Low Power Half-Duplex RS-485 Transceivers

FEATURES

- +5V Only
- Low Power BiCMOS
- Driver / Receiver Enable
- Slew Rate Limited Driver for Low EMI (SP483)
- Low Power Shutdown mode (SP483)
- RS-485 and RS-422 Drivers/Receivers

DESCRIPTION

The SP483 and SP485 are a family of half-duplex transceivers that meet the specifications of RS-485 and RS-422. Their BiCMOS design allows low power operation without sacrificing performance. The SP485 meets the requirements of RS-485 and RS-422 up to 5 Mbps . Additionally, the SP483 is equipped with a low power Shutdown mode. The SP483 is internally slew rate limited to reduce EMI and can meet the requirements of RS-485 and RS-422 up to 250 kbps .

SP483 and SP485

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Input Voltages
Logic........................ -0.3 V to $(\mathrm{Vcc}+0.5 \mathrm{~V})$
Drivers.................. 0.3 V to $(\mathrm{Vcc}+0.5 \mathrm{~V})$
Receivers................................-15V

Outputs
Logic.........................-0.3V to (Vcc + 0.5V)
Drivers...+/-15V
Receivers..................-0.3V to (Vcc + 0.5V)
Receiver Output Current...............+/-95mA
Storage Temperature........................ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
8-pin NSOIC
.500 mW

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$ and $\mathrm{V}_{\text {cC }}=5 \mathrm{~V}+/-5 \%$ unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP483/SP485 DRIVER					
DC Characteristics					
Differential Output Voltage			Vcc	Volts	Unloaded; $\mathrm{R}=\infty$; see figure 1
Differential Output Voltage	2		Vcc	Volts	With Load; $R=50 \Omega$ (RS-422); see figure 1
Differential Output Voltage	1.5		Vcc	Volts	With Load; R = 27Ω (RS-485); see figure 1
Change in Magnitude of Driver Differential Output Voltage for Complimentary states			0.2	Volts	$R=27 \Omega$ or $R=50 \Omega$; see figure 1
Driver Common Mode Output Voltage			3	Volts	$R=27 \Omega$ or $R=50 \Omega$; see figure 1
Input High Voltage	2.0			Volts	Applies to DE, DI, $\overline{\mathrm{RE}}$
Input Low Voltage			0.8	Volts	Applies to DE, DI, $\overline{\mathrm{RE}}$
Input Current			+/-10	$\mu \mathrm{A}$	Applies to DE, DI, $\overline{\text { RE }}$
Driver Short Circuit Current, $\mathrm{V}_{\text {OUT }}=\mathrm{HIGH}$			250	mA	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq+12 \mathrm{~V}$
Driver Short Circuit Current, $\mathrm{V}_{\text {OUT }}=\mathrm{LOW}$			250	mA	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq+12 \mathrm{~V}$
SP485 DRIVER					
AC Characteristics					
Maximum Data Rate	5			Mbps	$\overline{\mathrm{RE}}=5 \mathrm{~V}, \mathrm{DE}=5 \mathrm{~V}$
Driver Input to Output, $\mathrm{t}_{\text {PLH }}$		30	60	ns	Figures 3 and $5, R_{\text {DIFF }}=54 \Omega$, $\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$
Driver Input to Output, $\mathrm{t}_{\text {PHL }}$		30	60	ns	Figures 3 and $5, R_{\text {DIFF }}=54 \Omega$, $C_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$
Driver Skew		5	10	ns	Figures 3 and 5, $\mathrm{t}_{\mathrm{SKEW}}=\left\|\mathrm{t}_{\mathrm{DPHL}}-\mathrm{t}_{\mathrm{DPLLH}}\right\|$
Driver Rise or Fall Time		15	40	ns	From $10 \%-90 \% ; R_{\text {DIFF }}=54 \Omega$ $C_{L 1}=C_{L 2}=100 \mathrm{pF}$; see figures 3 and 5

