15	162.559	161.722	161.722	162.651	166.654	249.981	250.538	367.4
20	127.057	126.723	126.723	127.080	128.653	192.979	193.166	283.3
25	100.000	100.000	100.000	100.000	100.000	150.000	150.000	220.0
30	79.222	79.439	79.439	79.222	78.247	117.370	117.281	172.0
35	63.167	63.509	63.509	63.167	61.622	92.433	92.293	135.3
40	50.677	51.084	51.084	50.677	48.835	73.252	73.090	107.1
45	40.904	41.336	41.336	40.904	38.937	58.406	58.240	85.4
50	33.195	33.628	33.628	33.195	31.231	46.846	46.665	68.4
55	27.091	27.510	27.510	27.091	25.202	37.803	37.605	55.1
60	22.224	22.621	22.621	22.224	20.448	30.671	30.453	44.6
65	18.323	18.692	18.692	18.323	16.679	25.018	24.804	36.3
70	15.184	15.525	15.525	15.184	13.675	20.513	20.293	29.7
75	12.635	12.947	12.947	12.635	11.268	16.902	16.679	24.4
80	10.566	10.849	10.849	10.566	9.329	13.993	13.776	20.2
85	8.873	9.129	9.129	8.873	7.758	11.638	11.428	16.7
90	7.481	7.713	7.713	7.481	6.481	9.721	9.520	13.9
95	6.337	6.546	6.546	6.337	5.437	8.155	7.966	11.6
100	5.384	5.572	5.572	5.384	4.580	6.869	6.688	9.80
105	4.594	4.764	4.764	4.594	3.873	5.810	5.639	8.27
110	3.934	4.087	4.087	3.934	3.289	4.933	4.772	6.99
115	3.380	3.518	3.518	3.380	2.804	4.206	4.052	5.94
120	2.916	3.040	3.040	2.916	2.400	3.601	3.454	5.06
125	2.522	2.634	2.634	2.522	2.064	3.096	2.955	4.33
130	2.190	2.290	2.290	2.190	1.778	2.667	2.536	3.71
135	1.907	1.998	1.998	1.907	1.540	2.310	2.182	3.20
140	1.665	1.748	1.748	1.665	1.336	2.004	1.884	2.76
145	1.459	1.533	1.533	1.459	1.162	1.743	1.632	2.39
150	1.282	1.349	1.349	1.282	1.014	1.521	1.418	2.07

http://search.murata.co.jp/Ceramy/CatsearchAction.do?sLang=en

Part Number	NCPDDWM474	Part Number	NCP15XC220	NCP15XC330	NCP15XC470	NCP15XC680	NCP15XF101	NCP15
Resistance	470kΩ	Resistance	22Ω	33Ω	47Ω	68Ω	100Ω	150
B-Constant	4500K	B-Constant	3100K	3100K	3100K	3100K	3250K	3250
Temp. (°C)	Resistance ($k\Omega$)	Temp. (°C)	Resistance (Ω)	Resistance (Ω)	Resistance (Ω)	Resistance (Ω)	Resistance (Ω)	Resistar
-40	24751.661	-40	355.823	533.734	760.166	1099.815	1824.175	2736.
-35	17127.169	-35	273.975	410.962	585.310	846.832	1390.685	2086.
-30	12014.762	-30	213.003	319.504	455.051	658.372	1070.653	1605.
-25	8524.305	-25	166.943	250.415	356.652	516.007	831.138	1246.
-20	6113.811	-20	131.997	197.996	281.994	407.991	650.960	976.4
-15	4435.437	-15	105.318	157.978	224.998	325.529	514.441	771.6
-10	3249.216	-10	84.670	127.005	180.886	261.707	409.700	614.5
-5	2403.515	-5	68.628	102.942	146.614	212.123	328.877	493.3
0	1794.358	0	55.981	83.972	119.596	173.033	265.759	398.6
5	1351.294	5	45.859	68.789	97.972	141.747	215.785	323.6
10	1025.870	10	37.819	56.728	80.794	116.894	176.395	264.5
15	785.018	15	31.396	47.094	67.073	97.042	145.161	217.7
20	605.252	20	26.211	39.317	55.997	81.016	120.152	180.2
25	470.000	25	22.000	33.000	47.000	68.000	100.000	150.0
30	367.480	30	18.560	27.840	39.651	57.368	83.669	125.5
35	289.186	35	15.735	23.603	33.616	48.636	70.361	105.5
40	229.014	40	13.403	20.104	28.633	41.426	59.456	89.1
45	182.485	45	11.462	17.193	24.487	35.428	50.470	75.7
50	146.215	50	9.842	14.763	21.026	30.421	43.029	64.5
55	117.828	55	8.488	12.732	18.133	26.235	36.830	55.2
60	95.420	60	7.348	11.022	15.698	22.712	31.649	47.4
65	77.718	65	6.399	9.598	13.670	19.778	27.364	41.0
70	63.584	70	5.595	8.392	11.952	17.293	23.756	35.6
75	52.260	75	4.896	7.345	10.461	15.134	20.651	30.9
80	43.166	80	4.299	6.448	9.184	13.288	18.011	27.0
85	35.808	85	3.795	5.692	8.107	11.729	15.800	23.7
90	29.828	90	3.360	5.040	7.179	10.386	13.908	20.8
95	24.961	95	2.983	4.474	6.373	9.220	12.263	18.3
100	20.955	100	2.656	3.983	5.673	8.208	10.844	16.2
105	17.668	105	2.367	3.551	5.057	7.317	9.622	14.4
110	14.951	110	2.116	3.173	4.520	6.539	8.563	12.8
115	12.695	115	1.901	2.851	4.060	5.874	7.648	11.4
120	10.824	120	1.712	2.568	3.657	5.291	6.850	10.2
125	9.259	125	1.543	2.314	3.296	4.768	6.162	9.24
130	7.945				•			
135	6.837							

150 4.442

5.904

5.113

140

145

Detailed Resistance-Temperature Tables are downloadable from the following URL.

http://search.murata.co.jp/Ceramy/CatsearchAction.do?sLang=en

Part Number	NCP	NCP	NCP15XQ471	NCP15XQ681	NCP15XQ102	NCPDDXM472
Resistance	220Ω	330Ω	470Ω	680Ω	1.0kΩ	4.7kΩ
B -Constant	3500K	3500K	3650K	3650K	3650K	3500K
Temp. (°C)	Resistance (Ω)	Resistance (Ω)	Resistance (Ω)	Resistance (Ω)	Resistance ($k\Omega$)	Resistance (k Ω)
-40	4947.904	7421.856	11822.473	17104.854	25.154	105.705
-35	3703.755	5555.632	8767.745	12685.248	18.655	79.126
-30	2798.873	4198.309	6570.224	9505.855	13.979	59.794
-25	2135.887	3203.831	4971.784	7193.219	10.578	45.630
-20	1645.037	2467.555	3796.933	5493.436	8.079	35.144
-15	1278.034	1917.051	2923.400	4229.599	6.220	27.303
-10	1000.620	1500.930	2269.599	3283.675	4.829	21.377
-5	789.612	1184.418	1775.225	2568.411	3.777	16.869
0	627.752	941.628	1399.050	2024.158	2.977	13.411
5	502.474	753.711	1110.220	1606.275	2.362	10.735
10	405.010	607.514	887.257	1283.691	1.888	8.653
15	328.480	492.720	713.463	1032.245	1.518	7.018
20	268.044	402.066	577.375	835.351	1.229	5.726
25	220.000	330.000	470.000	680.000	1.000	4.700
30	181.576	272.365	384.800	556.733	0.819	3.879
35	150.668	226.002	316.757	458.287	0.674	3.219
40	125.681	188.521	262.177	379.320	0.558	2.685
45	105.336	158.004	218.069	315.504	0.464	2.250
50	88.717	133.076	182.297	263.749	0.388	1.895
55	75.059	112.588	153.150	221.579	0.326	1.604
60	63.777	95.666	129.249	186.998	0.275	1.363
65	54.415	81.622	109.551	158.499	0.233	1.163
70	46.631	69.946	93.281	134.960	0.199	0.996
75	40.115	60.172	79.750	115.383	0.170	0.857
80	34.637	51.955	68.446	99.029	0.146	0.740
85	30.013	45.019	58.996	85.356	0.126	0.641
90	26.110	39.165	51.036	73.839	0.109	0.558
95	22.790	34.186	44.332	64.140	0.094	0.487
100	19.957	29.935	38.640	55.905	0.082	0.426
105	17.541	26.312	33.790	48.888	0.072	0.375
110	15.453	23.180	29.664	42.918	0.063	0.330
115	13.663	20.494	26.123	37.795	0.056	0.292
120	12.114	18.171	23.091	33.409	0.049	0.259
125	10.778	16.168	20.472	29.618	0.044	0.230

http://search.murata.co.jp/Ceramy/CatsearchAction.do?sLang=en

NCG18XH103	NCG18WF104	
10kΩ	100kΩ	
3380K	4200K	
Resistance (k Ω)	Resistance (k Ω)	
481.258	13019.2917	
352.304	8807.8909	
261.060	6042.9955	
195.661	4205.6861	
148.177	2966.4355	
113.351	2118.7894	
87.562	1531.3193	
68.239	1118.4222	
53.651	825.5695	
42.507	615.5264	
33.893	463.1041	
27.219	351.7064	
22.021	269.3046	
17.926	207.8907	
14.674	161.7224	
12.081	126.7225	
10.000	100.0000	
8.315	79.4390	
6.948	63.5094	
5.834	51.0835	
4.917	41.3360	
4.161	33.6281	
3.535	27.5103	
3.014	22.6211	
2.586	18.6920	
2.228	15.5246	
1.925	12.9466	
1.669	10.8488	
1.452	9.1290	
1.268	7.7128	
1.110	6.5455	
0.974	5.5722	
0.858	4.7638	
0.758	4.0868	
0.672	3.5178	
0.596	3.0403	
0.531	2.6336	
0.474	2.2902	
0.424	1.9976	
0.381	1.7475	
0.342	1.5332	
0.309	1.3491	
	10kΩ 3380K Resistance (kΩ) 481.258 352.304 261.060 195.661 148.177 113.351 87.562 68.239 53.651 42.507 33.893 27.219 22.021 17.926 14.674 12.081 10.000 8.315 6.948 5.834 4.917 4.161 3.535 3.014 2.586 2.228 1.925 1.669 1.452 1.669 1.452 1.268 0.758 0.758 0.531 0.474 0.381 0.342	

Detailed Resistance-Temperature Tables are downloadable from the following URL. http://search.murata.co.jp/Ceramy/CatsearchAction.do?sLang=en

muRata

No.	AEC-Q200 Test Item	Specifications	AEC-Q200 Test Methods
1	Pre- and Post- Stress Electrical Test		-
2	High Temperature Exposure (Storage)	(*1) •Resistance(R25) change should be less than $\pm 5\%$. •B-constant(B25/50) change should be less than $\pm 2\%$. •No visible damage.	Leave continuously according to the following table for 1000 hours. Operating Temp. Range: -40 to +150°C Type 150±C Operating Temp. Range: -40 to +125°C Type 125±C Measurement at 24±2 hours after test condition.
3	Temperature Cycling	 Resistance(R25) change should be less than ±5%. B-constant(B25/50) change should be less than ±2%. No visible damage. 	Perform 1000 cycles according to the four heat treatment listed in the following table. Step 1 2 3 4 Temp. (deg.C) -55+0/-3 Room Temp. 125+3/-0 Room T Time (min.) 15±3 1 15±3 1 Measurement at 24±2 hours after test condition. 1 1 1
4	Moisture Resistance	 Resistance(R25) change should be less than ±5%. B-constant(B25/50) change should be less than ±2%. No visible damage. 	Apply the 24-hour heat (25 to 65 °C) and humidity (80 to 9 treatment shown below, 10 consecutive times. Humidity Humidity Humidity Humidity Humidity 90 to 98% 80 to 98% 90 to 98% 80 to 98% 90 to 98 0 to 98% 80 to 98% 90 to 98% 80 to 98% 90 to 98 0 to 98% 80 to 98% 90 to 9
5	Biased Humidity	 (*2) Resistance(R25) change should be less than ±10%. B-constant(B25/50) change should be less than ±2%. No visible damage. 	85±2 °C, 85%RH in air for 1000 hours with Permissive Operating Current. Measurement at 24±2 hours after test condition.
6	Operational Life	 Resistance(R25) change should be less than ±5%. B-constant(B25/50) change should be less than ±2%. No visible damage. 	85±3 °C in air for 1000 hours with Permissive Operating Current. Measurement at 24±2 hours after test condition.
7	External Visual	No defects of abnormalities.	Visual Inspection.
8	Physical Dimension	Within the specified dimensions.	Using calipers
9	Terminal Strength (Leaded)	Ν	//A
10	Resistance to Solvents	 Resistance(R25) change should be less than ±5%. B-constant(B25/50) change should be less than ±2%. No visible damage. 	Per MIL-STD-202 Method 215 Solvent 1: 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits.
11	Mechanical Shock	 Resistance(R25) change should be less than ±5%. B-constant(B25/50) change should be less than ±2%. No visible damage. 	Per MIL-STD-202 Method 213 Test Condition F 1500g's, 0.5ms, In 3 directions perpendicularly intersectin each other (total 18 times).
12	Vibration	 (*1) Resistance(R25) change should be less than ±5%. B-constant(B25/50) change should be less than ±2%. No visible damage. 	Simple harmonic motion between 10Hz to 2.0k Hz and ba 10 Hz of max. amplitude 1.5mm for 20 minutes. This moti should be applied 12 times in each of 3 mutually perpend directions (total of 36 times).
13	Resistance to Soldering Heat	(*1) •Resistance(R ₂₅) change should be less than \pm 5%. •B-constant(B _{25/50}) change should be less than \pm 2%. •No visible damage.	Per MIL-STD-202 Method 210 Test Condition B, 260 °C for 10 +/-1 seconds

• The Test Condition specification (*1,*2) is applied to the follow P/N.

