
STGB20NC60V, STGP20NC60V, STGW20NC60V

30 A - 600 V - very fast IGBT

Datasheet - production data

Figure 1. Internal schematic diagram

Features

- High frequency operation up to 50 kHz
- Lower C_{RES} / C_{IES} ratio (no cross-conduction susceptibility)
- High current capability

Applications

- High frequency inverters
- UPS, motor drivers
- HF, SMPS and PFC in both hard switch and resonant topologies

Description

This IGBT utilizes the advanced PowerMESH[™] process resulting in an excellent trade-off between switching performance and low on-state behavior.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STGB20NC60V	GB20NC60V	D²PAK	Tape and reel
STGP20NC60V	GP20NC60V	TO-220	Tube
STGW20NC60V	GW20NC60V	TO-247	Tube

DocID9982 Rev 6

1/20

Contents

1	Elect	rical ratings
2	Elect	rical characteristics4
	2.1	Electrical characteristics (curves) 6
3	Test	circuits
4	Pack	age information
	4.1	D2PAK type A package information 10
	4.2	TO-220 type A package information 13
	4.3	TO-247 package information 15
5	Pack	ing information
6	Revi	sion history

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage ($V_{GE} = 0$)	600	V
I _C ⁽¹⁾	Collector current (continuous) at 25 °C	60	Α
I _C ⁽¹⁾	Collector current (continuous) at 100 °C	30	Α
I _{CL} ⁽²⁾	Turn-off latching current	100	Α
I _{CP} ⁽³⁾	Pulsed collector current	100	Α
V_{GE}	Gate-emitter voltage	± 20	V
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	200	W
Тj	Operating junction temperature	– 55 to 150	°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX} - T_{C}}{R_{THJ - C} \times V_{CESAT(MAX)} (T_{C}, I_{C})}$$

2. Vclamp = 80%(V_{CES}), T_j =150 °C, R_G=10 Ω , V_{GE}=15 V

3. Pulse width limited by max junction temperature allowed

			Valu			
	Symbol	Parameter	TO-247	TO-220 D²PAK	Unit	
ſ	R _{thj-case} Thermal resistance junction-case max 0.62		2	°C/W		
ſ	R _{thj-amb}	Thermal resistance junction-ambient max	50	62.5	°C/W	

Table 3. Thermal resistance

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

-								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			V		
V _{CE(sat)}	Collector-emitter saturation voltage	V_{GE} =15 V, I _C = 20 A V _{GE} =15 V, I _C = 20 A,T _C = 125 °C		1.8 1.7	2.5	V V		
V _{GE(th)}	Gate threshold voltage	V_{CE} = V_{GE} , I_C = 250 μ A	3.75		5.75	V		
I _{CES}	Collector-emitter cut-off current (V _{GE} = 0)	V _{CE} = 600 V V _{CE} = 600 V, Tc=125 °C			10 1	μA mA		
I _{GES}	Gate-emitter cut-off current (V _{CE} = 0)	V _{GE} = ±20 V			± 100	nA		
9 _{fs} ⁽¹⁾	Forward transconductance	V _{CE} = 15 V _, I _C = 20 A		15		S		

Table 4. Static electrica	al characteristics
---------------------------	--------------------

1. Pulse duration = $300 \ \mu$ s, duty cycle 1.5%

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	2200	-	pF
C _{oes}	Output capacitance	V _{CE} = 25 V, f = 1 MHz,	-	225	-	pF
C _{res}	Reverse transfer capacitance	V _{GE} =0	-	50	-	pF
Qg	Total gate charge	V _{CE} = 390 V, I _C = 20 A,	-	100	-	nC
Q _{ge}	Gate-emitter charge	V _{GE} = 15 V,	-	16	-	nC
Q _{gc}	Gate-collector charge	(see Figure 17)	-	45	-	nC

