
Rainbowduino LED driver platform (Atmega328)

Product Overview

The Rainbowduino board is an Arduino compatible controller board with professional LED driving capacity. It will

drive an 8x8 RGB Led Matrix (Common Anode).

Features:

 No external circuit required, plug and shine!

 24 constant current channels of 120mA each

 8 super source driver channel of 500mA each

 Wide output voltage adaption from 6.5V-12VDC

 Dedicated GPIO and ADC

 Hardware UART and I2C communication

 Easy cascading

 Small form and light weight

General IO and ADC pins

ADC6, ADC7 and PD2 are reserved for Rainbowduino to interact with additional sensors, modules, or switches to

form various flexible projects.

Schematic Overview

http://www.seeedstudio.com/wiki/File:RAINBOW-Rainbowduino_01_LRG.jpg
http://www.seeedstudio.com/wiki/File:RAINBOW-Rainbowduino_LRG.jpg

Constant Current LED driver – MBI5168
MBI5168 is designed for LED display applications, with PrecisionDriveTM technology to enhance its output

characteristics. MBI5168 contains a serial buffer and data latches, which convert serial input data into parallel output

format, eight regulated current ports are designed to provide uniform and constant current sinks for driving LEDs

within a large range of Vf variations.

Datasheet: File:RAINBOW-MBI5168 Datasheet VA.02-English.pdf

Microprocessor - Atmega 168/328
Atmega 168/328 has enough resources to generate 4096 color for 64 dots while providing complete I2C and Uart

communication. Alternatively it can drive 192 single coloured LEDs, providing 16 levels of intensity for each one.

More importantly they are the most popular MCU among open source hardware community, making it compatible to

Arduino IDE and the vast knowledge pool.

Datasheet: http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf

Super Source Driver - M54564P
M54564P is an 8 circuit output-sourcing Darlington transistor arrays, widely used with proven performance. The

most critical feature meeting our requirement is its fast turn-off time of 4.3ms which guarantee a vivid rendering.

Datasheet: File:RAINBOW-M54564P.pdf

Constant Current LED driver – MBI5168
MBI5168 is designed for LED display applications, with PrecisionDriveTM technology to enhance its output

characteristics. MBI5168 contains a serial buffer and data latches, which convert serial input data into parallel output

format, eight regulated current ports are designed to provide uniform and constant current sinks for driving LEDs

within a large range of Vf variations.

Datasheet: File:RAINBOW-MBI5168 Datasheet VA.02-English.pdf

Work Modes

The Rainbowduino can run in different work modes, which are depending on its environment.

http://www.seeedstudio.com/wiki/File:RAINBOW-MBI5168_Datasheet_VA.02-English.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf
http://www.seeedstudio.com/wiki/File:RAINBOW-M54564P.pdf
http://www.seeedstudio.com/wiki/File:RAINBOW-MBI5168_Datasheet_VA.02-English.pdf
http://www.seeedstudio.com/wiki/File:RAINBOW-Schematic-overview.jpg

Standalone Mode (plug and shine)

Needed Hardware:

 1 x Rainbowduino

 1 x RGB LED Matrix

The simplest work mode, no external Systems needed (only a ttl serial adapter to upload the firmware). The LED

matrix content is generated by the Rainbowduino itself.

Use Case:

 Simple real-time animations calculated by the Rainbowduino

 Display pre-stored animations, limited due the 32kb ROM of the Rainbowduino

UART Mode

Needed Hardware:

 1x Rainbowduino

 1x RGB LED Matrix

 1x TTL Level converter

 1x UART sender unit (Arduino, PC...)

Send data (LED matrix content) from your computer to one Rainbowduino. As the Rainbowduino does not have a

USB connector but a TTL serial connection you need a TTL serial level converter (BusPirate, UartSBee, Arduino...).

Use Case:
PC or Arduino generated frames displayed on ONE Led Matrix

I2C Mode

Needed Hardware:

 1..n x Rainbowduino

 1..n x RGB LED Matrix

 1 x I2C master device (for example an

Arduino)

 Some cables

Send data (LED matrix content) from your

computer to multiple Rainbowduino’s. A side-

note if you use an Arduino with an FTDI USB

to Serial adapter (Duemillanove, Diecimila...) -

there is a Latency of ~16ms to send data from

your computer to the Arduino. The new

Arduino UNO have a much lower latency

~4ms.

http://www.seeedstudio.com/wiki/File:RAINBOW-i2c-cabling.png

Use Case:
PC or Arduino generated frames displayed on multiple Led Matrices

I2C Cascading

Rainbowduino is designed for easy casacading. After physically connected, power is passed on, and you may control

the chain by I2C. Please note that each Rainbowduino must be assigned for a uniqe address for I2C communication.

Prepare the power connection:

Rainbowduino cascaded:

http://www.seeedstudio.com/wiki/File:RAINBOW-chain-prepare.png
http://www.seeedstudio.com/wiki/File:RAINBOW-chained.png

LED devices Compatibility

Before direct plug into the female pin-headers, please verify if the RGB dot matrix are proven compatible. The

concern is mainly on the pin out, where same color LEDs are in cluster, here we attach the scheme and photo

demonstration. The color sequence might change, since the controlling logic are open source and easily

reprogrammable.