P/N: NCP15XH103**SR*, NCP15WL223**SR*, NCP15WL333**SR*, NCP15WL473**SR*, NCP15WL683**SR*, NCP15WL104**SR*, NCP15WL154**SR*, NCP15WL154**SR*, NCP15WF104**SR*, NCP15WL104**SR*, N

(*1) Resistance(R25) change should be less than 1%

B-constant(B25/50) change should be less than 1%

(*2) Resistance(R25) change should be less than 5% B-constant(B25/50) change should be less than 1%

14	Thermal Shock	 Resistance(R₂₅) change should be less than ±5%. B-constant(B_{25/50}) change should be less than ±2%. No visible damage. 	$\begin{array}{ c c c c c c } \hline Perform 300 \ cycles according to the two heat treatments in the following table. (Maximum transfer time is 20 second transfer time) is 20 second to the two heat treatments in the following table. (Maximum transfer time is 20 second to the two heat treatments in the following table. (Maximum transfer time is 20 second to the two heat treatments in the following table. (Maximum transfer time is 20 second to the two heat treatments in the following table. (Maximum transfer time is 20 second to the two heat treatments in the following table. (Maximum transfer time is 20 second to the two heat treatments in the following table. (Maximum transfer time is 20 second to the two heat treatments table. The two heat table. The t$
15	ESD	 •Resistance(R25) change should be less than ±5%. •B-constant(B25/50) change should be less than ±2%. •No visible damage. 	Per AEC-Q200-002
16	Solderability	Minimum 95% of the whole electrode surface should be covered with solder.	Per J-STD-002 SMD b) Method B @ 215 °C category 3.
17	Electrical Characterization	Within the specified tolerance.	Resistance at 25 °C. B-constant (B25-50)
18	Flammability	Ν	I/A
19	Board Flex	 (*1) Resistance(R₂₅) change should be less than ±5%. B-constant(B_{25/50}) change should be less than ±2%. No visible damage. 	Type a b NCP15****SRC 0.4 1.2 0.5 NCP18****SRB 0.6 1.8 0.6
20	Terminal Strength (SMD)	(*1) •Resistance(R ₂₅) change should be less than ±5%. •B-constant(B _{25/50}) change should be less than ±2%. •No visible damage.	Per AEC-Q200-006 Apply a *17.7N force to the side of device for 60 seconds. Use follow land size. *4.9N (NCP15****SRC) Type a b NCP15****SRC 0.4 1.5 0.5 NCP18****SRB 1.0 3.0 1.2 (in mm)

The Test Condition specification (*1,*2) is applied to the follow P/N.
 P/N: NCP15XH103**SR*, NCP15WL223**SR*, NCP15WL333**SR*, NCP15WL473**SR*, NCP15WL683**SR*, NCP15WL104**SR*, NCP15WL154**SR*, NCP15WL154**SR*, NCP15WL104**SR*, NCP15W

(*1) Resistance(R25) change should be less than 1%

B-constant(B25/50) change should be less than 1%

(*2) Resistance(R25) change should be less than 5% B-constant(B25/50) change should be less than 1%

muRata

No.	. Item	Rating value	Method of Examination
1	Dry Heat	 Resistance(R₂₅)change should be less than ±3% B-constant (B₂₅₋₅₀) change should be less than ±1% No visible damage. 	150±3°C in air, for 1000 +48/-0 hours without loading.
2	Cold	Resistance (R ₂₅)change should be less than ±1% B-constant (B ₂₅₋₅₀) change should be less than ±1% No visible damage.	-40±3°C in air, for 1000 +48/-0 hours without loading.
3	Damp Heat		60±2°C, 90 to 95%RH in air, for 1000 +48/-0 hours withou loading.
4	High Temperature Load		150±3°C in air, with Permissive Operating Current (D.C. 0.31mA) for 1000 +48/-0 hours.
5	High Temperature Humidity Load	Resistance (R ₂₅)change should be less than ±3% B-constant (B ₂₅₋₅₀) change should be less than ±1% No visible damage.	85±2°C, 85%RH in air, with Permissive Operating Curren 0.31mA) for 1000 +48/-0 hours.
6	Thermal Shock		1000 cycles of the following sequence without loading. Step Temp. (°C) Time (minute) 1 -55+0/-3 15 2 +150+3/-0 15
7	Robustness of Electrode	No peeling of the electrodes.	Mount NTC Thermistor with conductive glue on Ceramic substrate, and apply 4.90N of force as shown below.:
8	Vibration Resistant	 Resistance (R₂₅) change should be less than ±1% B-constant (B₂₅₋₅₀) change should be less than ±1% No visible damage. 	Solder NTC Thermistor on the Glass Epoxy PCB as show below. Frequency: 10Hz to 2000Hz to 10Hz (20min.) Max. amplitude: 3.0mm Vibrated for a period of 4hrs. in three (3) directions perpendicularly intersecting each other (for total of 12hrs.

 NTC Thermistor should be mounted on the Ceramic substrate with "Standard Land Dimensions" by our recommendable conductive glue (PC3000: Manufactured by Heraeus) and be tested. Thickness of the conductive glue screening should be 50µm.

 \cdot R25 means the zero-power resistance at 25°C.

 \cdot B₂₅₋₅₀ is calculated by the zero-power resistances of NTC Thermistor at 25°C and at 50°C.

After each test, NTC Thermistor should be kept for 1 hour at room temperature (normal humidity and normal atmospheric pressure).

Then the resistances (R25 and R50) should be measured and the appearance should be visually examined.

 In the case that of R₂₅ or B₂₅₋₅₀ changes are greater than the specified value due to the method of mounting with conductive glue, these specifications should be judged by an evaluation with the chip only (not mounting).

This product is designed for application in an ordinary environment (normal room temperature, humidity and atmospheric pressure). Do not use under the following conditions because all of these factors can deteriorate the product characteristics or cause failures and burn-out.

 Corrosive gas or deoxidizing gas (Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)

Be sure to provide an appropriate fail-safe function on your product to prevent secondary damages that may be caused by the abnormal function or the failure of our product.

■ Notice (Storage and Operating Conditions)

To keep the mounting nature of product from declining, the following storage conditions are recommended.

1. Storage condition:

Temperature -10 to +40°C

Humidity less than 75%RH (not dewing condition) 2. Storage term:

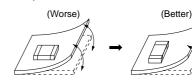
Use this product within 6 months after delivery by first-in and first-out stocking system.

3. Storage place:

Do not store this product in corrosive gas (Sulfuric acid gas, Chlorine gas, etc.) or in direct sunlight.

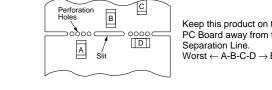
■ Notice (Rating)

Use this product within the specified temperature range.


Higher temperature may cause deterioration of the characteristics or the material quality of this product.

- 2. Volatile or flammable gas
- 3. Dusty conditions
- 4. Under vacuum, or under high or low pressure
- 5. Wet or humid locations
- 6. Places with salt water, oils, chemical liquids or organic solvents
- 7. Strong vibrations
- 8. Other places where similar hazardous conditions exist

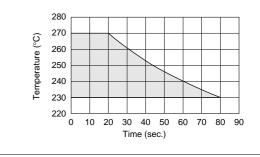
1. Mounting Position

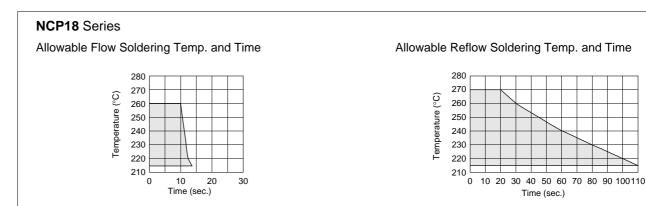

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

Component Direction

Locate this product horizontal to direction in which stress acts.

Mounting Close to Board Separation Line




PC Board away from Separation Line. Worst \leftarrow A-B-C-D

- 2. Allowable Soldering Temperature and Time
- (a) Solder within the temperature and time combinations, indicated by the slanted lines in the following graphs.
- (b) Excessive soldering conditions may cause dissolution of metalization or deterioration of solder-wetting on the external electrode.
- (c) In the case of repeated soldering, the accumulated soldering time should be within the range shown in the following figures. (For example, Reflow peak temperature: 260°C, twice -> The total accumulated soldering time at 260°C is within 30 seconds.)

Allowable Reflow Soldering Temp. and Time

- (a) Insufficient preheating may cause a crack on the ceramic body. The difference between preheating temperature and maximum temperature in the profile shall be 100 °C.
- (b) Rapid cooling by dipping in solvent or by other means is not recommended.

NCP15 Series

Reflow Soldering Conditions

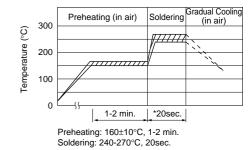
Reflow Soldering Conditions

300

200

100

0


Temperature (°C)

Preheating (in air)

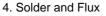
1-2 min.

Preheating: 160±10°C, 1-2 min.

Soldering: 230-270°C, 20sec.

radual Cooling

(in air)


Soldering

ΗН

*20sec.

* In the case of repeated soldering, the accumulated soldering time should be within the range shown in "2. Allowable Soldering Temperature and Time."

- (1) Solder and Paste
 - (a) Reflow Soldering: NCP15/NCP18 Series
 Use RA/RMA type or equivalent type of solder paste. For your reference, we are using the solder paste below for any internal tests of this product.
 •RMA9086 90-4-M20 (Sn:Pb=63wt%:37wt%) (Manufactured by Alpha Metals Japan Ltd.)
 •M705-221BM5-42-11 (Sn:Ag:Cu=96.5wt%:3.0wt%:0.5wt%)

(Manufactured by Senju Metal Industry Co., Ltd.)

- (b) Flow Soldering: NCP18 Series
 We are using the following solder paste for any internal tests of this product.
 •Sn:Pb=63wt%:37wt%
 •Sn:Ag:Cu=96.5wt%:3.0wt%:0.5wt%
- 5. Cleaning Conditions

For removing the flux after soldering, observe the following points in order to avoid deterioration of the characteristics or any change of the external electrodes' quality.

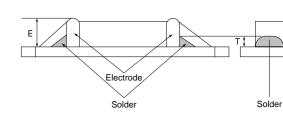
- Please keep mounted parts and the substrate from an occurrence of resonance in ultrasonic cleaning.
- Please do not clean the products in the case of using a non-washed type flux.

	NCP15	NCP18	
Solvent	Isopropyl Alcohol	Isopropyl Alcohol	
Dipping Cleaning	Less than 5 minutes at room temp. or less than 2 minutes at 40°C max.	Less than 5 minut room temp. or less 2 minutes at 40°C	
Ultrasonic Cleaning	Less than 5 minutes 20W/ℓ Frequency of 28 to 40kHz.	Less than 1 minute 20W/ & Frequency several 10 to 100kl	
Drying	After cleaning, promptly dry this product.		

Continued on the following p

26

(2) Flux


Use rosin type flux in the soldering process. If the flux below is used, some problems might be caused in the product characteristics and reliabilit Please do not use these types of flux.

- Strong acidic flux (with halide content exceeding 0.1wt%).
- Water-soluble flux

(*Water-soluble flux can be defined as non-rosin flux including wash-type flux and non-wash-type

- The amount of solder is critical. Standard height of fillet is shown in the table below.
- Too much soldering may cause mechanical stress, resulting in cracking, mechanical and/or electronic damage.

Reference: Optimum Solder Amount

Part Number	The Solder Paste Thickness	Т	
NCP15	150µm	1/3E≦T≦E	
NCP18	200µm	0.2mm≦T≦E	

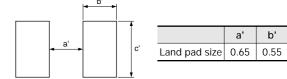

- 7. Adhesive Application and Curing
- Thin or insufficient adhesive may result in loose component contact with land during flow soldering.
- Low viscosity adhesive causes chips to slip after mounting.

■ Notice (Mounting) NCG18 Series

In your mounting process, observe the following points in order to avoid deterioration of the characteristics or destruction of this product. The mounting quality of this product may also be affected by the mounting conditions, shown in the points below.

1. Recommendable Land Size

Too small a land size parameter 'a' may cause an electric short mode of this product by conductive glue expanding on the surface of this product on mounting.



2. Recommendable Conductive Glue • PC3000 (Manufactured by Heraeus)

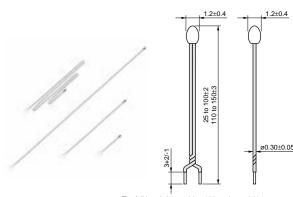
■ Notice (Handling)

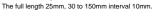
The ceramic of this product is fragile, and care must be taken not to load an excessive press - force or to give a shock at handling. Such forces may cause cracking or chipping. Screening Conditions of Conductive glue

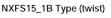
 Recommendable Screening Size

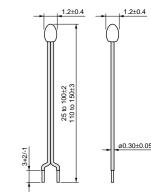
- (2) Recommendable thickness of conductive glue screening shall be 50μm.
- (3) Too much conductive glue gives an electric shor mode of this product by conductive glue expandi the surface of this product on mounting.
- There is a possibility of unexpected failure in your mounting process, caused by mounting conditions.
 Please evaluate whether this product is correctly mounted under your mounting conditions.

This product is a small flexible lead type NTC Thermistor with a small head and a thin lead wire.

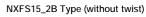

Features


4


- 1. High accuracy and high sensibility temperature sensing is available in a small and highly accurate NTC Thermistor.
- 2. Narrow space temperature sensing is available from the small sensing head and the thin lead wire.
- 3. Flexibility and a wide variety of lengths (25 mm to 150mm) enables the design of flexible temperature sensing architectures.
- 4. This product is compatible with our 0402 (EIA) size chip Thermistor.
- 5. Excellent long-time aging stability
- 6. This is a halogen-free product.*
 - * CI= max.900ppm,
 - Br=max.900ppm and Cl+Br=max.1500ppm
- 7. Lead is not contained in the product.