Table 5. Dynamic electrical characteristics

•			,	-	Cumbel Decempton Test conditions Min Tun May Unit						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit					
t _{d(on)}	Turn-on delay time	V _{CC} = 390 V, I _C = 20 A	-	31	-	ns					
t _r	Current rise time	R_{G} = 3.3 Ω , V_{GE} = 15 V,	-	11	-	ns					
(di/dt)on	Turn-on current slope	(see Figure 16)	-	1600	-	A/µs					
t _{d(on)}	Turn-on delay time	V _{CC} = 390 V, I _C = 20 A	-	31	-	ns					
t _r	Current rise time	R _G = 3.3 Ω, V _{GE} = 15 V, T _C = 125 °C <i>(see Figure 16)</i>	-	11.5	-	ns					
(di/dt)on	Turn-on current slope		-	1500	-	A/µs					
t _{r(Voff)}	Off voltage rise time	V _{cc} = 390 V, I _C = 20 A,	-	28	-	ns					
t _{d(off)}	Turn-off delay time	$R_{G} = 3.3 \Omega, V_{GE} = 15 V$	-	100	-	ns					
t _f	Current fall time	(see Figure 18)	-	75	-	ns					
t _{r(Voff)}	Off voltage rise time	$V_{cc} = 390 \text{ V}, I_C = 20 \text{ A},$ $R_G=3.3 \Omega, V_{GE} = 15 \text{ V},$ $T_C=125 \text{ °C} (see Figure 18)$	-	66	-	ns					
t _{d(off)}	Turn-off delay time		-	150	-	ns					
t _f	Current fall time		-	130	-	ns					

Table 6. Switching on/off (inductive load)

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on}	Turn-on switching losses	V _{CC} = 390 V, I _C = 20 A	-	220	-	μJ
E _{off} ⁽¹⁾	Turn-off switching losses	$R_G = 3.3 \Omega$, $V_{GE} = 15 V$, (see Figure 18)	-	330	-	μJ
E _{ts}	Total switching losses		-	550	-	μJ
E _{on}	Turn-on switching losses	$V_{CC} = 390 \text{ V}, \text{ I}_{C} = 20 \text{ A}$ $\text{R}_{G} = 3.3 \ \Omega, \text{ V}_{GE} = 15 \text{ V},$	-	450	-	μJ
E _{off} ⁽¹⁾	Turn-off switching losses		-	770	-	μJ
E _{ts}	Total switching losses	T _C = 125 °C <i>(see Figure 18)</i>	-	1220	-	μJ