$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ and $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}+/-5 \%$ unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP485 DRIVER (continued)					
AC Characteristics					
Driver Enable to Output High		40	70	ns	$\begin{aligned} & C_{L}=100 \mathrm{pF} \text {, see figures } 4 \text { and } 6, \\ & S_{2} \text { closed } \\ & \hline \end{aligned}$
Driver Enable to Output Low		40	70	ns	$\begin{aligned} & C_{L}=100 \mathrm{pF} \text {, see figures } 4 \text { and } 6, \\ & S_{1} \text { closed } \end{aligned}$
Driver Disable Time from High		40	70	ns	$\begin{aligned} & \begin{array}{l} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \text {, see figures } 2 \text { and } 8, \\ \mathrm{~S}_{2} \text { closed } \end{array} \\ & \hline \end{aligned}$
Driver Disable Time from Low		40	70	ns	$C_{L}=15 \mathrm{pF} \text {, see figures } 2 \text { and } 8 \text {, }$ $\mathrm{S}_{1}^{2} \text { closed }$
SP483/SP485 RECEIVER					
DC Characteristics					
Differential Input Threshold	-0.2		+0.2	Volts	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$
Input Hysteresis		10		mV	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$
Output Voltage High	2.4		5	Volts	$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}, \mathrm{~V}_{10}=+200 \mathrm{mV}$
Output Voltage Low	0.0		0.4	Volts	$\mathrm{I}_{0}=+4 \mathrm{~mA}, \mathrm{~V}_{10}=-200 \mathrm{mV}$
Three-State (High Impedance) Output Current			+/-1	$\mu \mathrm{A}$	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.4 \mathrm{~V} ; \overline{\mathrm{RE}}=5 \mathrm{~V}$
Input Resistance	12	15		k Ω	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+12 \mathrm{~V}$
Input Current (A, B); $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$			+1.0	mA	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cC}}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V} \end{aligned}$
Input Current (A, B); $\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$			-0.8	mA	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cC}}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=-7 \mathrm{~V} \end{aligned}$
SP485 RECEIVER					
AC Characteristics					
Maximum Data Rate	5			Mbps	$\overline{\mathrm{RE}}=0 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}$
Receiver Input to Output	20	45	200	ns	$\mathrm{t}_{\mathrm{PLH} \text {; }}$ Figures 3 and 7, $\mathrm{R}_{\mathrm{DIFF}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$
Receiver Input to Output	20	45	200	ns	$\mathrm{t}_{\text {PHL }}$ Figures 3 and 7 , $\mathrm{R}_{\mathrm{DIFF}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$
Differential Receiver Skew $\left\|\mathrm{t}_{\text {PHL }}-\mathrm{t}_{\mathrm{PLH}}\right\|$		13		ns	$\begin{aligned} & \mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}, \\ & \text { Figures } 3 \text { and } 7 \end{aligned}$
Receiver Enable to Output Low		45	70	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}, \text { Figures } 2 \text { and } 8 ; \\ & \mathrm{S}_{1} \text { Closed } \end{aligned}$
Receiver Enable to Output High		45	70	ns	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}, \text { Figures } 2 \text { and 8; } \\ & \mathrm{S}_{2} \text { Closed } \\ & \hline \end{aligned}$
Receiver Disable from LOW		45	70	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}, \text { Figures } 2 \text { and } 8 ; \\ & \mathrm{S}_{1} \text { Closed } \end{aligned}$
Receiver Disable from High		45	70	ns	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$, Figures 2 and 8; S_{2} Closed

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}+/-5 \%$ unless otherwise noted