Applications

- 1. Car audio, car navigation
- 2. Various engine control units
- 3. Circuits for ETC equipment
- 4. Various motor driving circuits
- 5. Temperature compensation for various circuits



The full length 25mm, 30 to 150mm interval 10mm.

Part Number	Resistance (25°C) (ohm)	B-Constant (25-50°C) (K)	B-Constant (25-80°C) (Reference Value) (K)	B-Constant (25-85°C) (Reference Value) (K)	B-Constant (25-100°C) (Reference Value) (K)	Operating Current for Sensor (25°C) (mA)	Rated Electric Power (25°C) (mW)	Typical Dissipation The Constant (25°C) ((mW/°C) (
NXFS15XH103FA□B□□□	10k ±1%	3380 ±1%	3423	3431	3452	0.12	7.5	1.5
NXFS15WB473FA B	47k ±1%	4050 ±1%	4091	4097	4114	0.06	7.5	1.5
NXFS15WF104FA	100k ±1%	4250 ±1%	4303	4311	4334	0.04	7.5	1.5

 \Box is filled with lead shape (1: twist, 2: without twist).

□□□ is filled with total-length codes. (25mm, 30-150mm interval 10mm, ex. 050=50mm)

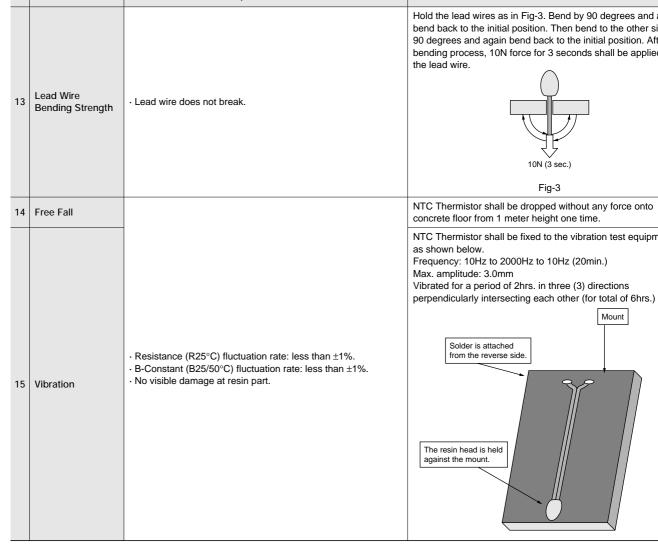
Operating Current for Sensor raises Thermistor's temperature by 0.1°C.

Rated Electric Power is necessary electric power for Thermistor's temperature to rise 5°C by self heating at 25°C in still air.

Operating Temperature Range: -40°C to +150°C

Resistance	10kΩ	47kΩ	100kΩ
B-Constant	3380K	4050K	4250K
Temp. (°C)	Resistance ($k\Omega$)	Resistance ($k\Omega$)	Resistance (k Ω)
-40	197.388	1690.59	4221.28
-35	149.395	1215.32	2995.04
-30	114.345	882.908	2147.00
-25	88.381	647.911	1554.60
-20	68.915	480.069	1136.69
-15	54.166	359.009	839.019
-10	42.889	270.868	624.987
-5	34.196	206.113	469.678
0	27.445	158.126	355.975
5	22.165	122.267	272.011
10	18.010	95.256	209.489
15	14.720	74.754	162.559
20	12.099	59.075	127.057
25	10.000	47.000	100.000
30	8.309	37.636	79.222
35	6.939	30.326	63.167
40	5.824	24.583	50.677
45	4.911	20.043	40.904
50	4.160	16.433	33.195
55	3.539	13.545	27.091
60	3.024	11.223	22.224
65	2.593	9.345	18.323
70	2.233	7.818	15.184
75	1.929	6.571	12.635
80	1.673	5.548	10.566
85	1.455	4.704	8.873
90	1.270	4.004	7.481
95	1.112	3.422	6.337
100	0.976	2.936	5.384
105	0.860	2.528	4.594
110	0.759	2.184	3.934
115	0.673	1.893	3.380
120	0.598	1.646	2.916
125	0.532	1.436	2.522
130	0.476	1.256	2.190
135	0.426	1.102	1.907
140	0.383	0.969	1.665
145	0.344	0.854	1.459
150	0.311	0.755	1.282

Detailed Resistance - Temperature Tables are downloadable from the following URL. http://search.murata.co.jp/Ceramy/CatsearchAction.do?sLang=en


1	High Temperature Storage Test 1	Resistance (R25°C) fluctuation rate: less than ±1%.	125±2°C in air, for 1000 +48/-0 hours without loading.
2	Low Temperature Storage Test	\cdot B-Constant (B25/50°C) fluctuation rate: less than ±1%.	-40 +0/-3°C in air, for 1000 +48/-0 hours without loading.
3	High Temperature Storage Test 2	· Resistance (R25°C) fluctuation rate: less than ±5%.	150±2°C in air, for 1000 +48/-0 hours without loading.
4	High Temperature Load	\cdot B-Constant (B25/50°C) fluctuation rate: less than ±2%.	150±2°C in air, with 'Operating Current for Sensor' for 10 +48/-0 hrs.
5	Humidity Storage Test	· Resistance (R25°C) fluctuation rate: less than ±2%.	85±2°C, 85%RH in air, for 1000 +48/-0 hours without loa
6	High Humidity Load test	· B-Constant (B25/50°C) fluctuation rate: less than ±1%.	85±2°C , 85%RH in air with 'Operating Current for Senso 1000 +48/-0 hours.
7	Thermal Shock		-55 +0/-3°C, 30 minutes in air +150 +3/-0°C, 30 minutes in air (1 cycle) Continuous 1000 cycles, without loading.
8	Temperature Cycle	 Resistance (R25°C) fluctuation rate: less than ±3%. B-Constant (B25/85°C) fluctuation rate: less than ±1%. 	-55 +0/-3°C, 30 minutes in air +25±2°C, 10 to 15 minutes in air +125 +3/-0°C, 30 minutes in air +25 +2/-0°C, 10 to 15 minutes in air (1 cycle) Continuous 1000 cycles, without loading.
9	Insulation Break - down Voltage	· No damage electrical characteristics on DC100 V, 1 min.	2mm length of coating resin from the top of Thermistor is dipped into beads of lead (Pb), and DC100V is applied to between beads of lead (Pb) and lead wire for 1 minute.
10	Resistance to Soldering Heat	 Resistance (R25°C) fluctuation rate: less than ±1%. B-Constant (B25/50°C) fluctuation rate: less than ±1%. 	Both lead wires are dipped into 350±10°C solder for 3.5± seconds, or 260±5°C solder for 10±1 seconds according Fig-1 (solder <jis 3282="" h60a="" z="">).</jis>
11	Solderability	 More than 90% of lead wire surface shall be covered by solder. 	Both lead wires are dipped into flux (25wt% Colophony < 5902> isopropyl alcohol <jis 8839="" k="">) for 5 to 10 secon Then both lead wires are dipped into 235±5°C solder <jis 3282="" h60a="" z=""> for 2±0.5 seconds according to Fig-</jis></jis>
12	Lead Wire Pull Strength	 Resistance (R25°C) fluctuation rate: less than ±1%. B-Constant (B25/50°C) fluctuation rate: less than ±1%. 	The lead wire shall be inserted in a ø1.0mm hole until recontacts with a substrate as shown in Fig-2. And 1N force 10 seconds shall be applied to the lead wire.

* • R25 is zero-power resistance at 25°C.
• B25/50 is calculated by zero-power resistance of Thermistor in 25°C -50°C.
• After each test, NTC Thermistor should be kept for 1 hour at room temperature (normal humidity and normal atmospheric pressure).

Continued on the following p

muRata

4

* · R25 is zero-power resistance at 25°C.

· B25/50 is calculated by zero-power resistance of Thermistor in 25°C -50°C.

After each test, NTC Thermistor should be kept for 1 hour at room temperature (normal humidity and normal atmospheric pressure).

This product is designed for application in an ordinary environment (normal room temperature, humidity and atmospheric pressure). Do not use under the following conditions because all of these factors can deteriorate the product characteristics or cause failures and burn-out.

1. Corrosive gas or deoxidizing gas (Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)

■ ① Caution (Other)

Be sure to provide an appropriate fail-safe function on your product to prevent secondary damages that may be caused by the abnormal function or the failure of our product.

Notice (Storage and Operating Conditions)

To keep solderability of product from declining, the following storage conditions are recommended.

1. Storage condition:

Temperature -10 to +40°C

Humidity less than 75%RH (not dewing condition) 2. Storage term:

Use this product within 6 months after delivery by first-in and first-out stocking system.

■ Notice (Rating)

Use this product within the specified temperature range.

Higher temperature may cause deterioration of the characteristics or the material quality of this product.

Notice (Soldering and Mounting)

Please note as shown below when you mount this product.

1. Do not melt solder in the resin head when you solder this product. If you do so, it has a possibility of wire break, electric short mode failure and wire coating break. In case you cut the lead wire of this product less than 20mm from the resin head, the heat of the melted solder at the lead wire edge is propagated easily to the resin head along the lead wire.

■ Notice (Handling)

The ceramic of this product is fragile, and care must be taken not to load an excessive press - force or to give a shock at handling.

Such forces may cause cracking or chipping.

- 2. Volatile or flammable gas
- 3. Dusty conditions
- 4. Under vacuum, or under high or low pressure
- 5. Wet or humid locations
- 6. Places with salt water, oils, chemical liquids or organic solvents
- 7. Strong vibrations
- 8. Other places where similar hazardous conditions exist

3. Storage place: Do not store this product in corrosive gas (Sulfuric acid gas, Chlorine gas, etc.) or in direct sunlight.

- 2. Do not touch the resin head directly with the soldering i It may cause the melting of solder in the resin head.
- 3. Do not separate the parallel lead wires 10mm or less from the resin head, when you separate parallel lead wires.
- 4. If you mold this product by resin, please evaluate the quality of this product before you use it.
- 5. Do not bend the lead wire radius 1mm or less when you bend the lead wire.

This chip "POSISTOR" is an SMD type for overheat sensing in power transistors, power diodes and power ICs in hybrid circuits.

Features

- 1. The SMD type's small size and light weight are helpful in miniaturizing the circuit.
- 2. Excellent thermal response.
- 3. Elements of solid-state construction provide excellent mechanical vibration and impact resistance.
- 4. Contactless operation provides prolonged service life and noiseless operation.
- 5. Lead is not contained in the terminations.

Chip Type 0603 (1608) Size

	L	-	-	W	► ►

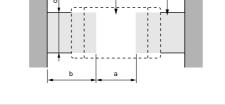
e g e

Part Number	Dimensions (mm)				
Part Number	L	W	Т	е	
PRF18_RB	1.6±0.15	0.8±0.15	0.8±0.15	0.1 to 0	

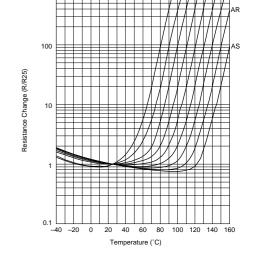
Part Number	Sensing Temperature (at 4.7k ohm) (°C)	Sensing Temperature (at 47k ohm) (°C)	Maximum Voltage (V)	Resistance (at 25°C) (ohm)
PRF18AS471QS5RB	145 ±5°C	-	32	470 ±50%
PRF18AR471QS5RB	135 ±5°C	150 ±7°C	32	470 ±50%
PRF18BA471QS5RB	125 ±5°C	140 ±7°C	32	470 ±50%
PRF18BB471QS5RB	115 ±5°C	130 ±7°C	32	470 ±50%
PRF18BC471QS5RB	105 ±5°C	120 ±7°C	32	470 ±50%
PRF18BD471QS5RB	95 ±5°C	110 ±7°C	32	470 ±50%
PRF18BE471QS5RB	85 ±5°C	100 ±7°C	32	470 ±50%
PRF18BF471QS5RB	75 ±5°C	90 ±7°C	32	470 ±50%
PRF18BG471QS5RB	65 ±5°C	80 ±7°C	32	470 ±50%

This product is applied to flow/reflow soldering.

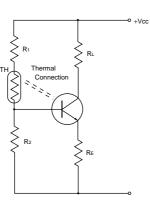
Operating Temperature Range: -40°C to +150°C

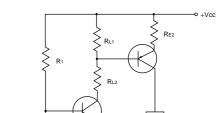

Chip Tight Tolerance Type 0603 (1608) Size

Part Number	Sensing Temperature (at 4.7k ohm) (°C)	Sensing Temperature (at 47k ohm) (°C)	Maximum Voltage (V)	Resistance (at 25°C) (ohm)
PRF18BB471RS5RB	115 ±3°C	130 ±7°C	32	470 ±50%
PRF18BC471RS5RB	105 ±3°C	120 ±7°C	32	470 ±50%
PRF18BD471RS5RB	95 ±3°C	110 ±7°C	32	470 ±50%
PRF18BE471RS5RB	85 ±3°C	100 ±7°C	32	470 ±50%
PRF18BF471RS5RB	75 ±3°C	90 ±7°C	32	470 ±50%
PRF18BG471RS5RB	65 ±3°C	80 ±7°C	32	470 ±50%


This product is applied to flow/reflow soldering.