1. Turn-off losses include also the tail of the collector current.

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

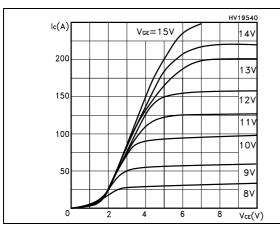


Figure 4. Transconductance

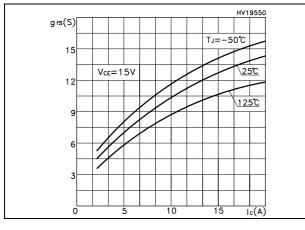


Figure 6. Gate charge vs gate-source voltage

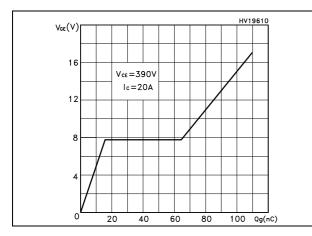


Figure 3. Transfer characteristics

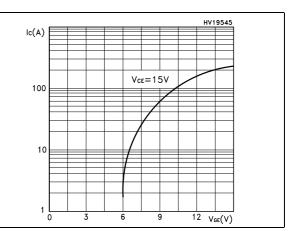


Figure 5. Collector-emitter on voltage vs temperature

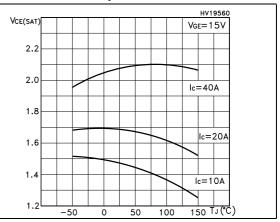


Figure 7. Capacitance variations

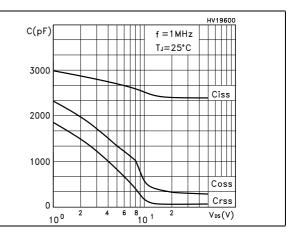


Figure 8. Normalized gate threshold voltage vs temperature

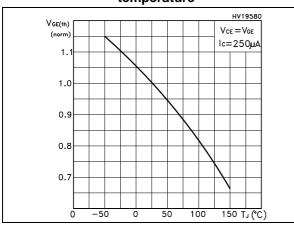


Figure 10. Normalized breakdown voltage vs temperature

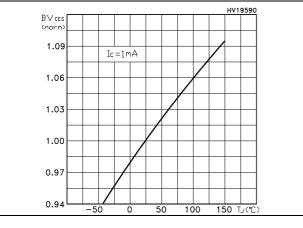


Figure 9. Collector-emitter on voltage vs collector current

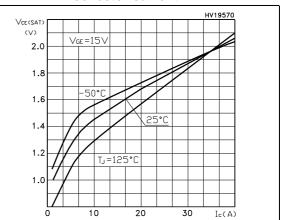
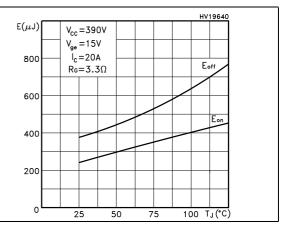
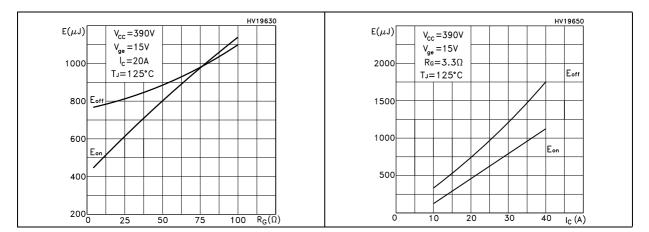


Figure 11. Switching losses vs temperature

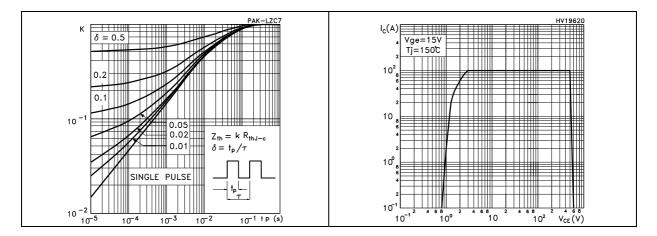
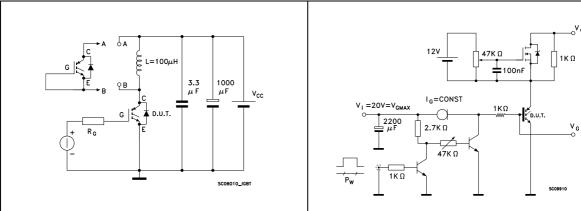
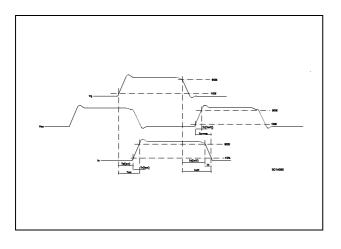

Figure 12. Switching losses vs gate resistance Figure 13. Switching losses vs collector current

