$\pm 15 k V$ ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

General Description

The MAX4561/MAX4568/MAX4569 are low-voltage, ESD-protected analog switches. The normally open (NO) and normally closed (NC) inputs are protected against $\pm 15 \mathrm{kV}$ electrostatic discharge (ESD) without latchup or damage, and the COM input is protected against 2.5 kV ESD.
These switches operate from a single +1.8 V to +12 V supply. The 70Ω at 5 V (120Ω at 3 V) on-resistance is matched between channels to 2Ω max, and is flat (4Ω \max) over the specified signal range. The switches can handle Rail-to-Rail ${ }^{\circledR}$ analog signals. Off-leakage current is only 0.5 nA at $+25^{\circ} \mathrm{C}$ and 5 nA at $+85^{\circ} \mathrm{C}$. The digital input has +0.8 V to +2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +5 V supply. The MAX4561 is a single-pole/double-throw (SPDT) switch. The MAX4568 NO and MAX4569 NC are single-pole/single-throw (SPST) switches.
The MAX4561 is available in a 6-pin SOT23 package, and the MAX4568/MAX4569 are available in 5-pin SOT23 packages.

Applications

High-ESD Environments
Battery-Powered Systems
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- ESD-Protected NO, NC $\pm 15 k V$ —Human Body Model $\pm 15 k V$-IEC 1000-4-2, Air-Gap Discharge $\pm 8 k V-I E C$ 1000-4-2, Contact Discharge
- Guaranteed On-Resistance $70 \Omega+5 \mathrm{~V}$ Supply 120Ω with Single +3V Supply
- On-Resistance Match Between Channels (2Ω max)
- Low On-Resistance Flatness: 4Ω max
- Guaranteed Low Leakage Currents
$0.5 n A$ Off-Leakage (at TA $=+25^{\circ} \mathrm{C}$) $0.5 n A$ On-Leakage (at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)
- Guaranteed Break-Before-Make at 5ns (MAX4561 only)
- Rail-to-Rail Signal Handling Capability
- TTL/CMOS-Logic Compatible with +5V Supplies
- Industry Standard Pin-Outs

MAX4561 Pin Compatible with MAX4544 MAX4568/MAX4569 Pin Compatible with MAX4514/MAX4515

Ordering Information

| TEMP
 PART | PIN-
 RANGE | SOT
 PACKAGE |
| :--- | :---: | :---: | :---: |
| TOP MARK | | |$|$

+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.

LOGIC	SWITCH
0	ON
1	OFF

SWITCHES SHOWN FOR LOGIC "0" INPUT.

$\pm 15 k V$ ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

V+ to GND -0.3 to +13 V
IN, COM, NO, NC to GND (Note 1)-0.3V to (V+ + 0.3V)
Continuous Current (any terminal).
$\pm 10 \mathrm{~mA}$
Peak Current
(NO, NC, COM; pulsed at $1 \mathrm{~ms} 10 \%$ duty cycle)......... $\pm 30 \mathrm{~mA}$
ESD Protection per Method IEC 1000-4-2 (NO, NC)
Air-Gap Discharge
$\pm 15 \mathrm{kV}$
Contact Discharge
.$\pm 8 \mathrm{kV}$
ESD Protection per Method 3015.7
V+, GND, IN, COM. $\pm 2.5 \mathrm{kV}$

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{VIH}^{2}=+2.4 \mathrm{~V}, \mathrm{VIL}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Input Voltage Range	$V_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		45	70	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			75	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RoN}$	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	2	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			3	
On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & V_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 2.25 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	4	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			5	
Off-Leakage Current (NO or NC)	INO(OFF), InC(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
COM Off-Leakage Current (MAX4568/MAX4569 only)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
COM On-Leakage Current	ICOM(ON)	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; }$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 4.5 \mathrm{~V}$ or unconnected	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$	-10		10	
LOGIC INPUT							
Input Logic High	V_{IH}			2.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$		-1		1	$\mu \mathrm{A}$