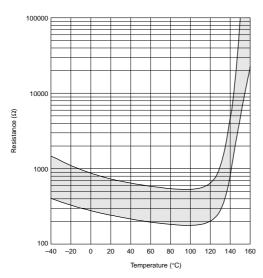
Operating Temperature Range: -40°C to +150°C





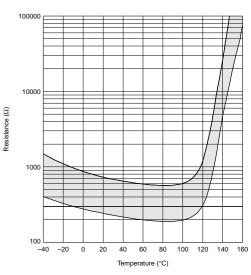
					(in mm)	
Part Number	Soldering	Dimensions (mm)				
Part Number	Methods	Chip (L×W)	а	b	С	
PRF18	Flow Soldering	1.6X0.8	0.6-1.0	0.8-0.9	0.6-0.8	
	Reflow Soldering	1.0×0.0	0.6-0.8	0.6-0.7	0.6-0.8	

Overheat Protection Circuit

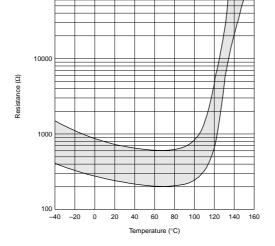

Re1

Overheat Sensing Circuit

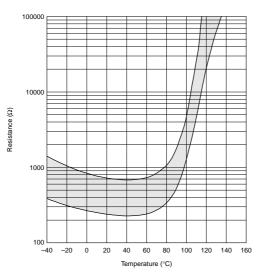
 \leq


PT

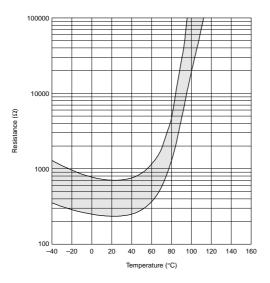
■ Resistance - Temperature Characteristics Range (Ref. Only) PRF18AS471QS5RB

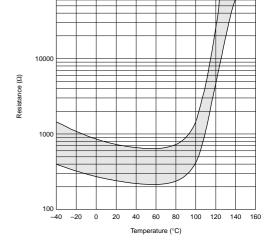

PRF18AR471QS5RB

Load

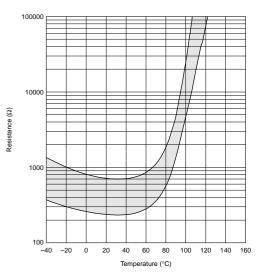


Continued on the following p

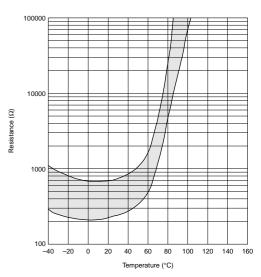

muRata

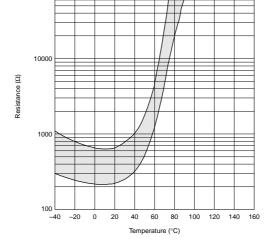


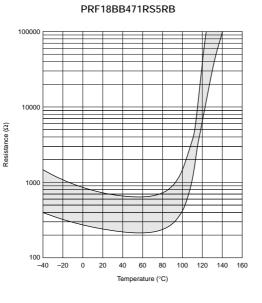
PRF18BC471QS5RB

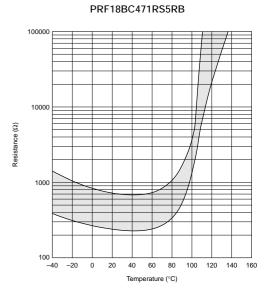


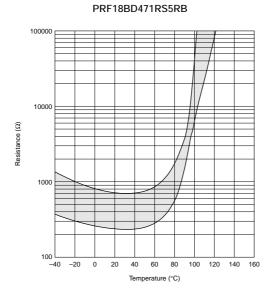
PRF18BE471QS5RB

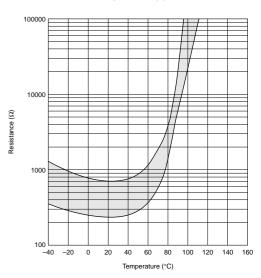



PRF18BD471QS5RB

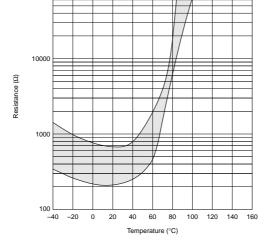

PRF18BF471QS5RB

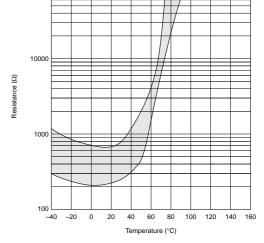



Continued on the following p


■ Resistance - Temperature Characteristics Range (Ref. Only) Tight Tolerance Type

PRF18BE471RS5RB




Continued on the following p

36

5

Downloaded from Arrow.com.

			-	
	1	Resistance Value (at 25°C)	The resistance value should be within the specified tolerance.	After applying maximum operating voltage for 3 minutes a leaving for 2 hours at 25°C, measure by applying voltage less than 1.5VDC (by a direct current of less than 10mA).
_	2	Adhesive Strength	There is no sign of electrode detachment.	EIAJ ET-7403 term 9 Prepare soldered PTC to PCB *1 and add the force of 5.0 the direction shown below. (PTC=POSISTOR®) PTC F Glass Epoxy PCB
	3	Vibration Resistance	There is no abnormal appearance after the test. Resistance change is less than $\pm 20\%$. *2	Solder PTC to PCB *1 Vibration: 10-2000-10Hz (20 minutes) Max. Amplitude: 3.0mm Vibrate for 4 hours in each of 3 mutually perpendicular pla for a total of 12 hours. This test condition is according to " STD-202G Method 204D."
	4	Resistance to Bending of Substance	There is no abnormal appearance after the test. Resistance change is less than ±20%. *2	Solder PTC on Test Board *1, and apply force on back sid Test Board shown below: Bending Speed: 1.0mm/s Bending Strength: 2.0mm Hold Time: 5±1 seconds Board Dimension: 100x40x1.6t mm Board Material: Glass Epoxy
	5	Solderability	Min. 95% electrode is covered with new solder. Resistance change is less than $\pm 20\%$. *2	 Solder Temp.: 230±5°C Solder: Sn63%/Pb37% (or 60%/40%) Soaking Time: 3±0.3 secs. Soaking Position: Until a whole electrode is soaked. This test condition is according to "IEC 60068-2-58 (2004
	6	Soldering Heat Resistance	There is no abnormal appearance after the test. Resistance change is less than ±20%. *2	 Solder Temp.: 260±5°C Solder: Sn63%/Pb37% (or 60%/40%) Flux: Containing less than 0.2wt% of chlorine. Soaking Time: 10±1 secs. Soaking Position: Until a whole electrode is soaked. Preheating: 150±5°C 3 mins This test condition is according to "IEC 60068-2-58 (2004
	*1 Above-mentioned soldering is done under the following conditions at our site			

*1 Above-mentioned soldering is done under the following conditions at our site.

Glass-epoxy PC board

Standard land dimension

Standard solder paste

Standard solder profile

Above conditions are defined in Notice.

*2 Measure resistance after the test by applying voltage of less than 1.5VDC by a direct current of less than 10mA after product is left at 25±2°C for 2 l

Continued on the following p

38

5

7	Dry Heat Resistance	- - -	Solder PTC to PCB *1 +150±3°C leave for 1000±12 hours		
8	Cold Resistance		Solder PTC to PCB -40±3°C leave for 1000±12 hours		
9	Damp Heat Resistance		Solder PTC to PCB *1 +85±3°C 80-85%RH leave for 1000±12 hours		
10	Thermal Shock 1 *3	There is no abnormal appearance after the test. Resistance change is less than ±20%. *2	Solder PTC to PCB *1 Test Cycle: 300 cycles Step Temp. (°C) Time (minute) 1 -55+0, -3 30 2 +150+3, -0 30		
11	Thermal Shock 2 *3	Sensing temp. change is less than ±1°C.	Solder PTC to PCB *1 Test Cycle: 1000 cycles Step Temp. (°C) Time (minute) 1 -55+0, -3 30 2 +125+3, -0 30		
12	High Temperature Humidity Load		Solder PTC to PCB *1 85±3°C, 80-85%RH (in air), load max. operating voltage f 1000±12 hours		
13	High Temperature Load		Solder PTC to PCB *1 85±3°C (in air), load max. operating voltage for 1000±12		

*1 Above-mentioned soldering is done under the following conditions at our site.

• Glass-epoxy PC board

Standard land dimension

Standard solder paste

Standard solder profile

Above conditions are defined in Notice.

*2 Measure resistance after the test by applying voltage of less than 1.5VDC by a direct current of less than 10mA after product is left at 25±2°C for 2 l *3 We cannot guarantee the resistance change in Thermal Shock (No.10, 11) in a case of defective mounting.

Overcurrent Protection device with resettable function suitable for current limiting resistor. This product is a chip type PTC thermistor for overcurrent protection that is suitable for the following.

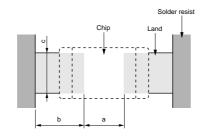
•Countermeasure for short circuit testing •Current limiting resistor

Features

1. Rapid operation to protect the circuit in an overcurrent condition abnormality such as a short circuit.

By removing the overcurrent condition, these products automatically return to the initial condition and can be used repeatedly.

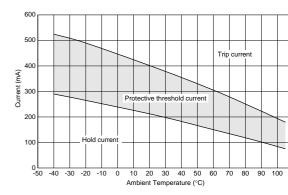
- 2. Suitable for countermeasure to short circuit test in safety standard.
- 3. Stable resistance after operation due to ceramic PTC.
- 4. Similar size (0603 size) is possible due to the large capacity for electric power.
- 5. Possible to use these products as current limiting resistors with overcurrent protection functions
- 6. The SMD type's small size and light weight are helpful in miniaturizing the circuit.


	-	9	+ - +		
					⊢
-		L	-	- W	

Part Number	Dimensions (mm)				
Part Number	L	W	Т	е	
PRG21_RA					
PRG21_RK	2.0±0.2	1.25±0.2	1.25±0.2	0.2 min	

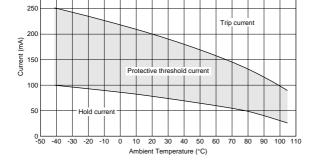
Part Number	Max. Voltage (V)	Hold Current (at +105°C) (mA)	Hold Current (at +85°C) (mA)	Hold Current (at +25°C) (mA)	Trip Current (at +25°C) (mA)	Trip Current (at -40°C) (mA)	Max. Current (mA)	Resist (at +2 (oh
PRG21AR4R7MS2RA	16	75	110	205	390	525	4260	4.7 ±
PRG21AR220MS1RK	16	25	45	75	195	250	900	22 ±2
PRG21AR420MS1RA	20	15	25	54	102	130	590	42 ±2

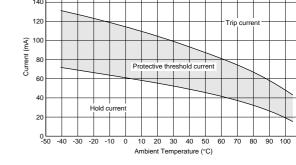
Maximum Current shows typical capacities at which the transformer can be used. Operating Temperature Range: -40°C to +105°C


Standard Land Pattern Dimensions

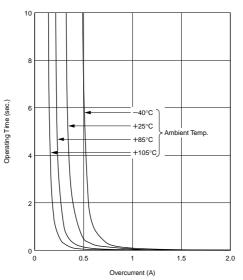
Part Number	Soldering	Dim	ensions	(mm)	
Part Number	Methods	Chip (L×W)	а	b	С
PRG21	Reflow Soldering	2.0×1.25	1.0-1.2	0.5-0.7	1.0-1.2

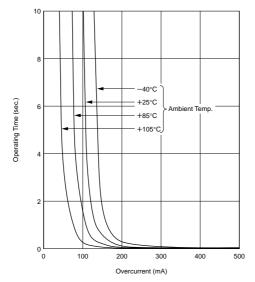
Protective Threshold Current Range


PRG21AR4R7MS2RA



Continued on the following p


(in mm)



■ Operating Time (Typical Curve)

10 8 -40°C Operating Time (sec.) = +25°C 6 Ambient Temp. +85°C - +105°C 4 2 0 L 0 100 200 300 400 500 600 Overcurrent (mA)

PRG21AR220MS1RK

No.	Item	Rating Value	Menthon of Examination		
1	Operating Temp. Range	-40 to +105°C	Temperature range that permit to apply max. voltage to t Posistor $^{\textcircled{B}}$.		
2	Storage Temp. Range	-40 to +125°C	Temperature range that permit to leaving without applyin power to the Posistor [®] .		
3	Resistance Value at 25°C	Within the specified range. It is measured by below flow. Within the specified range. 1) Applied max. voltage for 3min. 2) Storage 2hrs in room temperature 3) Measured by four-terminal method with less than 10mA (DC 0.1V)			
4	Shear Test		Reference standard: IEC 60068-2-21 (1999) • Solder PTC to PCB *2 • Test board: Grass-Epoxy test board (FR-4) with our sta land size • Pushing force: 10N • Keep time: 10±1 sec.		
5	Vibration		Reference standard: IEC 60068-2-6 (1995) • Solder PTC to PCB *2 • Frequency range: 10 to 55Hz • Amplitude: 1.5mm • Sweep rate: 1 octave/min. • Direction: X-Y-Z (3 direction) • 24 cycles in each axis		
6	Bending Test	 Resistance (R25) change: Less than ±20% *1 Appearance: No defects or abnormalities 	Reference standard: IEC 60068-2-21 (1999) • Solder PTC to PCB *2 Board dimension: 100×40×1.6tmm (Grass epoxy board • Bending speed: 1.0mm/s • Bending depth: 1.5mm • Keep time: 5±1 sec.		
7	Solderability	Wetting of soldering area: ≧75% s measured by 4-terminal method with less than 10rr	Reference standard: IEC 60068-2-58 (2004) •Solder: Sn-3.0Ag-0.5Cu •Solder temp.: 245±5°C •Immersion time: 3±0.3s		

6

1: The resistance value after the test is measured by 4-terminal method with less than 10mA (DC0.1V), after storage in 25±2°C for 2hrs.

*2: Above-mentioned soldering is done following condition at our side. • Glass-epoxy PC board

Standard land dimension

Standard solder paste

Standard solder profile

Above conditions are defined in Notice.