Figure 14. Thermal impedance


Figure 15. Turn-off SOA



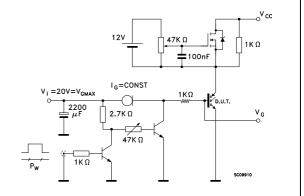
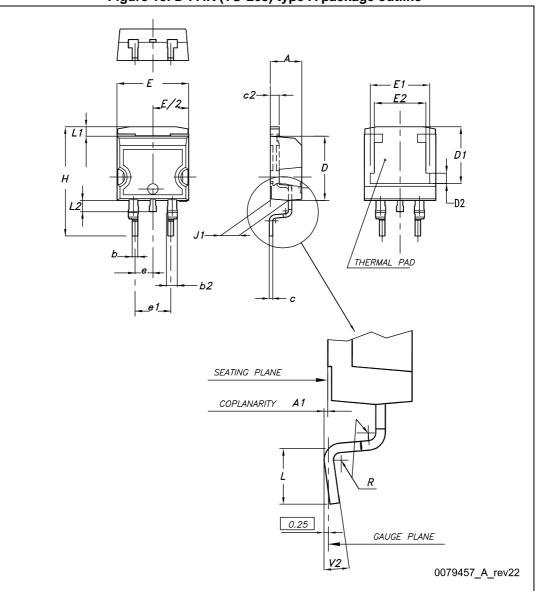

Test circuits 3

Figure 16. Test circuit for inductive load switching

Figure 18. Switching waveform


Figure 17. Gate charge test circuit

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 D²PAK type A package information

Figure 19. D²PAK (TO-263) type A package outline

Dim		mm	
Dim. —	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
с	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Table 8. D²PAK (TO-263) type A mechanical data

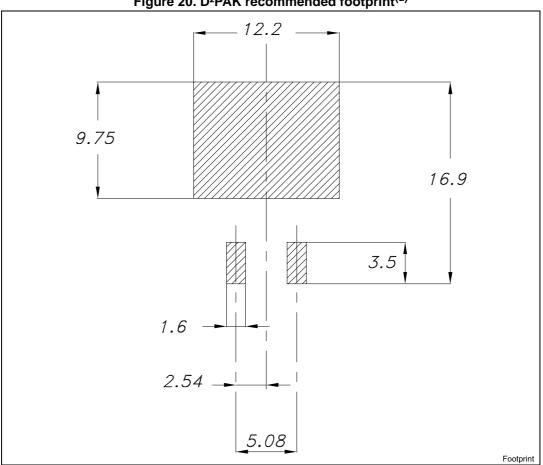


Figure 20. D²PAK recommended footprint^(a)

a. All dimension are in millimeters

4.2 TO-220 type A package information

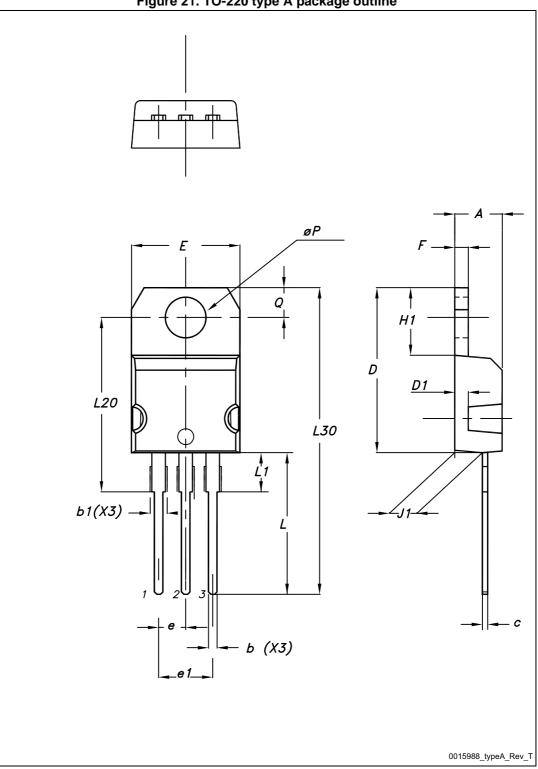
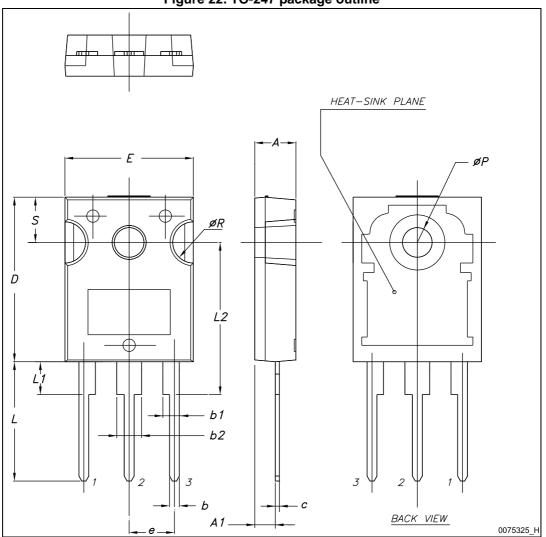