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
POWER REQUIREMENTS					
Supply Voltage V_{cc}	+4.75		+5.25	Volts	
Supply Current					
SP485		900		$\mu \mathrm{A}$	$\begin{aligned} & \text { No Load; } \overline{\mathrm{RE}}, \mathrm{DI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{cc}} ; \\ & \mathrm{DE}=\mathrm{V}_{\mathrm{cc}} \end{aligned}$
		900		$\mu \mathrm{A}$	$\begin{aligned} & \text { No Load; } \overline{\mathrm{RE}}=0 \mathrm{~V}, \mathrm{DI}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \text {; } \\ & \mathrm{DE}=0 \mathrm{~V} \end{aligned}$
SP483		600		$\mu \mathrm{A}$	$\begin{aligned} & \text { No Load; } \overline{\mathrm{RE}}, \mathrm{DI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{cc}} ; \\ & \mathrm{DE}=\mathrm{V}_{\mathrm{cc}} \end{aligned}$
		600		$\mu \mathrm{A}$	$\begin{aligned} & \text { No Load; } \overline{\mathrm{RE}}=0 \mathrm{~V}, \mathrm{DI}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} ; \\ & \mathrm{DE}=0 \mathrm{~V} \end{aligned}$
SP483			10	$\mu \mathrm{A}$	Shutdown Mode; $\mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{cc}}$
ENVIRONMENTAL AND MECHANICAL					
Operating Temperature					
Commercial (_C_)	0		70	${ }^{\circ} \mathrm{C}$	
Industrial (_E_)	-40		+85	${ }^{\circ} \mathrm{C}$	
Storage Temperature	-65		+150	${ }^{\circ} \mathrm{C}$	
Package: Plastic DIP (_P), NSOIC (_N)					

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP483 DRIVER					
AC Characteristics					
Maximum Date Rate	250			kbps	
Driver Input to Output, $\mathrm{t}_{\text {PLH }}$	250	800	2000	ns	$\begin{array}{\|l} \mathrm{t}_{\text {PLH }} ; \mathrm{R}_{\mathrm{DIFF}}=54 \Omega, C_{\mathrm{L}_{1}}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}, \\ \text { see figures } 3 \text { and } 5 \end{array}$
Driver Input to Output, $\mathrm{t}_{\text {PHL }}$	250	800	2000	ns	$\mathrm{t}_{\text {PHL }} ; \mathrm{R}_{\mathrm{DIFF}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see figures 3 and 5
Driver Skew		100	800	ns	see figures 3 and 5 , $\mathrm{t}_{\mathrm{SKEW}}=\left\|\mathrm{t}_{\mathrm{DPHL}}-\mathrm{t}_{\mathrm{DPLH}}\right\|$
Driver Rise or Fall Time	250		2000	ns	From 10\%-90\%; $R_{\text {DIFF }}=54 \Omega$ $C_{L 1}=C_{L 2}=100 \mathrm{pF}$; see Figures 3 and 5
Driver Enable to Output High	250		2000	ns	$C_{L}=100 \mathrm{pF}$, see figures 4 and 6, S_{2} closed
Driver Enable to Output Low	250		2000	ns	$C_{L}=100 \mathrm{pF}$, see figures 4 and 6, S_{1} closed
Driver Disable Time from High	300		3000	ns	$C_{L}=15 p F$, see figures 4 and 6 , S_{2} closed
Driver Disable Time from Low	300		3000	ns	$\begin{aligned} & C_{L}=15 p F \text {, see figures } 4 \text { and } 6, \\ & S_{1} \text { closed } \\ & \hline \end{aligned}$
SP483 RECEIVER					
AC Characteristics					
Maximum Data Rate	250			kbps	
Receiver Input to Output	250		2000	ns	$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }} ;$ Figures 3 and 7: $\mathrm{R}_{\mathrm{D} \mid \mathrm{FF}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$
Differential Receiver Skew $\left\|t_{\text {PHL }}-t_{\mathrm{PLH}}\right\|$		100		ns	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figures 3 and 7
Receiver Enable to Output Low		20	50	ns	$\begin{aligned} & C_{R L}=15 \mathrm{pF}, \text { Figures } 2 \text { and } 8 ; \\ & \mathrm{S}_{1} \text { Closed } \\ & \hline \end{aligned}$
Receiver Enable to Output High		20	50	ns	$C_{R L}=15 p F \text {, Figures } 2 \text { and } 8 ;$ S_{2} Closed
Receiver Disable from LOW		20	50	ns	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$, Figures 2 and 8; S Closed
Receiver Disable from High		20	50	ns	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF} \text {, Figures } 2 \text { and } 8 ;$ S_{2} Closed
SP483					
Shutdown Timing					
Time to Shutdown	50	200	600	ns	$\overline{\mathrm{RE}}=5 \mathrm{~V}$, DE $=0 \mathrm{~V}$
Driver Enable from Shutdown to Output High			2000	ns	$\begin{aligned} & C_{L}=100 \mathrm{pF} \text {; See Figures } 4 \text { and 6; } \\ & \mathrm{S}_{2} \text { Closed } \\ & \hline \end{aligned}$
Driver Enable from Shutdown to Output Low			2000	ns	$\begin{aligned} & C_{L}=100 \mathrm{pF} \text {; See Figures } 4 \text { and 6; } \\ & \mathrm{S}_{1} \text { Closed } \\ & \hline \end{aligned}$
Receiver Enable from Shutdown to Output High			2500	ns	$\begin{aligned} & \hline C_{L}=15 p F ; \text { See Figures } 4 \text { and } 6 ; \\ & S_{2} \text { Closed } \\ & \hline \end{aligned}$
Receiver Enable from Shutdown to Output Low			2500	ns	$C_{L}=15 \mathrm{pF}$; See Figures 4 and 6; S Closed