土15kV ESD-Protected, Low-Voltage,
 SPDT/SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{I H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS								
Turn-On Time	ton	$\begin{aligned} & V_{N O}, V_{N C}=3 V, R_{L}=300 \Omega, \\ & C_{L}=35 \mathrm{pF} ; \text { Figure } 1 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			90	150	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				180	
Turn-Off Time	toFF	$\begin{aligned} & V_{N O}, V_{N C}=3 V, R_{L}=300 \Omega, \\ & C_{L}=35 \mathrm{pF}, \text { Figure } 1 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+$			40	80	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			100		
Break-Before-Make Delay (MAX4561 only)	tBBM	$\begin{aligned} & V_{N O}, V_{N C}=3 V, R_{L}= \\ & 300 \Omega, C_{L}=35 \mathrm{pF}, \text { Figure 2 } \end{aligned}$			5	50		ns
Charge Injection	Q	$\begin{aligned} & V_{G E N}=2 \mathrm{~V}, \mathrm{CLL}=1.0 n \mathrm{~F}, \\ & \text { RGEN }=0 ; \text { Figure } 3 \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C} \end{aligned}$	MAX4561	17			pC
				MAX4568/9	6			
NO or NC Off Capacitance	Coff	$\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{NC}}=\mathrm{GND},$ $f=1 \mathrm{MHz} \text {, Figure } 4$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			20		pF
COM Off-Capacitance (MAX4568/MAX4569 only)	Ссом	$\mathrm{V}_{\mathrm{COM}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz},$ Figure 4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			12		pF
COM On-Capacitance	Ссом	$\begin{aligned} & V_{C O M}=V_{N O}, V_{N C}=G N D, \\ & f=1 M H z, \text { Figure } 4 \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C} \end{aligned}$	MAX4561	31			pF
				MAX4568/9	20			
Off-Isolation (Note 6)	VISO	$\begin{aligned} & V_{N O}=V_{N C}=1 V_{R M S}, \\ & R_{L}=50 \Omega ; C_{L}=5 \mathrm{pF}, \\ & f=1 \mathrm{MHz} ; \text { Figure } 5 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-75			dB
Total Harmonic Distortion	THD	$\begin{aligned} & R \mathrm{~L}=600 \Omega, 5 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.01		\%
ESD SCR Holding Current	$\mathrm{IH}^{\text {H }}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		110			mA
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		70			
POWER SUPPLY								
Power-Supply Range	V+				1.8		12	V
Positive Supply Current	I+	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$ or V_{+}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.05		1	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				10	

$\pm 15 k$ V ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
On-Resistance	Ron	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{~V}+=2.7 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		75	120	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			150	
LOGIC INPUT							
Input Logic High	V_{IH}			2.0			V
Input Logic Low	V_{IL}					0.6	V
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 p F$, Figure 1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		150	250	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			300	
Turn-Off Time	tofF	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega,$$C_{L}=35 p F \text {, Figure } 1$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60	100	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			150	
Break-Before-Make Delay (MAX4561 only)	TbBM	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 p F$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.5	80		ns

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
Note 3: Parameters are 100% tested at $+25^{\circ} \mathrm{C}$ and guaranteed by correlation at the full rated temperature.
Note 4: Δ RON $=\operatorname{RON}($ MAX $)-\operatorname{RON}(M I N)$.
Note 5: Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
Note 6: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

士15kV ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT
vs. TEMPERATURE AND SUPPLY VOLTAGE

MAX4561 CHARGE INJECTION vs. VCOM

TURN-ON/TURN-OFF TIME
vs. TEMPERATURE

TURN-ON/TURN-OFF TIME
vs. SUPPLY VOLTAGE

TURN-ON/TURN-OFF TIME vs. VCOM

SCR HOLDING CURRENT

MAX4568/MAX4569 CHARGE INJECTION vs. Vcom

土15kV ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

Typical Operating Characteristics (continued)
($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN			NAME	FUNCTION	
MAX4561	MAX4568	MAX4569		Logic Control Input	
1	4	4	IN	Positive Supply Voltage	
2	5	5	V+	Ground	
3	3	3	GND	Analog Switch Normally Closed Terminal	
4	-	2	NC	Analog Switch Common Terminal	
5	1	1	COM	Analog Switch Normally Open Terminal	
6	2	-			

Applications Information

Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.
Proper power-supply sequencing is recommended for all CMOS devices. Always sequence $\mathrm{V}+$ on first, followed by the logic inputs, $\mathrm{NO} / \mathrm{NC}$, or COM.

Operating Considerations for High-Voltage Supply

The MAX4561/MAX4568/MAX4569 are capable of +12 V single-supply operation with some precautions. The absolute maximum rating for $\mathrm{V}+$ is +13 V (referenced to GND). When operating near this region, bypass $\mathrm{V}+$ with a $0.1 \mu \mathrm{~F}$ min capacitor to ground as close to the device as possible.