Continued on the following p

8	Resistance to Soldering Heat	[• • • •	Reference standard: IEC 60068-2-58 (2004) [Reflow Method] • Solder: Sn-3.0Ag-0.5Cu • Preheat: +150 to +180°C, 120±5s • Peak temp.: 260±5°C • Soldering time: >220°C, 60 to 90s • Reflow cycle: 2 times • Test board: Grass-Epoxy test board (FR-4) with our star land size	
9	High Temperature Storage		Reference standard: IEC 60068-2-2 (2007) • Solder PTC to PCB *2 • +125±2°C • 1000+48/-0 hrs.	
10	Low Temperature Storage	• Resistance (R25) change: Less than ±20% *1 • Appearance: No defects or abnormalities	Reference standard: IEC 60068-2-1 (2007) • Solder PTC to PCB *2 • -40±3°C • 1000+48/-0 hrs.	
11	Damp Heat, Steady State		Reference standard: IEC 60068-2-67 (1995) • Solder PTC to PCB *2 • +85±2°C, 85±5%RH • 1000+48/-0 hrs.	
12	Thermal Shock *3		Reference standard: IEC 60068-2-14 (2009) [Test Na] • Solder PTC to PCB *2 • Transport time: <10 sec.	
13	High Temperature Load		Reference standard: IEC 60068-2-2 (2007) • Solder PTC to PCB *2 • +105±2°C • Applied max. voltage • 1000+48/-0 hrs.	
14	Damp Heat Load		Reference standard: IEC 60068-2-67 (1995) • Solder PTC to PCB *2 • +85±2°C, 85±5%RH • Applied max. voltage • 1000+48/-0 hrs.	

*1: The resistance value after the test is measured by 4-terminal method with less than 10mA (DC0.1V), after storage in 25±2°C for 2hrs.

*2: Above-mentioned soldering is done following condition at our side.

Glass-epoxy PC board

Standard land dimension

Standard solder paste

Standard solder profile

Above conditions are defined in Notice.

*3: We cannot guarantee the resistance change in Thermal Shock in a case of defective mounting.

No.	Item	Rating Value	Menthon of Examination		
1	Operating Temp. Range	-40 to +105°C	Temperature range that permit to apply max. voltage to t Posistor $^{\textcircled{B}}$.		
2	Storage Temp. Range	-40 to +125°C	Temperature range that permit to leaving without applyin power to the Posistor [®] .		
3	Resistance Value at 25°C	Within the specified range.	It is measured by below flow. 1) Applied max. voltage for 3min. 2) Storage 2hrs in room temperature 3) Measured by four-terminal method with less than 10mA (DC 1.5V)		
4	Shear Test		Reference standard: IEC 60068-2-21 (1999) • Solder PTC to PCB *2 • Test board: Grass-Epoxy test board (FR-4) with our sta land size • Pushing force: 5N • Keep time: 10+/-1 sec.		
5	Vibration		Reference standard: MIL-STD-202G Method 204D (2002 • Solder PTC to PCB *2 • Frequency range: 10 to 2kHz • Amplitude: 3.0mm • Sweep rate: 1 octave/min. • Direction: X-Y-Z (3 direction) • 10 cycles in each axis		
6	Bending Test	 Resistance (R25) change: Less than ±20% *1 Appearance: No defects or abnormalities 			
7	Solderability	Wetting of soldering area: ≧75% s measured by 4-terminal method with less than 10m	Reference standard: IEC 60068-2-58 (2004) • Solder: Sn-3.0Ag-0.5Cu • Solder temp.: 245±5°C • Immersion time: 3±0.3s		

6

*2: Above-mentioned soldering is done following condition at our side. • Glass-epoxy PC board

Standard land dimension

Standard solder paste

Standard solder profile

Above conditions are defined in Notice.

Continued on the following p

8	Resistance to Soldering Heat] • • •	Reference standard: IEC 60068-2-58 (2004) [Reflow Method] • Solder: Sn-3.0Ag-0.5Cu • Preheat: +150 to +180°C, 120±5s • Peak temp.: 260±5°C • Soldering time: >220°C, 60 to 90s • Reflow cycle: 2 times • Test board: Grass-Epoxy test board (FR-4) with our standing size		
9	High Temperature Storage		Reference standard: IEC 60068-2-2 (2007) • Solder PTC to PCB *2 • +125±2°C • 1000+48/-0 hrs.		
10	Low Temperature Storage	• Resistance (R25) change: Less than ±20% *1 • Appearance: No defects or abnormalities	Reference standard: IEC 60068-2-1 (2007) • Solder PTC to PCB *2 • -40±3°C • 1000+48/-0 hrs.		
11	Damp Heat, Steady State		Reference standard: IEC 60068-2-67 (1995) • Solder PTC to PCB *2 • +85±2°C, 85±5%RH • 1000+48/-0 hrs.		
12	Thermal Shock *3		Reference standard: IEC 60068-2-14 (2009) [Test Na] • Solder PTC to PCB *2 • Transport time: <10 sec.		
13	High Temperature Load		Reference standard: IEC 60068-2-2 (2007) • Solder PTC to PCB *2 • +105+/-2°C • Applied max. voltage • 1000+48/-0 hrs.		
14	Damp Heat Load		Reference standard: IEC 60068-2-67 (1995) • Solder PTC to PCB *2 • +85±2°C, 85±5%RH • Applied max. voltage • 1000+48/-0 hrs.		

*1: The resistance value after the test is measured by 4-terminal method with less than 10mA (DC0.1V), after storage in 25±2°C for 2hrs.

*2: Above-mentioned soldering is done following condition at our side.

Glass-epoxy PC board

Standard land dimension

Standard solder paste

Standard solder profile

Above conditions are defined in Notice.

*3: We cannot guarantee the resistance change in Thermal Shock in a case of defective mounting.

This product is designed for application in an ordinary environment (normal room temperature, humidity and atmospheric pressure). Do not use under the following conditions because all of these factors can deteriorate the characteristics or cause product failure and burn-out.

 Corrosive gas or deoxidizing gas (Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)

Be sure to provide an appropriate fail-safe function on your product to prevent secondary damage that may be caused by the abnormal function or the failure of our product.

Notice (Storage and Operating Conditions)

To keep solderability of product from declining, the following storage conditions are recommended. 1. Storage condition:

Temperature -10 to +40°C

Humidity less than 75%RH (not dewing condition) 2. Storage term:

Use this product within 6 months after delivery by first-in and first-out stocking system.

- 2. Volatile or flammable gas
- 3. Dusty conditions
- 4. Under vacuum, or under high or low pressure
- 5. Wet or humid conditions
- 6. Places with salt water, oils, chemical liquids or organic solvents
- 7. Strong vibrations
- 8. Other places where similar hazardous conditions exist

3. Handling after unpacking:

After unpacking, promptly reseal this product or store it in a sealed container with a drying agent.

4. Storage place:

Do not store this product in corrosive gas (Sulfuric acid, Chlorine, etc.) or in direct sunlight.

1. Solder and Flux

- (1) Solder Paste
 - (a) Flow Soldering: Use Sn:Pb=60:40wt%, Sn:Pb=63:37wt%, Sn:Ag:Cu=96.5:3.0:0.5wt% or equivalent type of solder.
 - (b) Reflow Soldering: Use Sn:Pb=60:40wt%, Sn:Pb=63:37wt%, Sn:Ag:Cu=96.5:3.0:0.5wt% or equivalent type of solder paste.
 For your reference, we are using "63Sn/37Pb RMA9086 90-3-M18," manufactured by Alpha Metals Japan Ltd., "96.5Sn/3.0Ag/0.5Cu M705-GRN360-K2-V," manufactured by Senju Metal Industry Co., Ltd.

for any internal tests of this product.

2. Cleaning Conditions and Drying

To remove the flux after soldering, observe the following points in order to avoid deterioration of the characteristics or any change to the external electrodes' quality.

(1) Cleaning Conditions

()		
Solvent	Dipping Cleaning	Ultrasonic Cleaning
2-propanol	Less than 5 minutes at room temp. or Less than 2 minutes at 40°C max.	Less than 1 minute 20W/L Frequency of several 10kHz to 100kHz.

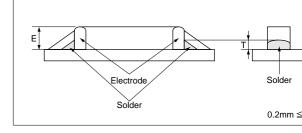
A sufficient cleaning should be applied to remove flux completely.

(2) Drying

After cleaning, promptly dry this product.

3. Soldering Conditions

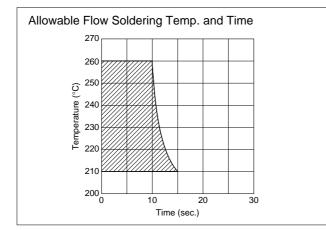
In your mounting process, observe the following points in order to avoid deterioration of the characteristics or destruction of this product. The mounting quality of this product may also be affected by the mounting conditions, shown in the points below.


- (1) Printing Conditions of Solder Paste
 - (a) Recommended thickness of solder paste printing should be from 0.15 to 0.20mm.
 - (b) After soldering, the solder fillet should be a height from 0.2 mm to the thickness of this product (see the figure at right).
 - (c) Too much solder result in excessive mechanical stress on this product. Such stress may cause cracking or other mechanical damage. Also, it can destroy the electrical performance of this product.

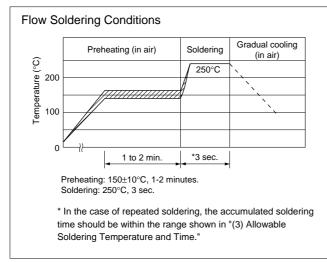
(2) Flux

Use rosin type flux in the soldering process. If the flux below is used, some problems might be caused in the product characteristics and reliabilit

- Please do not use these types of flux.
- Strong acidic flux (with halide content exceeding 0.2wt%).
- Water-soluble flux

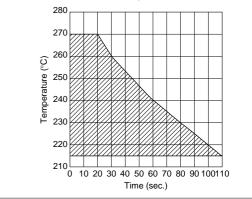

(*Water-soluble flux can be defined as non-rosin flux including wash-type flux and non-wash-type

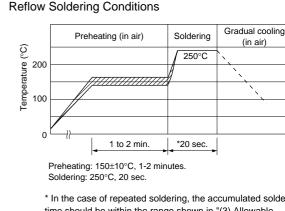
Continued on the following p



- (a) If insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, this product may have a loose contact with the land, during flow soldering.
- (b) Too low viscosity of adhesive causes this product to slip on the board, after mounting.

- (4) Recommendable Temperature Profile for Soldering


 (a) Insufficient preheating may cause a crack on the ceramic body. The difference between preheating temperature and maximum temperature in the profile should be 100°C.
 - (b) Rapid cooling by dipping in solvent or by other means is not recommended.



(5) There may be a risk of unexpected failures (tombstone, insufficient solder-wetting, etc.) in the mounting process caused by mounting conditions. Please make sure that this product is correctly mounted under the specified mounting conditions.

- (a) Solder within the temperature and time combinations, indicated by the slanted lines in t following graphs.
- (b) Excessive soldering conditions may cause dissolution of metallization or deterioration of so wetting on the external electrode.
- (c) In the case of repeated soldering, the accumul soldering time should be within the range show the figures below. (For example, Reflow peak temperature: 260°C, twice → The accumulated soldering time at 260°C is within 30sec.)

Allowable Reflow Soldering Temp. and Time

* In the case of repeated soldering, the accumulated solder time should be within the range shown in "(3) Allowable Soldering Temperature and Time."

1. Solder and Flux

- (1) Solder Paste
- Use solder paste Sn:Pb=63:37wt%.
- For your reference, we are using
 - 63Sn/37Pb RMA9086 90-3-M18,
- manufactured by Alpha Metals Japan Ltd.

96.5Sn/3.0Ag/0.5Cu M705-GRN360-K2-V,

manufactured by Senju Metal Industry Co., LTD for any internal tests of this product.

2. Cleaning Conditions

To remove the flux after soldering, observe the following points in order to avoid deterioration of the characteristics or any change to the external electrodes' quality.

<u></u>						
Solvent	Dipping Cleaning	Ultrasonic Cleaning	Drying			
2-propanol	Less than 5 minutes at room temp. or Less than 2 minutes at 40°C max.	Less than 1 minute 20W/L Frequency of several 10kHz to 100kHz.	After cleaning, promptly dry this product.			

A sufficient cleaning should be applied to remove flux completely.

3. Soldering Conditions

In your mounting process, observe the following points in order to avoid deterioration of the characteristics or destruction of this product. The mounting quality of this product may also be affected by the mounting conditions, shown in the points below.

This product is for reflow soldering only. Flow soldering should not be allowed.

(1) Printing Conditions of Solder Paste

- (a) Standard thickness of solder paste printing should be from 0.15 to 0.20 mm.
- (b) After soldering, the solder fillet should be a height from 0.20 mm to the thickness of this product (see the figure at right).
- (c) Too much solder result in excessive mechanical stress on this product. Such stress may cause cracking or other mechanical damage. Also, it can destroy the electrical performance of this product.

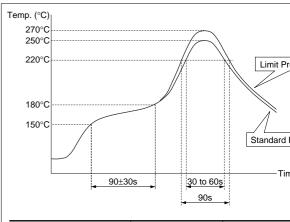
Electrode Solder 0.20mm ≤

Continued on the following p

(2) Flux

Use rosin type flux in the soldering process.

If the flux below is used, some problems might be caused in the product characteristics and reliabilit Please do not use these types of flux.


- Strong acidic flux (with halide content exceeding 0.2wt%).
- Water-soluble flux

(*Water-soluble flux can be defined as non-rosin flux including wash-type flux and non-wash-type

The following figure and table show our recommended reflow profile.