Pin 1-RO-Receiver Output
Pin 2 - $\overline{R E}$ - Receiver Output Enable Active LOW
Pin 3 - DE - Driver Output Enable Active HIGH

Pin 4 - DI - Driver Input
Pin 5 - GND - Ground Connection
Pin 6 - A - Driver Output / Receiver input Non-Inverting
Pin 7 - B - Driver Output / Receiver Input Inverting
Pin 8 - Vcc - Positive Supply $4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
TEST CIRCUITS

Figure 1. Driver DC Test Load Circuit

Figure 3. RS-485 Driver/Receiver Timing Test

Figure 2. Receiver Timing Test Load Circuit

Figure 4. Driver Timing Test Load \#2 Circuit fSP485 $=1 \mathrm{MHz} ;$ fSP483 $=100 \mathrm{kHz} ; \mathrm{t}_{\mathrm{R}} \leq 10 \mathrm{~ns} ; \mathrm{t}_{\mathrm{F}} \leq 10 \mathrm{~ns}$

$t_{\text {SKEW }}=\left|\mathrm{t}_{\text {DPLH }}-\mathrm{t}_{\text {DPHL }}\right|$
Figure 5. Driver Propagation Delays

INPUTS				OUTPUTS	
$\overline{\text { RE }}$	DE	DI	LINE CONDITION	A	B
X	1	1	No Fault	1	0
X	1	0	No Fault	0	1
X	0	X	X	Z	Z
X	1	X	Fault	Z	Z

Table 1. Transmit Function Truth Table

INPUTS			OUTPUTS
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{A}-\mathbf{B}$	\mathbf{R}
0	0	+0.2 V	1
0	0	-0.2 V	0
0	0	Inputs Open	1
1	0	X	Z

Table 2. Receive Function Truth Table
fSP485 $=1 \mathrm{MHz} ;$ fSP483 $=100 \mathrm{kHz} ; \mathrm{t}_{\mathrm{R}} \leq 10 \mathrm{~ns} ; \mathrm{t}_{\mathrm{F}} \leq 10 \mathrm{~ns}$

Figure 6. Driver Enable and Disable Times

fSP485 $=1 \mathrm{MHz} ;$ fSP483 $=100 \mathrm{kHz} ; \mathrm{t}_{\mathrm{R}} \leq 10 \mathrm{~ns} ; \mathrm{t}_{\mathrm{F}} \leq 10 \mathrm{~ns}$
$\mathrm{t}_{\text {SKEW }}=\left|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right|$
Figure 7. Receiver Propagation Delays

Figure 8. Receiver Enable and Disable Times

The SP483 and SP485 are half-duplex differential transceivers that meet the requirements of RS-485 and RS-422. Fabricated with an Exar proprietary BiCMOS process, this product requires a fraction of the power of older bipolar designs.

