ESD9C3.3ST5G SERIES

ESD Protection Diode Micro-Packaged Diodes for ESD Protection

The ESD9C3.3ST5G Series is designed to protect voltage sensitive components from ESD. Excellent clamping capability, low leakage, and fast response time make these parts ideal for ESD protection on designs where board space is at a premium. Because of its small size, it is suited for use in cellular phones, portable devices, digital cameras, power supplies and many other portable applications.

Specification Features:

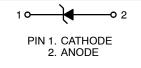
- Low Capacitance 6.2 pF 13 pF
- Low Clamping Voltage
- Small Body Outline Dimensions: 0.039" x 0.024" (1.0 mm x 0.60 mm)
- Low Body Height: 0.016" (0.40 mm) Max
- Stand-off Voltage: 3.3 V, 5 V
- Low Leakage
- Response Time < 1 ns
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- IEC61000-4-2 Level 4 ESD Protection
- AEC-Q101 Qualified and PPAP Capable
- These are Pb–Free Devices

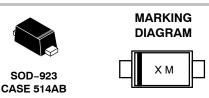
Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic Epoxy Meets UL 94 V-0 LEAD FINISH: 100% Matte Sn (Tin) MOUNTING POSITION: Any QUALIFIED MAX REFLOW TEMPERATURE: 260°C Device Meets MSL 1 Requirements

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IEC 61000-4-2 (ESD) Contact Air		±8.0 ±15	kV
Total Power Dissipation on FR–5 Board (Note 1) @ $T_A = 25^{\circ}C$	P _D	150	mW
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)	ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. FR-5 = $1.0 \times 0.75 \times 0.62$ in.


See Application Note AND8308/D for further description of survivability specs.

ON Semiconductor®

www.onsemi.com

X = Specific Device Code M = Date Code

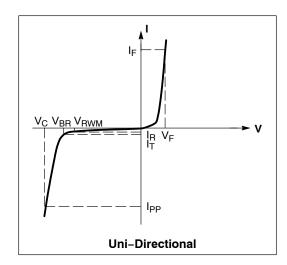
ORDERING INFORMATION

Devic	е	Package	Shipping [†]
ESD9Cxx8	ST5G	SOD-923 (Pb-Free)	8000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the table on page 2 of this data sheet.

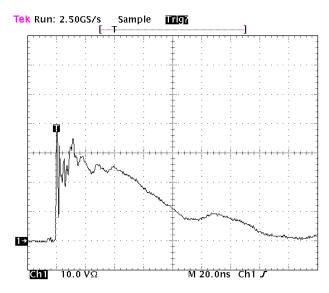

ESD9C3.3ST5G SERIES

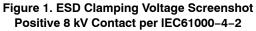
ELECTRICAL CHARACTERISTICS

 $(T_{\Delta} = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter				
I _{PP}	Maximum Reverse Peak Pulse Current				
V _C	Clamping Voltage @ I _{PP}				
V _{RWM}	Working Peak Reverse Voltage				
I _R	Maximum Reverse Leakage Current @ V _{RWM}				
V _{BR}	Breakdown Voltage @ I _T				
Ι _Τ	Test Current				
I _F	Forward Current				
V _F	Forward Voltage @ I _F				
P _{pk}	Peak Power Dissipation				
С	Max. Capacitance $@V_R = 0$ and f = 1 MHz				

*See Application Note AND8308/D for detailed explanations of datasheet parameters.

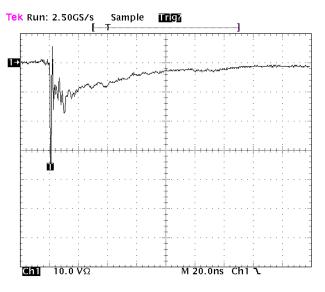
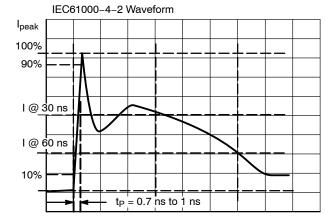


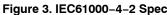

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 1.1 V Max. @ I_F = 10 mA)

	Device	V _{RWM} (V)	I _R (μΑ) @ V _{RWM}	V _{BR} (V) @ I _T (Note 2)	ΙŢ	C (pF) (Note 3)	C (pF) (Note 3)	Vc	
Device	Marking	Мах	Мах	Min	mA	Тур	Max	Per IEC61000-4-2 (Note 4)	
ESD9C3.3ST5G	R	3.3	1.0	5.0	1.0	12.8	13	Figures 1 and 2 See Below	
ESD9C5.0ST5G	Р	5.0	0.5	11.0	1.0	6.0	6.2	(Note 5)	

2. V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C. 3. Capacitance at f = 1 MHz, V_R = 0 V, T_A = 25°C. 4. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

5. ESD9C5.0ST5G shown below. Other voltages available upon request.


Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

ESD9C3.3ST5G SERIES

IEC 61000-4-2 Spec.

Level	Test Voltage (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)	
1	2	7.5	4	2	
2	4	15	8	4	
3	6	22.5	12	6	
4	8	30	16	8	

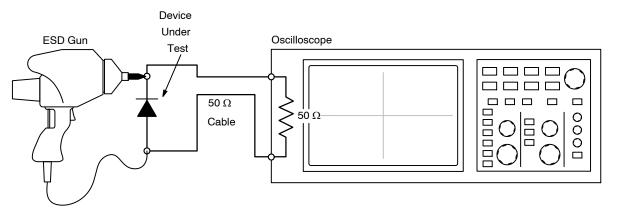
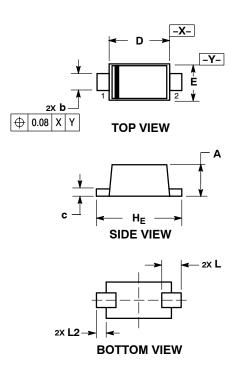


Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices.

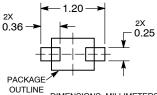

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000–4–2 waveform. Since the IEC61000–4–2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

PACKAGE DIMENSIONS

SOD-923 CASE 514AB ISSUE C



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME
- DIMENSIONING AND TOLERANCING PEH ASM Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. З.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.34	0.37	0.40	0.013	0.015	0.016	
b	0.15	0.20	0.25	0.006	0.008	0.010	
с	0.07	0.12	0.17	0.003	0.005	0.007	
D	0.75	0.80	0.85	0.030	0.031	0.033	
E	0.55	0.60	0.65	0.022	0.024	0.026	
HE	0.95	1.00	1.05	0.037	0.039	0.041	
L	0.19 REF			0.007 REF			
L2	0.05	0.10	0.15	0.002	0.004	0.006	

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

See Application Note AND8455/D for more mounting details

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and we trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/point-atent- warking.por. ON semiconductor reserves the right to make changes winnout further notice to any products nerein. ON semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor does not convey any license or any EDA Clong of medical during and enters or a with a core or citized comparent is patent or patient or products are not dependent or utberging different applications and actual performance may any core time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON semiconductor does not convey any license under its patent rights of others. ON semiconductor products are not dependent or utberging different applications are circular applications are applied or any explicit or application products are not dependent or utberging different applications are circle applied or any customer or any EDA Clong of medical during or utberging different applications are circle applications are applied or any expline appli designed, justicities of authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

 \diamond