- (a) Insufficient preheating may cause a crack on ceramic body. The temperature difference between preheat and peak should be control within 100°C to prevent this.
- (b) Excessive soldering conditions may cause dissolution of metallization or deterioration of solderwetting on the external electrode.
- (c) Rapid cooling by dipping in solvent or by other means is not recommended.
- (d) Please evaluate it on your condition if you will do mounting using not applying condition to the abovementioned.

	Standard Profile	Limit Profi
Preheat	150 to 180	°C, 90±30s
Soldering Time (≧220°C)	30 to 60s	90s
Peak Temp.	250°C	270°C
Reflow Cycle	Max. 2 times	Max. 2 time

(3) There may be a risk of unexpected failures (tombstone, insufficient solder-wetting, etc.) in the mounting process, caused by the mounting conditions. Please make sure that this product is correctly mounted under specified mounting conditions.

1. Solder and Flux

(1) Solder Paste

Use solder paste Sn:Pb=63:37wt%.

For your reference, we are using

63Sn/37Pb RMA9086 90-3-M18,

manufactured by Alpha Metals Japan Ltd.

96.5Sn/3.0Ag/0.5Cu M705-GRN360-K2-V,

manufactured by Senju Metal Industry Co., LTD for any internal tests of this product.

2. Cleaning Conditions

To remove the flux after soldering, observe the following points in order to avoid deterioration of the characteristics or any change to the external electrodes' quality.

Solvent	Dipping Cleaning	Ultrasonic Cleaning	Drying
2-propanol	Less than 5 minutes at room temp. or Less than 2 minutes at 40°C max.	Less than 1 minute 20W/L Frequency of several 10kHz to 100kHz.	After cleaning, promptly dry this product.

A sufficient cleaning should be applied to remove flux completely.

3. Soldering Conditions

In your mounting process, observe the following points in order to avoid deterioration of the characteristics or destruction of this product. The mounting quality of this product may also be affected by the mounting conditions, shown in the points below.

This product is for reflow soldering only. Flow soldering should not be allowed.

(1) Printing Conditions of Solder Paste

- (a) Standard thickness of solder paste printing should be from 0.15 to 0.20 mm.
- (b) After soldering, the solder fillet should be a height from 0.2 mm to the thickness of this product (see the figure at right).
- (c) Too much solder result in excessive mechanical stress to this product. Such stress may cause cracking or other mechanical damage. Also, it can destroy the electrical performance of this product.

Electrode Solder 0.2mm ≤

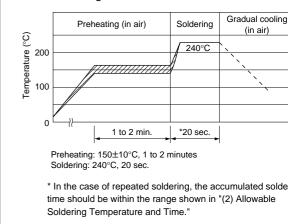
Continued on the following p

(2) Flux

Use rosin type flux in the soldering process.

If the flux below is used, some problems might be caused in the product characteristics and reliabilit Please do not use these types of flux.

- Strong acidic flux (with halide content exceeding 0.2wt%).
- Water-soluble flux


(*Water-soluble flux can be defined as non-rosin flux including wash-type flux and non-wash-type

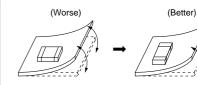
- (a) Solder within the temperature and time combinations, indicated by the slanted lines in the graphs at right.
- (b) Excessive soldering conditions may cause dissolution of metallization or deterioration of solderwetting on the external electrode.
- (c) In the case of repeated soldering, the accumulated soldering time should be within the range shown at right. (For example, Reflow peak temperature: 260°C, twice → The accumulated soldering time at 260°C is within 15sec.)
- (3) Standard Temperature Profile for Soldering
 - (a) Insufficient preheating may cause a crack on the ceramic body. The difference between preheating temperature and maximum temperature in the profile should be 100℃.
- (b) Rapid cooling by dipping in solvent or by other means is not recommended.

Allowable Reflow Soldering Temp. and Time 270 260 250 Temperature (°C) 240 230 220 210 200 60 Ó0 10 20 30 40 50 Time (second)

Reflow Soldering Conditions

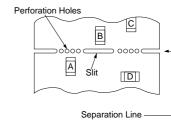
(4) There may be a risk of unexpected failures

 (tombstone, insufficient solder-wetting, etc.) in the
 mounting process, caused by the mounting conditions.
 Please make sure that this product is correctly
 mounted under the specified mounting conditions.



- Do not give this product a strong press-force or a mechanical shock, because such mechanical forces may cause cracking or chipping of this ceramic product.
- 2. Rapid cooling or heating during soldering is not recommended such treatment may destroy the element.
- 3. Resin coating

Please select a resin material with minimum hardness. The shrinkage of the resin at heat treatment should be much less in order not to apply much stress to the product.


 Location on Printed Circuit Board (PC Board) Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

Component Direction

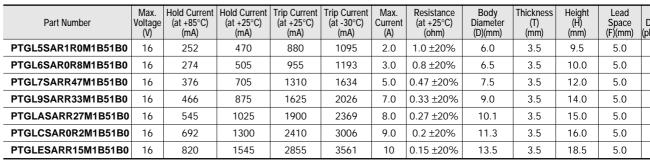
Locate chip horizontal to direction in which stress acts

Chip Mounting Close to Board Separation Point

Put this product of PC Board near the not near the Perforation Holess Keep this product the PC Board aw. from the Separati Line.

Worst A-C-B-D B

D max.

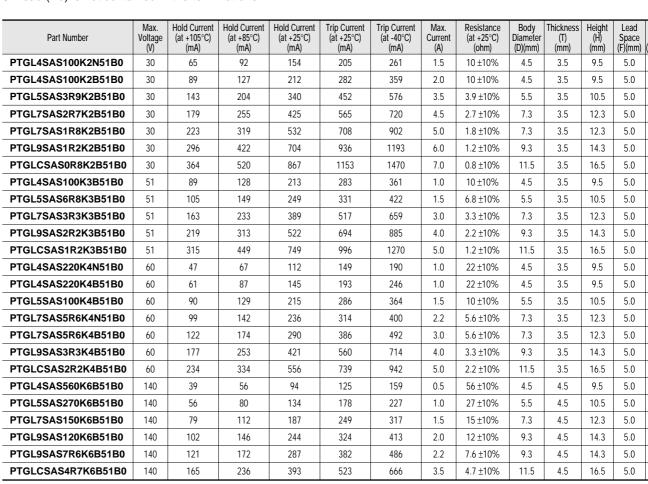

- au

16V Series

This low-voltage, low-resistance type "POSISTOR" is a circuit protector whose resistance value in normal operation is very low and in abnormal situations such as motor lock or short circuit, will be increased to restrain over current. This "POSISTOR" is most suitable for low-voltage circuits and motor protection for automotive grade applications.

Features

- 1. Best suited to meet the requirements for power supply and motor protection. Error-free operation is assured by rush current.
- 2. Circuit is protected until current is turned off.
- 3. Restores the original low resistance value automatically once the overload is removed.
- 4. Non-contact design leads to long life and no noise. Durable and strong against mechanical vibration and shock because it is a solid element.
- 5. Lead (Pb) is not contained in the terminations.

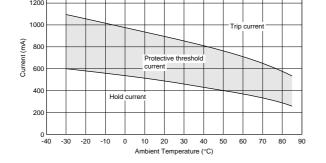

Maximum Current shows typical capacities at which the transformer can be used.

Operating Temperature Range: -30°C to +85°C

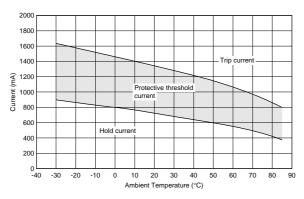
Taping type of part numbers with "A0" is available (except PTGLESARR15M1B51B0).

as automotive grade can be used with a wide temperature range. This product is suitable for short-protection and current limiting resistance on power supply equipment.

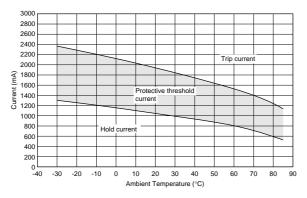
- Features
- 1. Useful protective threshold current range with a wide temperature range.
- Small fluctuation in the circuit due to resistance tolerance +/-10%.
- 3. Quick operating time due to small size compared with conventional products.
- Best suited to meet the requirements of power supply and motor protector. Error-free operation is assured by rush current.
- 5. Circuit is protected until current is turned off.
- Restores the original low resistance value automatically once the overload is removed.
- Non-contact design leads to long life and no noise. Durable and strong against mechanical vibration and shock because it is a solid element.
- 8. Lead (Pb) is not contained in the terminations.

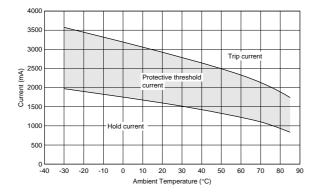

H max

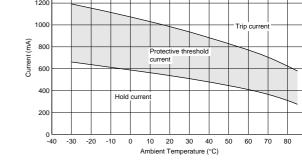
Maximum Current shows typical capacities at which the transformer can be used.


Operating Temperature Range: -40°C to +125°C

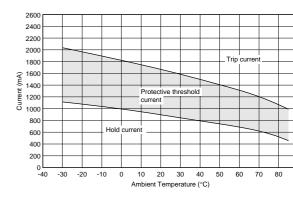
Taping type of part numbers with "A0" is available.



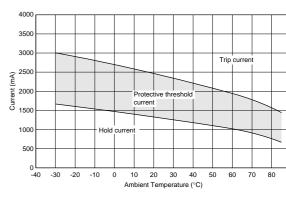

PTGL7SARR47M1B51B0

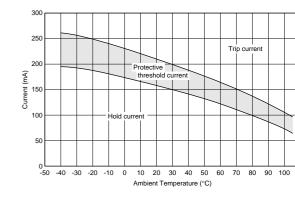


PTGLASARR27M1B51B0



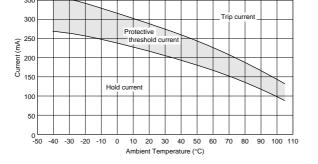
PTGLESARR15M1B51B0

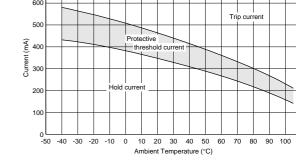



PTGL9SARR33M1B51B0

PTGLCSAR0R2M1B51B0

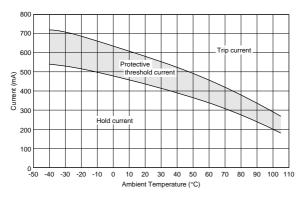
Protective Threshold Current Range (30V Ser PTGL4SAS100K2N51B0


muRata

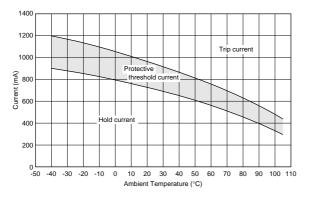

Continued on the following p

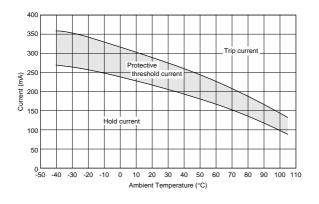
56

7

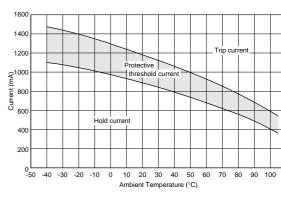

Downloaded from Arrow.com.

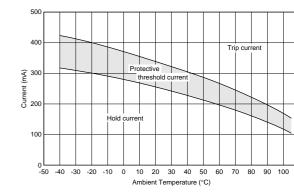
PTGL7SAS1R8K2B51B0


PTGL7SAS2R7K2B51B0

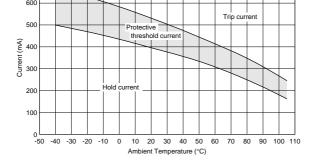

900 800 Trip current T 700 Protective threshold cu 000 Current (mA) 500 400 _ 300 Hold curren 200 100 0 -50 10 20 30 40 50 60 70 80 90 100 Ambient Temperature (°C) -40 -30 -20 -10 0

1000

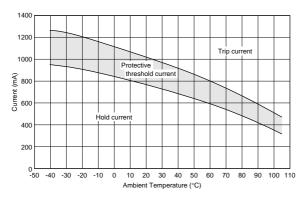

PTGL9SAS1R2K2B51B0



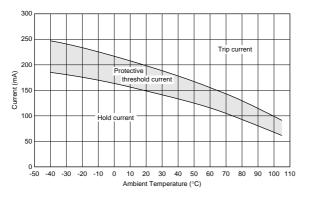
PTGLCSAS0R8K2B51B0

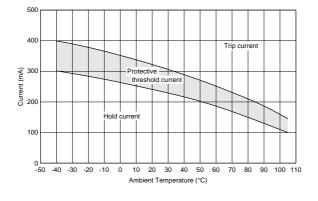


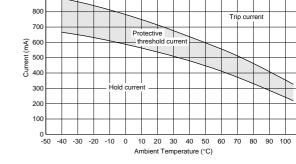
PTGL5SAS6R8K3B51B0



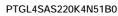
Continued on the following p

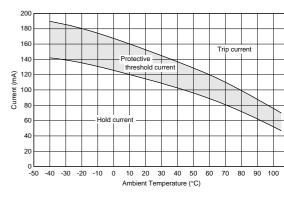


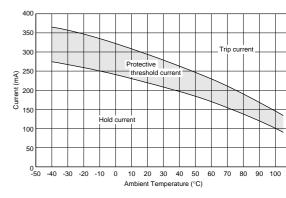

PTGLCSAS1R2K3B51B0



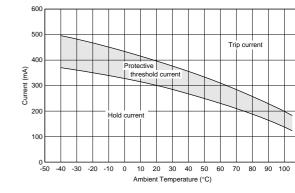
PTGL4SAS220K4B51B0




PTGL7SAS5R6K4N51B0

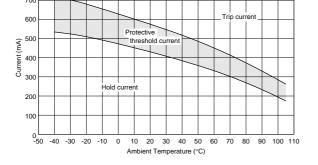


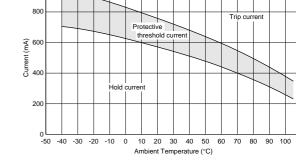
Protective Threshold Current Range (60V Service)