The RS-485 standard is ideal for multi-drop applications and for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7 V to +12 V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

Drivers
 SP483 and SP485

The driver outputs of the SP483 and SP485 are differential outputs meeting the RS-485 and RS-422 standards. The typical voltage output swing with no load will be 0 Volts to +5 Volts. With worst case loading of 54Ω across the differential outputs, the drivers can maintain greater than 1.5 V voltage levels. The drivers of the SP483 and SP485 have an enable control line which is active HIGH. A logic HIGH on DE (pin 3) will enable the differential driver outputs. Alogic LOW on the $\mathrm{DE}($ pin 3) will tri-state the driver outputs.

The transmitters of the SP485 will operate up to at least 5Mbps. The SP483 has internally slew rate limited driver outputs to minimize EMI. The maximum data rate for the SP483 driver is 250 kbps .

Receivers
 SP483 and SP485

The SP483 and SP485 receivers have differential inputs with an input sensitivity as low as $\pm 200 \mathrm{mV}$. Input impedance of the receivers is typically $15 \mathrm{k} \Omega$ ($12 \mathrm{k} \Omega$ minimum). A wide common mode range of -7 V to +12 V allows for large ground potential differences between systems. The receivers of the SP483 and SP485 have a tri-state enable control pin. A logic LOW on $\overline{R E}$ (pin 2) will enable the receiver, a logic HIGH on RE (pin 2) will disable the receiver.

The receiver for the SP485 will operate up to at least 10Mbps. The SP483 receiver is rated for data rates up to 250 kbps . The receiver for each of the three devices is equipped with the fail-safe feature. Fail-safe guarantees that the receiver output will be in a HIGH state when the input is left unconnected and floating.

Shutdown Mode SP483

The SP483 is equipped with a Shutdown mode. To enable the shutdown state, both driver and receiver must be disabled simultaneously. A logic LOW on DE (pin 3) and a Logic HIGH on RE (pin 2) will put the SP483 into Shutdown mode. In Shutdown, supply current will drop to typically $1 \mu \mathrm{~A}$.

MECHANICAL DIMENSIONS (8 PIN NSOIC)

Top View

Side View

PACKAGE OUTLINE NSOIC . 150 " BODY JEDEC MS-012 VARIATION AA						
SYMBOLS	COMMON DIMENSIONS IN MM (Control Unit)			COMMON DIMENSIONS $\operatorname{IN} \operatorname{INCH}$ (Reference Unit)		
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	-	1.75	0.053	-	0.069
A1	0.10	-	0.25	0.004	-	0.010
A2	1.25	-	1.65	0.049	-	0.065
b	0.31	-	0.51	0.012	-	0.020
c	0.17	-	0.25	0.007	-	0.010
E	6.00 BSC			0.236 BSC		
E1	3.90 BSC			0.154 BSC		
e	1.27 BSC			0.050 BSC		
h	0.25	-	0.50	0.010	-	0.020
L	0.40	-	1.27	0.016	-	0.050
L1	1.04 REF			0.041 REF		
L2	0.25 BSC			0.010 BSC		
R	0.07	-	-	0.003	-	-
R1	0.07	-	-	0.003	-	-
q	0°	-	$8{ }^{\circ}$	$0{ }^{\circ}$	-	8°
9	5°	-	15°	$5{ }^{\circ}$	-	15°
q2	0°	-	-	$0 \times$	-	-
D	4.90 BSC			0.193 BSC		
N	8					

