

Sxx35x Series

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

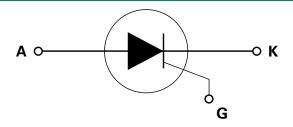
Features & Benefits

- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 500 A

Agency Approval

Agency	Agency File Number	
. 21	J & K Packages: E71639	

Applications


Typical applications are AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Main Features

Symbol	Value	Unit
I _{T(RMS)}	35	А
V_{DRM}/V_{RRM}	400 to 1000	V
I _{GT}	40	mA

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter	Test Conditions	Value	Unit
I _{T(RMS)}	RMS on-state current	T _c = 95°C	35	А
I _{T(AV)}	Average on-state current	T _c = 95°C	22.0	А
Dock non repetitive ourse current		single half cycle; $f = 50Hz$; T_{J} (initial) = 25°C 425		А
^I TSM	Peak non-repetitive surge current si	single half cycle; f = 60Hz; T _J (initial) = 25°C	500	A
l²t	I²t Value for fusing	$t_{p} = 8.3 \text{ ms}$	1035	A ² s
di/dt	Critical rate of rise of on-state current	f = 60Hz ; T _J = 125°C	150	A/µs
I _{GM}	Peak gate current	T _J = 125°C	3.5	А
P _{G(AV)}	Average gate power dissipation T _J = 125°C		0.8	W
T _{stg}	Storage temperature range	-40 to 150	°C	
T _J	Operating junction temperature range		-40 to 125	°C

Electrical Characteristics (T, =	25°C, unless otherwise specified)
----------------------------------	-----------------------------------

Symbol	Test Conditions	Value	Unit		
1			MAX.	40	mA
I _{GT}	$V_D = 12V; R_L = 30\Omega$		MIN.	5	IIIA
V _{GT}			MAX.	1.5	V
		400V		450	
	\/ \/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	600V		425	V/µs
	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 100 {\rm ^{\circ}C}$ dv/dt	800V		400	
dv/dt		1000V	MIN.	200	
		400V		350	
	$V_D = V_{DRM}$; gate open; $T_J = 125$ °C	600V		325	
		800V		300	
V_{GD}	$V_{D} = V_{DRM}$; $R_{L} = 3.3 \text{ k}\Omega$; $T_{J} = 125^{\circ}\text{C}$		MIN.	0.2	V
I _H	$I_T = 400 \text{mA} \text{ (initial)}$		MAX.	50	mA
t _q	(1)		MAX.	35	μs
t _{gt}	$I_{G} = 2 \times I_{GT}$; PW = 15 μ s; $I_{T} = 70$ A		TYP.	2	μs

Notes:

(1) $I_T=2A$; $t_p=50\mu s$; $dv/dt=5V/\mu s$; $di/dt=-30A/\mu s$

Static Characteristics

Symbol	Test Conditions				Value	Unit
V _{TM}		$I_{T} = 70A; t_{p} = 380 \mu s$		MAX.	1.8	V
		T 250C	400 – 600V		10	
		$T_J = 25^{\circ}C$	800 – 1000V		20	
I _{DRM} / I _{RRM} V _{DRM} / V _{RRM}		400 – 600V		1000		
	V _{DRM} / V _{RRM}	T _J = 100°C	800V	MAX.	1500	μΑ
		1000V		3000		
		T 1050C	400 – 600V		2000	
		$T_J = 125^{\circ}C$	800V		3000	