PTGL5SAS100K4B51B0

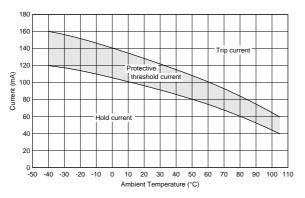
PTGL7SAS5R6K4B51B0



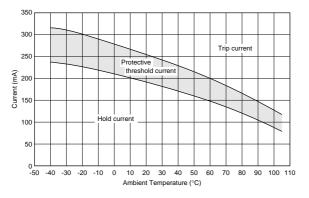

muRata

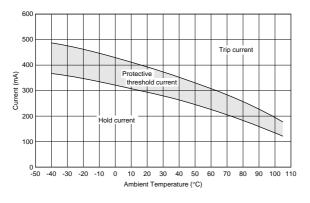
Continued on the following p

58

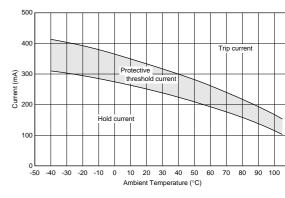

7

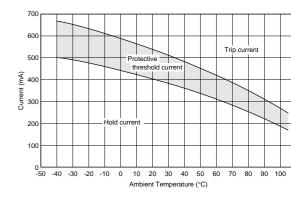
■ Protective Threshold Current Range (140V Series)


PTGL4SAS560K6B51B0

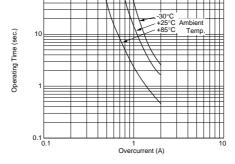

250 200 150 150 100 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Ambient Temperature (°C)

PTGL5SAS270K6B51B0

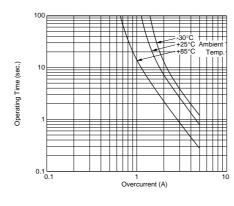

PTGL7SAS150K6B51B0


PTGL9SAS7R6K6B51B0

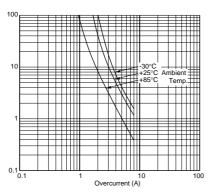
PTGL9SAS120K6B51B0

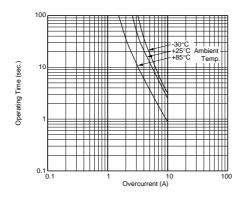


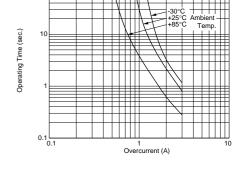
PTGLCSAS4R7K6B51B0



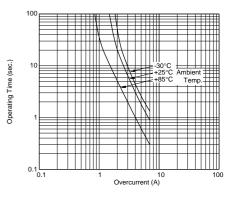
Continued on the following p



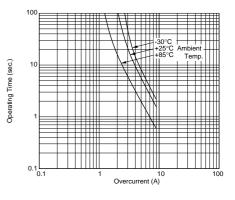

PTGL7SARR47M1B51B0

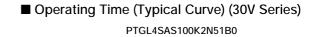


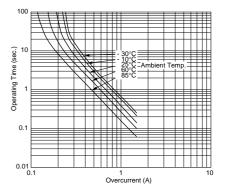
PTGLASARR27M1B51B0



PTGLESARR15M1B51B0

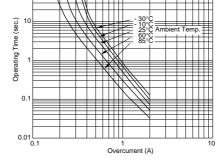




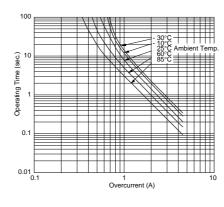

PTGL9SARR33M1B51B0

PTGLCSAR0R2M1B51B0

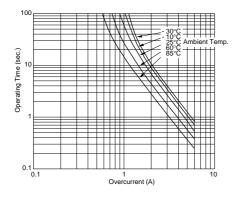
Continued on the following p


muRata

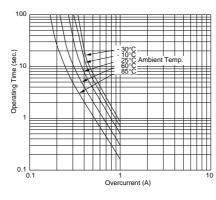
60

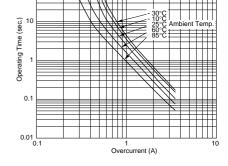

Operating Time (sec.)

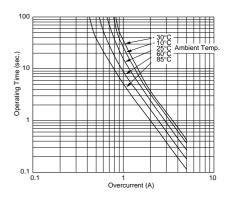
7


Downloaded from Arrow.com.

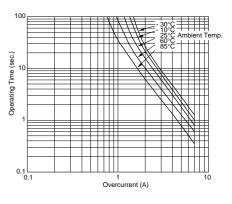
PTGL7SAS2R7K2B51B0

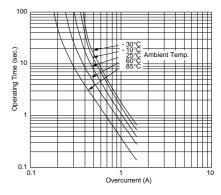



PTGL9SAS1R2K2B51B0

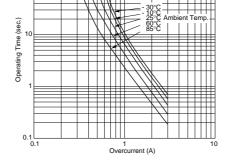

■ Operating Time (Typical Curve) (51V Series)

PTGL4SAS100K3B51B0

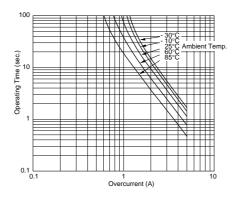



PTGL7SAS1R8K2B51B0

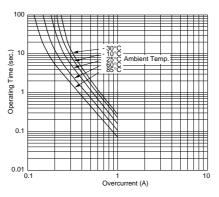
PTGLCSAS0R8K2B51B0

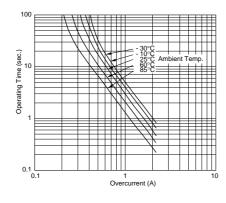


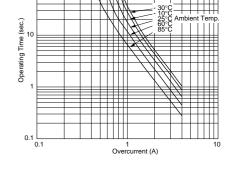
PTGL5SAS6R8K3B51B0



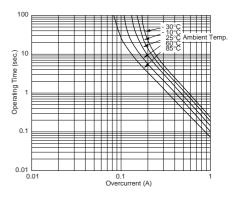
Continued on the following p



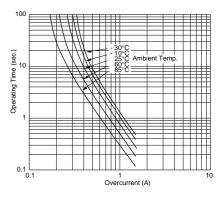

PTGLCSAS1R2K3B51B0

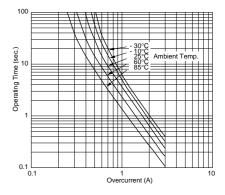


PTGL4SAS220K4B51B0



PTGL7SAS5R6K4N51B0

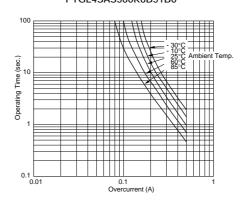



■ Operating Time (Typical Curve) (60V Series) PTGL4SAS220K4N51B0

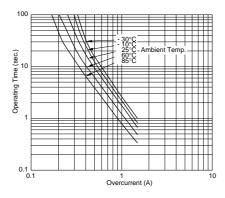
PTGL5SAS100K4B51B0

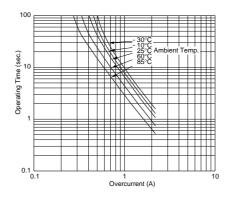
PTGL7SAS5R6K4B51B0

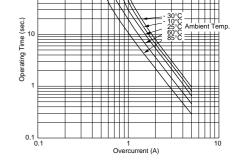
Continued on the following p



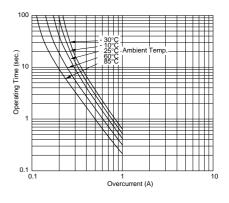
7


62

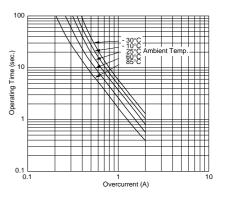

■ Operating Time (Typical Curve) (140V Series) PTGL4SAS560K6B51B0

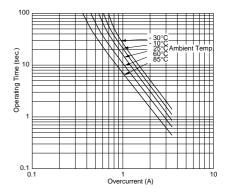


PTGL7SAS150K6B51B0



PTGL9SAS7R6K6B51B0



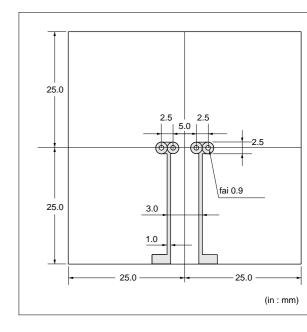

PTGL5SAS270K6B51B0

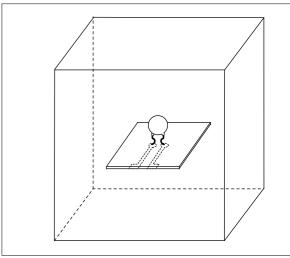
PTGL9SAS120K6B51B0

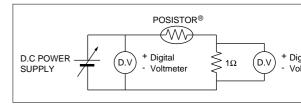
PTGLCSAS4R7K6B51B0

No.	Item	Rating Value	Method of Examination
1	Operating Temperature	-30 to +85°C	The temperature range with maximum voltage applied to $\ensuremath{POSISTOR}\xspace^{\ensuremath{\$}}.$
2	Resistance (R25)	Satisfies specification	Resistance value is measured by applying voltage under 1.5Vdc (by a direct current of less than 10mA) at 25°C. (E must be measured after maximum voltage is applied 180 seconds and then is left for 2 hours at 25°C.)
3	Withstanding Voltage	No damage	We apply AC voltage 110% that of the maximum voltage POSISTOR [®] by raising voltage gradually for 180±5 seco 25°C. (A protective resistor is to be connected in series, a the inrush current through POSISTOR [®] must be limited b maximum rated value.)
4	Protective Threshold Current	Satisfies ratings (Trip Current, Non-operating Current)	Maximum current is measured in this examination. Voltag applied to POSISTOR [®] in 3-minute steps still air. Stable current is measured at each step.
5	Tensile Strength of Lead Wire Terminal	No damage	The load is gradually applied to each terminal of POSISTO until the force of 4.9N in the axial direction with fixing POSISTOR [®] 's body itself by a jig and this load is being k 10 seconds.
6	Bending Strength of Lead Wire Terminal	Lead wire does not come off	POSISTOR [®] is held so that it is perpendicular to the lead with 2.45N in the axial direction of the lead wire. The lead is slowly bent to 90° and returned; then it is slowly bent in opposite direction and returned to original state.
7	Solderability	Solder is applied around the lead wire covering 3/4 or more of the circumference without a gap in the axial direction.	The lead wire of POSISTOR [®] is soaked in an Isopropyl A (JIS K 8839) solution (about 25wt%) of colophony (JIS K for 5-10 seconds. Then, each lead wire is soaked in molte solder (JIS Z 3282 H60A) at 235±5°C from the bottom to point of 2.0-2.5mm for 2±0.5 seconds.
8	Terminal Durability of Soldering	∆R/R25≦±15%	The lead wire of POSISTOR [®] is soaked in molten solder 3282 H60A) at $350\pm10^{\circ}$ C from the bottom to a point of 2.0 2.5mm for 3.5 ± 0.5 seconds. After the device is left at room temperature (25°C) for 24± hours, the resistance is measured.
9	Heat Resistant	∆R/R25≦±20% No damage about marking	In an 85±3°C chamber, POSISTOR [®] is applied max. volt for 1.5 hr on and 0.5 hr off. This cycle is repeated for 500 hours, and after the device is left at room temperature (25 for 1 hour, the resistance measurement is performed. (A protective resistance is to be connected in series and the inrush current through POSISTOR [®] must be limited below max. rated value.)
10	Resistance to Damp Heat	∆R/R25≦±20% No damage about marking	POSISTOR [®] is set in an environmental chamber at 40±2 and 90% to 95% humidity, for 500±4 hours. Then, after the device is left at room temperature (25°C) f 1 hour, the resistance measurement is performed.

7


No.	Item	Rating Value	Method of Examination
1	Operating Temperature 1	-30 to +125°C	The temperature range with maximum voltage applied to POSISTOR [®] .
2	Operating Temperature 2	-40 to +125°C	The temperature range with the following voltage applied the POSISTOR [®] . <applied voltage=""> 30V and 51V series: max. 16V, 60V series: max. 30V, 140 series: max. 140V</applied>
3	Resistance (R25)	Satisfies ratings	Resistance value is measured by applying voltage under 1.0Vdc (by a direct current of less than 10mA) at 25°C. (E must be measured after it is applied maximum voltage for seconds and then is left for 2 hours at 25°C.)
4	Withstanding Voltage	No damage	We apply AC voltage 120% that of the maximum voltage POSISTOR [®] by raising voltage gradually for 180±5 secon 25°C. (A protective resistor is to be connected in series, a the inrush current through POSISTOR [®] must be limited b max. rated value.)
5	Protective Threshold Current	Satisfies ratings (Trip Current, Non-operating Current)	Maximum current is measured in this examination. Voltag applied to POSISTOR [®] in 3-minute steps still air based o "Protective Threshold Current Test Conditions" shown in page. Stable current is measured at each step.
6	Tensile Strength of Lead Wire Terminal	No damage	The load is gradually applied to each terminal of POSIST until the force of 4.9N in the axial direction with fixing POSISTOR®'s body itself by a jig and this load is being ke 10 seconds.
7	Bending Strength of Lead Wire Terminal	Lead wire does not come off	POSISTOR [®] is held so that it is perpendicular to the lead with 2.45N in the axial direction of the lead wire. The lead is slowly bent to 90° and returned; then it is slowly bent in opposite direction and returned to original state.
8	Solderability	Solder is applied around the lead wire covering 3/4 or more of the circumference without a gap in the axial direction.	The lead wire of POSISTOR [®] is soaked in an Isopropyl A (JIS K 8839) solution (about 25wt%) of colophony (JIS K for 5-10 sec. Then, each lead wire is soaked in molten so (JIS Z 3282 H60A) at 235±5°C from the bottom to a point 2.0-2.5mm for 2±0.5 seconds.
9	Terminal Durability of Soldering	∆R/R25≦±15%	The lead wire of POSISTOR [®] is soaked in molten solder 3282 H60A) at 350±10°C from the bottom to a point of 2.0 2.5mm for 3.5±0.5 sec. After the device is left at room temperature (25°C) for 24± hours, the resistance is measured.
10	Vibration Resistant	ΔR/R25≦±20%	Acceleration: 98m/s ² (10G) Width: 1.5mm Vibration: 10-500-10Hz Vibrate for 11 minutes X 24 cycles in each of 3 mutually perpendicular planes for a total of 13.5 hours.
11	Heat Resistant	∆R/R25≦±20%	POSISTOR [®] is set in an environmental chamber at 125± for 1000±12 hours. After the device is left at room temper (25°C) for one hour, the resistance measurement is perfo
12	Cold Resistant	∆R/R25≦±20%	POSISTOR [®] is set in an environmental chamber at -40 ± 3 for 1000±12 hours. After the device is left at room temper (25°C) for one hour, the resistance measurement is performed.
13	Resistance to Damp Heat	ΔR/R25≦±20%	POSISTOR [®] is set in an environmental chamber at 85±3 and 80-85% humidity for 1000±12 hours. After the device at room temperature (25°C) for one hour, the resistance measurement is performed.