Figure 21. TO-220 type A package outline



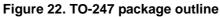

		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
øP	3.75		3.85
Q	2.65		2.95

Table 9. TO-220 type A package mechanical data

4.3 TO-247 package information

Dim.	mm.					
	Min.	Тур.	Max.			
А	4.85		5.15			
A1	2.20		2.60			
b	1.0		1.40			
b1	2.0		2.40			
b2	3.0		3.40			
С	0.40		0.80			
D	19.85		20.15			
E	15.45		15.75			
е	5.30	5.45	5.60			
L	14.20		14.80			
L1	3.70		4.30			
L2		18.50				
ØP	3.55		3.65			
ØR	4.50		5.50			
S	5.30	5.50	5.70			

Table 10. TO-247 package mechanical data

16/20

5 Packing information

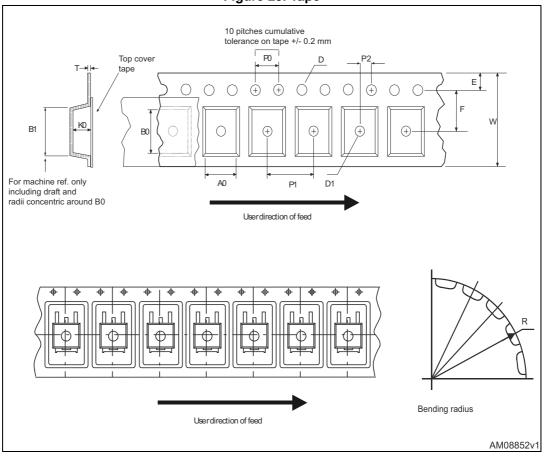
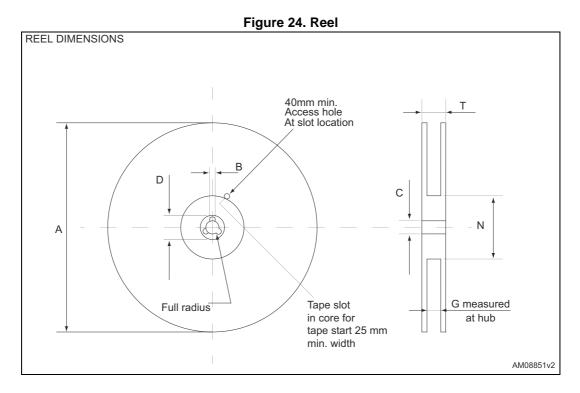



Figure 23. Tape

Таре			Reel		
Dim.	r	nm	Dim.	mm	
	Min.	Max.		Min.	Max.
A0	10.5	10.7	А		330
B0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	Ν	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1		Base qty	1000
P2	1.9	2.1		Bulk qty	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

6 Revision history

Date	Revision	Changes
07-Jun-2004	4	Stylesheet update. No content change
14-May-2008	5	Inserted D ² PAK
18-Jun-2015	6	Updated Table 1: Device summary. Updated Section 4: Package information and Section 5: Packing information.

Table 12. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