Thermal Resistance

Symbol	Parameter	Value	Unit
$R_{\theta(J-C)}$	Junction to case (AC)	0.7	°C/W

Additional Information

Resources

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

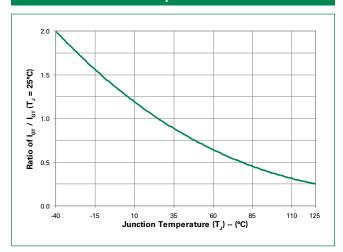


Figure 3: Normalized DC Holding Current vs. Junction Temperature

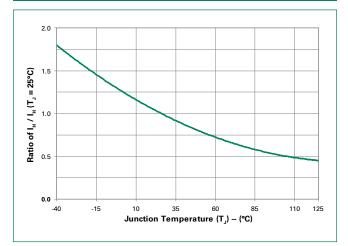


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

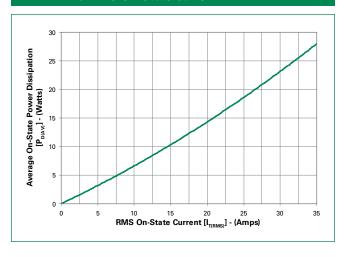


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

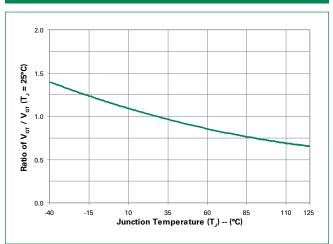


Figure 4: On-State Current vs. On-State Voltage (Typical)

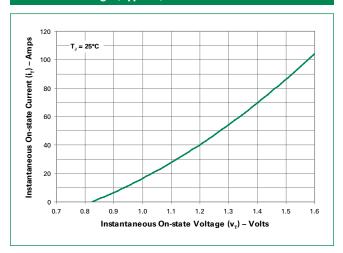


Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

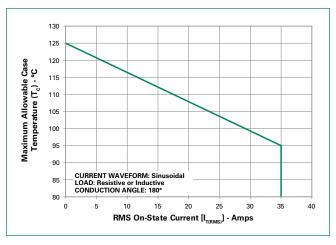
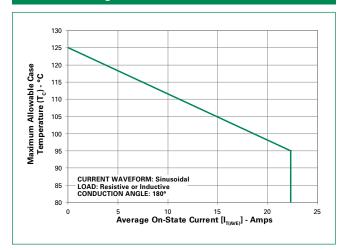



Figure 7: Maximum Allowable Case Temperature vs.
Average On-State Current

Figure 8: Peak Capacitor Discharge Current

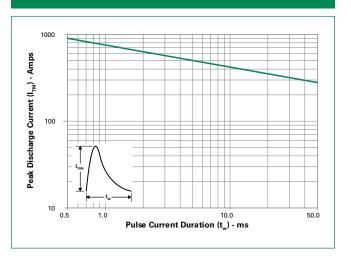


Figure 9: Peak Capacitor Discharge Current Derating

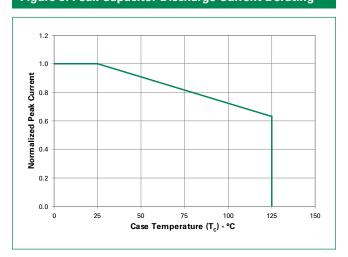
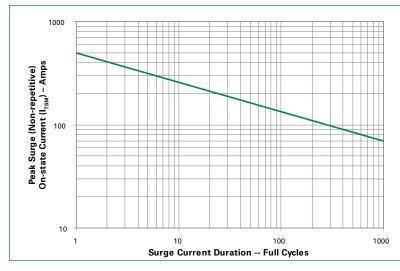
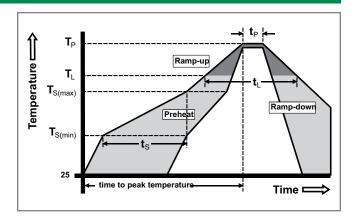



Figure 10: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive

RMS On-State Current: [$I_{T(RMS)}$]: Maximum Rated Value at Specified Case Temperature

Notes:


- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

© 2014 Littelfuse, Inc.
Specifications are subject to change without notice.
Revised: 12/14/14

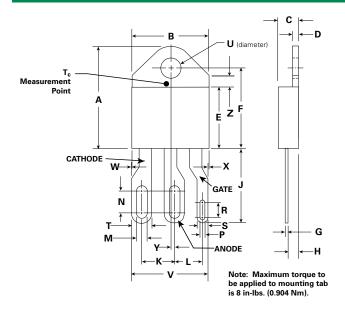
Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
Reliow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260+0/-5 °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C	to peak Temperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