Continued on the following pa



(1) Substrate

Materials: Phenol Size: 50x50xt1.6mm Land Pattern: Cu land without through hole

(2) Measurement condition

Solder POSISTOR[®] on the substrate, then put a cover (150mm cubed) surround POSISTOR[®] to prevent flow of wind.

7

(3) Measurement circuit

This product is designed for application in an ordinary environment (normal room temperature, humidity and atmospheric pressure). Do not use under the following conditions because all of these factors can deteriorate the characteristics or cause product failure and burn-out.

 Corrosive gas or deoxidizing gas (Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)

Be sure to provide an appropriate fail-safe function on your product to prevent secondary damage that may be caused by the abnormal function or the failure of our product.

■ Notice (Storage and Operating Conditions)

To keep solderability of product from declining, the following storage conditions are recommended.

1. Storage condition:

Temperature -10 to +40°C

Humidity less than 75%RH (not dewing condition) 2. Storage term:

Use this product within 6 months after delivery by first-in and first-out stocking system.

■ Notice (Soldering and Mounting)

When the lead of this product is soldered, pay attention as follows to avoid the decline of element characteristics or break-down of the element.

- 1. Use Rosin type flux or non-activated flux
- 2. Do not dip the body into flux (flux should be coated to lead wire only for soldering).
- 3. Be sure that preheating does not melt the soldering of this product.

■ Notice (Handling)

- Do not apply an excessive force to the lead. Otherwise, it may cause the junction between lead and element to break, or may crack the element. Therefore, holding the element side lead wire is recommended when lead wire is bent or cut.
- 2. This product does not have waterproof construction. Splashed water may cause failure mode such as decline of characteristics or current leak.

- 2. Volatile or flammable gas
- 3. Dusty conditions
- 4. Under vacuum, or under high or low pressure
- 5. Wet or humid conditions
- 6. Places with salt water, oils, chemical liquids or organic solvents
- 7. Strong vibrations
- Other places where similar hazardous conditions exist

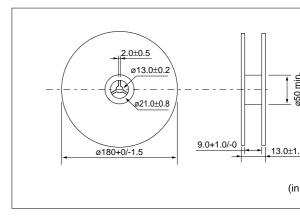
3. Handling after unpacking:

After unpacking, promptly reseal this product or store it in a sealed container with a drying agent.

4. Storage place:

Do not store this product in corrosive gas (Sulfuric acid, Chlorine, etc.) or in direct sunlight.

3. When this product is operated, the temperature of some areas may be over 100 to 160°C. Be sure that surrounding parts and inserting material can withstand the temperature. If the surrounding part and material are kept under such conditions, they may deteriorate or produce harmful gas (Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.), and such harmful gas may deteriorate the element.

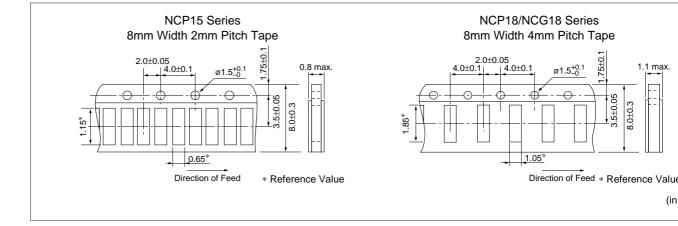


Dant Number	Quantity (pcs.)		
Part Number	Paper Tape	Embossed Tape	
NCP15	10000	-	
NCP18/NCG18	4000	-	

Part Number	Quantity (pcs.)	
	Bulk Type	
NXF	1000	

■ Chip Type/Tape Carrier Packaging

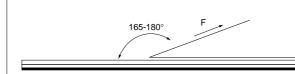
1. Dimensions of Reel



- 2. Taping Method
- (1) A tape in a reel contains Leader unit and Trailer unit where products are not packed. (Please refer to the figure at right.)
- (2) The top and base tapes or plastic and cover tape are not stuck at the first five pitches minimum.
- (3) A label should be attached on the reel. (MURATA's part number, inspection number and quantity should be marked on the label.)
- (4) Taping reels are packaged.

40 min. Trailer Unit Chip-mounting Unit Direction of Feed (in

Continued on the following p


- (1) Other Conditions
 - $\textcircled{1} \mathsf{Packaging}$

Products are packaged in the cavity of the base tape and sealed by top tape and bottom tape.

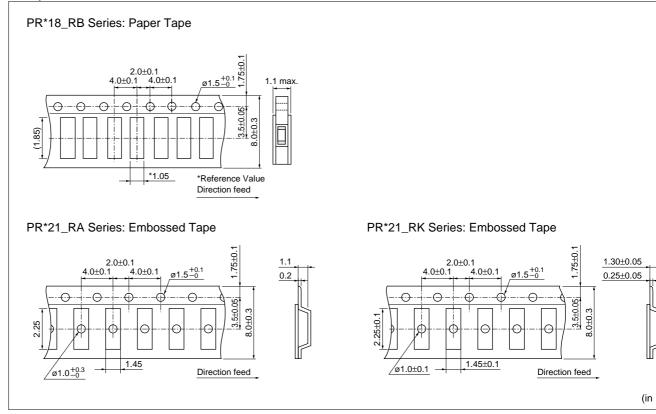
② Tape

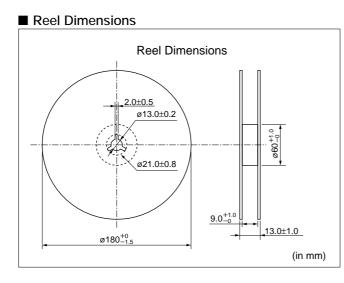
Top tape and bottom tape have no joints and products are packaged and sealed in the cavity of the base tape, continuously.

(2) Peeling Force of Top Tape

Peeling Angle: 165 to 180° against the fixed surface of tape. Peeling Speed: 300mm/min. Peeling Force: 0.1 - 0.6N

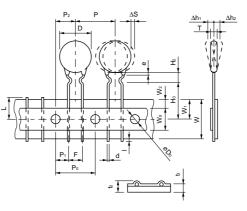
(3) Pull Strength


Pull strength of top tape is specified at 10N minimum.


Pull strength of bottom tape shall be specified 5N minimum.

Part Number –		
	Paper Tape	Embossed Tape
PR*18_RB	4000	-
PR*21_RA	-	4000
PR*21_RK	-	3000

■ Tape Dimensions



<u>muRata</u>

70

Series	Bulk Type		Ammo Pack	Taping Type
Series	Part Number	Min. Qty. (pcs.)	Part Number	Min. Qty. (pcs.)
	PTGL5SAR1R0M1B51B0	500	PTGL5SAR1R0M1B51A0	
	PTGL6SAR0R8M1B51B0		PTGL6SAR0R8M1B51A0	
	PTGL7SARR47M1B51B0		PTGL7SARR47M1B51A0	2000
16V Series	PTGL9SARR33M1B51B0		PTGL9SARR33M1B51A0	2000
	PTGLASARR27M1B51B0		PTGLASARR27M1B51A0	
	PTGLCSAR0R2M1B51B0	300	PTGLCSAR0R2M1B51A0	
	PTGLESARR15M1B51B0		-	-
	PTGL4SAS100K2B51B0		PTGL4SAS100K2B51A0	
	PTGL4SAS100K2N51B0		PTGL4SAS100K2N51A0	
Norrow Current Dand	PTGL5SAS3R9K2B51B0	500	PTGL5SAS3R9K2B51A0	
Narrow Current Band 30V Series	PTGL7SAS1R8K2B51B0	500	PTGL7SAS1R8K2B51A0	1500
	PTGL7SAS2R7K2B51B0		PTGL7SAS2R7K2B51A0	
	PTGL9SAS1R2K2B51B0		PTGL9SAS1R2K2B51A0	
	PTGLCSAS0R8K2B51B0	300	PTGLCSAS0R8K2B51A0	
	PTGL4SAS100K3B51B0	500	PTGL4SAS100K3B51A0	1500
Narrow Current Band	PTGL5SAS6R8K3B51B0		PTGL5SAS6R8K3B51A0	
51V Series	PTGL7SAS3R3K3B51B0		PTGL7SAS3R3K3B51A0	
	PTGL9SAS2R2K3B51B0		PTGL9SAS2R2K3B51A0	
	PTGLCSAS1R2K3B51B0	300	PTGLCSAS1R2K3B51A0	
	PTGL4SAS220K4B51B0		PTGL4SAS220K4B51A0	1500
	PTGL4SAS220K4N51B0		PTGL4SAS220K4N51A0	
Narrow Current Band	PTGL5SAS100K4B51B0	500	PTGL5SAS100K4B51A0	
60V Series	PTGL7SAS5R6K4B51B0	PTGL7SAS5R6K4B51A PTGL7SAS5R6K4N51A	PTGL7SAS5R6K4B51A0	
	PTGL7SAS5R6K4N51B0		PTGL7SAS5R6K4N51A0	
	PTGL9SAS3R3K4B51B0		PTGL9SAS3R3K4B51A0	
	PTGLCSAS2R2K4B51B0	300	PTGLCSAS2R2K4B51A0	
	PTGL4SAS560K6B51B0		PTGL4SAS560K6B51A0	
	PTGL5SAS270K6B51B0		PTGL5SAS270K6B51A0	
Narrow Current Band	PTGL7SAS150K6B51B0	500	PTGL7SAS150K6B51A0	1500
140V Series	PTGL9SAS120K6B51B0		PTGL9SAS120K6B51A0	
	PTGL9SAS7R6K6B51B0		PTGL9SAS7R6K6B51A0	
	PTGLCSAS4R7K6B51B0	300	PTGLCSAS4R7K6B51A0	

Continued on the following p

Item	Code	Dimensions (mm)	Note
Pitch of Component	Р	12.7	Tolerance is determined by ΔS .
Pitch of Sprocket Hole	P0	12.7±0.3	
Lead Spacing	F	5.0 ^{+0.8} 0.3	
Length from Hole Center to Lead	P1	3.85±0.8	
Length from Hole Center to Component Center	P2	6.35±1.3	Deviation in the feeding direction
Body Diameter	D	Please see in Ratings	
Body Thickness	Т	Please see in Ratings	
Deviation along Tape, Left or Right Defect	ΔS	±1.5	Including the inclination caused by lead bending
Carrier Tape Width	W	18.0±0.5	
Position of Sprocket Hole	W1	9.0 ^{+0.5} 0.75	Deviation of tape width
Lead Distance between Reference and	Ho	16.0±1.0	
Bottom Planes	H2	6.0 max.	
Protrusion Length		+0.5 to -1.0	
Diameter of Sprocket Hole	D0	4.0±0.2	
Lead Diameter	d	Please see in Ratings	
Total Tape Thickness	t1	0.6±0.3	
Total Thickness of Tape and Lead Wire	t2	2.0 max.	
Deviation across Tape	Δ h1, Δ h2	1.5 max.	
Portion to cut in Case of Defect	L	11.0 ⁺⁰ _{-2.0}	
Hold Down Tape Width	Wo	11.0 min.	
Hold Down Tape Position	W2	4.0 max.	
Coating Extension on Lead	е	Up to the center of crimp	

∆Note:

- Export Control
- <For customers outside Japan>

No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or o contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or specially designed or intended for military end-use or utilization by military end-users. <For customers in Japan>

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high

- for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other th specified in this catalog.
 - Aircraft equipment
 Undersea equipment
 Medical equipment

7 Traffic signal equipment

- ② Aerospace equipment
- ④ Power plant equipment
- Transportation equipment (vehicles, trains, ships, etc.)
- Bisaster prevention / crime prevention equipment
- Data-processing equipment
 Data-processing equipment
 Data-processing equipment
- 3. Product specifications in this catalog are as of March 2011. They are subject to change or our products in it may be discontinued without advance notice. Please chour sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please review our product specifications or consult the
- sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalog connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

muRata Murata Manufacturing Co., Ltd.

http://www.murata

Head Office 1-10-1, Higashi Kotari, Nagaokakyo-shi, Kyoto 617-8555, Japan Phone: 81-75-951-9111 International Division 3-29-12, Shibuya, Shibuya-ku, Tokyo 150-0002, Japan Phone: 81-3-5469-6123 Fax: 81-3-5469-6155 E-mail: intl@murata.co.jp