Drawing No: POD-00000108
Revision: A

ID MARK

Side View

Front View

SYMBOLS	$\|$$\mid$ DIMENSIONS IN INCH (Control Unit)			DIMENSIONS IN MM (Reference Unit)		
	MIN	NOM	MAX	MIN	NOM	MAX
A	-	-	0.210	-	-	5.33
A1	0.015	-	-	0.38	-	-
A2	0.115	0.130	0.195	2.92	3.30	4.95
b	0.014	0.018	0.022	0.36	0.46	0.56
b2	0.045	0.060	0.070	1.14	1.52	1.78
c	0.008	0.010	0.014	0.20	0.25	0.36
D1	0.030	-	0.060	0.76	-	1.52
E	0.300	0.310	0.325	7.62	7.87	8.26
E1	0.240	0.250	0.280	6.10	6.35	7.11
e	0.100 BSC			2.54 BSC		
eA	0.300 BSC			7.62 BSC		
eB	-	-	0.430	-	-	10.92
L	0.115	0.130	0.150	2.92	3.30	3.81
W	0.075 REF			1.91 REF		
R	0.030 BSC			0.76 BSC		
θ	4°	$7{ }^{\circ}$	10°	$4{ }^{\circ}$	$7{ }^{\circ}$	10°
D	0.355	0.365	0.400	9.02	9.27	10.16
N	8			8		

Drawing No: POD-00000111
Revision: A

ORDERING INFORMATION

Part Number	Temperature Range	Package	Package Method	Lead-Free
SP483	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin NSOIC	Tube	Yes
SP483CN-L	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin NSOIC	Tape and Reel	Yes
SP483CN-L/TR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin NSOIC	Tape and Reel	Yes
SP483EN-L/TR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin NSOIC	Tube	Yes
SP485	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin NSOIC	Tape and Reel	Yes
SP485CN-L	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin NSOIC	Tube	Yes
SP485CN-L/TR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin NSOIC	Tape and Reel	Yes
SP485EN-L				

NOTE: For more information about part numbers, as well as the most up-to-date ordering information and additional information on environmental rating, go to www.maxlinear.com/SP483 and www.maxlinear.com/SP485.

REVISION HISTORY

DATE	REVISION	DESCRIPTION
$07 / 28 / 04$	--	Legacy Sipex Datasheet
$07 / 14 / 10$	1.0 .0	Convert to Exar Format. Update ordering information as a result of discontinued Lead type package options per PDN 081126-01. Remove all options and reference to SP481; Part is EOL. Remove "GND" entry from Minimum column of SP483/485 driver DC Characteristic paramter "Differential output voltage - Unloaded".
June 2011	1.0 .1	Remove Driver Short Circuit Current minimum. Change Vcc ABS MAX Rating from +12V to +7V. Add 12k ohm minimum value to receiver Input Resistance. Change SP485 receiver propagation delay MIN and TYP to 20 and 45ns respectively, receiver Enable and Disable TYP and MAX to 45 and 70ns respectively. Remove SP483CS-L and SP483ES-L ordering part number per PDN 110510-01.
August 2020	1.0 .2	Update to MaxLinear logo. Update Ordering Information. February 4, 2022 1.0 .3 Updated: - In the "Absolute Maximum Ratings" section, replaced "Output Voltages" with "Outputs". Added: - In the "Absolute Maximum Ratings" section, "Receiver Output Current" parameter. Removed: - In the "Electrical Characteristics" section, "Short-Circuit Current" parameter.

Corporate Headquarters:
5966 La Place Court, Suite 100
Carlsbad, CA 92008
Tel.: +1 (760) 692-0711
Fax: +1 (760) 444-8598
www.maxlinear.com

Abstract

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, the MaxLinear logo, any MaxLinear trademarks (MxL, Full-Spectrum Capture, FSC, G.now, AirPHY, Puma, and AnyWAN), and the MaxLinear logo on the products sold are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights

 reserved. Other company trademarks and product names appearing herein are the property of their respective owners.[^0]
[^0]: © 2022 MaxLinear, Inc. All rights reserved