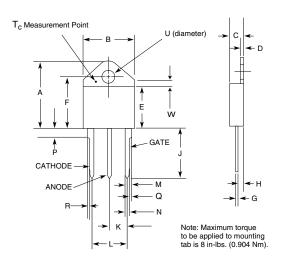
Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Lead Material	Copper Alloy

Design Considerations


Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions	
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours	
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time	
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity	
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C	
Low-Temp Storage	1008 hours; -40°C	
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwelltime at each temperature; 10 sec (max) transfer time between temperature	
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H	
Resistance to Solder Heat	MIL-STD-750 Method 2031	
Solderability	ANSI/J-STD-002, category 3, Test A	
Lead Bend	MIL-STD-750, M-2036 Cond E	



Dimensions - TO- 218X (J Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millim	eters
Dimension	Min	Max	Min	Max
А	0.810	0.835	20.57	21.21
В	0.610	0.630	15.49	16.00
С	0.178	0.188	4.52	4.78
D	0.055	0.070	1.40	1.78
Е	0.487	0.497	12.37	12.62
F	0.635	0.655	16.13	16.64
G	0.022	0.029	0.56	0.74
Н	0.075	0.095	1.91	2.41
J	0.575	0.625	14.61	15.88
K	0.256	0.264	6.50	6.71
L	0.220	0.228	5.58	5.79
М	0.080	0.088	2.03	2.24
N	0.169	0.177	4.29	4.49
Р	0.034	0.042	0.86	1.07
R	0.113	0.121	2.87	3.07
S	0.086	0.096	2.18	2.44
Т	0.156	0.166	3.96	4.22
U	0.164	0.165	4.10	4.20
V	0.603	0.618	15.31	15.70
W	0.000	0.005	0.00	0.13
Χ	0.003	0.012	0.07	0.30
Υ	0.028	0.032	0.71	0.81
Z	0.085	0.095	2.17	2.42

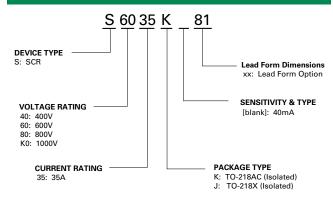
Dimensions – TO- 218AC (K Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millim	neters
Difficusion	Min	Max	Min	Max
А	0.810	0.835	20.57	21.21
В	0.610	0.630	15.49	16.00
С	0.178	0.188	4.52	4.78
D	0.055	0.070	1.40	1.78
Е	0.487	0.497	12.37	12.62
F	0.635	0.655	16.13	16.64
G	0.022	0.029	0.56	0.74
Н	0.075	0.095	1.91	2.41
J	0.575	0.625	14.61	15.88
K	0.211	0.219	5.36	5.56
L	0.422	0.437	10.72	11.10
М	0.058	0.068	1.47	1.73
N	0.045	0.055	1.14	1.40
Р	0.095	0.115	2.41	2.92
Q	0.008	0.016	0.20	0.41
R	0.008	0.016	0.20	0.41
U	0.164	0.165	4.10	4.20
W	0.085	0.095	2.17	2.42

Teccor® brand Thyristors 35 Amp Standard SCRs

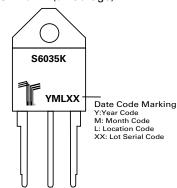
Product Selector

Part Number	Voltage				Gate Sensitivity	Timo	Package
	400V	600V	800V	1000V	Gate Sensitivity	Туре	гаскаде
Sxx35K	X	X	X	X	40mA	Standard SCR	TO-218AC
Sxx35J	X	X	X		40mA	Standard SCR	TO-218X


Note: xx = Voltage

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Sxx35KTP	Sxx35K	4.40g	Tube	250 (25 per tube)
Sxx35JTP	Sxx35J	5.23g	Tube	250 (25 per tube)


Note: xx = Voltage

Part Numbering System

Part Marking System

TO-218 AC - (K Package) TO-218 X - (J Package)