$\pm 15 k$ V ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

$\pm 15 k V$ ESD Protection

The MAX4561/MAX4568/MAX4569 are $\pm 15 \mathrm{kV}$ ESD-protected at the NC/NO terminals in accordance with IEC1000-4-2. To accomplish this, bidirectional SCRs are included on-chip between these terminals. When the voltages at these terminals go Beyond-the-Rails ${ }^{\top \mathrm{M}}$, the corresponding SCR turns on in a few nanoseconds and bypasses the surge safely to ground. This method is superior to using diode clamps to the supplies because unless the supplies are very carefully decoupled through low-ESR capacitors, the ESD current through the diode clamp could cause a significant spike in the supplies. This may damage or compromise the reliability of any other chip powered by those same supplies.
There are diodes from NC/NO to the supplies in addition to the SCRs. A resistance in series with each of these diodes limits the current into the supplies during an ESD strike. The diodes protect these terminals from overvoltages that are not a result of ESD strikes. These diodes also protect the device from improper powersupply sequencing.
Once the SCR turns on because of an ESD strike, it remains on until the current through it falls below its "holding current." The holding current is typically 110 mA in the positive direction (current flowing into the NC/NO terminal) at room temperature (see SCR Holding Current vs.Temperature in the Typical Operating Characteristics). Design the system so that any sources connected to $\mathrm{NC} / \mathrm{NO}$ are current-limited to a value below the holding current to ensure the SCR turns off when the ESD event is finished and normal operation resumes. Also, remember that the holding current varies significantly with temperature. The worst case is at $+85^{\circ} \mathrm{C}$ when the holding currents drop to 70 mA . Since this is a typical number to guarantee turnoff of the SCRs under all conditions, the sources connected to these terminals should be current-limited to no more than half this value. When the SCR is latched, the voltage across it is approximately 3 V . The supply voltages do not affect the holding current appreciably. The sources connected to the COM side of the switches need not be current limited since the switches turn off internally when the corresponding SCR(s) latch.
Even though most of the ESD current flows to GND through the SCRs, a small portion of it goes into $V+$. Therefore, it is a good idea to bypass the $\mathrm{V}+$ with $0.1 \mu \mathrm{~F}$ capacitors directly to the ground plane.
ESD protection can be tested in various ways. Inputs are characterized for protection to the following:

Beyond-the-Rails is a trademark of Maxim Integrated Products.
$\bullet \pm 15 \mathrm{kV}$ using the Human Body Model
$\bullet \pm 8 \mathrm{kV}$ using the Contact Discharge method specified in IEC 1000-4-2 (formerly IEC 801-2)
$\bullet \pm 15 \mathrm{kV}$ using the Air-Gap Discharge method specified in IEC 1000-4-2 (formerly IEC 801-2)

ESD Test Conditions

Contact Maxim Integrated Products for a reliability report that documents test setup, methodology, and results.

Human Body Model

Figure 6 shows the Human Body Model, and Figure 7 shows the waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which can be discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor.

IEC 1000-4-2
The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX4561 enables the design of equipment that meets Level 4 (the highest level) of IEC 1000-4-2, without additional ESD protection components.
The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 ESD test model (Figure 8), the ESD withstand voltage measured to this standard is generally lower than that measured using the Human Body Model. Figure 9 shows the current waveform for the $\pm 8 \mathrm{kV}$ IEC 1000-4-2 Level 4 ESD Contact Discharge test.
The Air-Gap test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.

Chip Information

PROCESS: CMOS

土15kV ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

Figure 3. Charge Injection

$\pm 15 k V$ ESD-Protected, Low-Voltage,
 SPDT/SPST, CMOS Analog Switches

Test Circuits/Timing Diagrams (continued)

Figure 4. Channel On/Off-Capacitance

Figure 6. Human Body ESD Test Model

Figure 8. IEC 1000-4-2 ESD Test Model

Figure 5. Off-Isolation/On-Channel

Figure 7. Human Body Model Current Waveform

Figure 9. IED 1000-4-2 ESD Generator Current Waveform

土15kV ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SOT23	$U 5+2$	$\underline{21-0057}$	$\underline{90-0174}$
6 SOT23	$\mathrm{U} 6 \mathrm{SN}+1$	$\underline{21-0058}$	$\underline{90-0175}$

$\pm 15 k V$ ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$4 / 00$	Initial release	-
1	$7 / 12$	Added RoHS packaging option to data sheet	$1,2,10$

[^0]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
$\underline{M A X 4568 E U K+T}$ MAX4569EUK + T MAX4561EUT $+T$

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