The power of Rainbowduino is well beyond driving a RGB dot-matrix. With 192 output count, and up to 120mA

constant current capacity, you may easily populate massive LED setups. The output current of each channel (IOUT)

is set by an external resistor, Rext. The relationship between Iout and Rext is shown in the following figure. Please

refer to MBI5168 data-sheet for more details. Adjusting the 1k Potentiometer clockwise to reduce the output current

(default minimal 20mA for RGB dotmatrix), rotating counter-clockwise to increase the output current. The

potentiometers are single circle, please NOTE that strong force will break it into unlimited rotatable, then you would

need a multimeter to adjust. :)

This means you can build your own LED matrix without any additional resistors.

http://www.seeedstudio.com/wiki/File:RAINBOW-ledmatrix-schema.png

Get Started

Now you know about the Rainbowduino hardware, lets look how a firmware gets into the Rainbowduino.

Please note, there are different firmwares available for different use cases. For more information check the chapter

"Rainbowduino Firmware".

Requirements

Software:

 Ardunio Software, get it from http://arduino.cc/en/Main/Software

Hardware:

 Rainbowduino board (surprising, eh?)

 A Common Anode RGB Matrix (for example http://www.seeedstudio.com/depot/60mm-square-88-led-

matrix-super-bright-rgb-p-113.html?cPath=20)

 An Arduino board (Optional)

http://arduino.cc/en/Main/Software
http://www.seeedstudio.com/depot/60mm-square-88-led-matrix-super-bright-rgb-p-113.html?cPath=20
http://www.seeedstudio.com/depot/60mm-square-88-led-matrix-super-bright-rgb-p-113.html?cPath=20
http://www.seeedstudio.com/wiki/File:RAINBOW-ledmatrix-voltage.png
http://www.seeedstudio.com/wiki/File:RAINBOW-connected-matrix.png

Prepare Rainbowduino Hardware

Connect the RGB LED Matrix to the Rainbowduino. Connect "Pin 1" to the red connection block - mistaken

orientation will not damage anything, though.

Hint: Pin1 is marked by a square solder point, while the other pins use a round solder point (see

Rainbowduino_LED_driver_platform_-_Atmega_328#LED_devices_Compatibility).

Upload Firmware

To upload a firmware to the Rainbowduino we need a TTL serial line. There are multiple methods to do that

(Arduino, UartSB, BusPirate, Serial-USB-Cables...).

Use Arduino to Upload firmware

You could try upload your firmware to the Rainbowduino using an Arduino. However, there might be some issues

when using the same atmel uP chip on the Arduino and Rainbowduino (Atmel 328). Here is a forum answer of

ant9000 about uploading the firmware using an Arduino duemillanove:

I tried exactly the same thing with my Arduino Duemilanove (368 based) and Rainbowduino v2 (same chip) with no

luck (it was the very reason that lead me to study the Arduino bootloader process, in fact). What I can tell is that in

theory your setup with identical chips should not work, since they share the same bootloader. One possibility is that

one of the two boards uses the old 19200 baud bootloader, while the other has the new running at 57600 - the

Arduino IDE is smart enough to notice when programming the board, and you won't even know it.

So if this does not work for you, you need an UartSB (or another ttl serial convertor like an old nokia phone cable).

Prepare Arduino

In order to use the Arduino to upload the firmware to the Rainbowduino, make sure that the Arduino is clean - we

need to upload an empty firmware sketch to it. So open the Arduino IDE and paste this sketch into it:

void setup() {}

void loop() {}

and upload it to your Arduino.

Upload Firmware to Rainbowduino

Open the Rainbowduino firmware, select the correct board (Tools-->board--> Arduino Duemilanove or Nano w/

ATmega328) and upload the Firmware. At least that’s the theory ;)

For your viewing pleasure, here is the connection scheme:

http://www.seeedstudio.com/wiki/Rainbowduino_LED_driver_platform_-_Atmega_328#LED_devices_Compatibility
http://www.seeedstudio.com/forum/viewtopic.php?f=11&t=922&start=10
http://www.neophob.com/2007/06/ttl-to-serial-for-dummies-openwrt-serial-console/

We use an external power source, however you could also use the 5V from the Arduino.

Please note: If you own a Rainbowduino v1 board, you need to select the "Arduino Diecimila, Duemilanove, or

Nano w/ ATmega168"!

Arduino Rainbowduino

RESET DTR

GND GND

RX RX

TX TX

Use UartSB to Upload firmware

Those screenshot's shows how to connect the UartSBee to the Rainbowduino:

http://www.seeedstudio.com/wiki/File:RAINBOW-fritz-uploadfw.png

If you connect the UartSBee to the USB bus, it should register a new serial port. Now simply upload your firmware

using the new serial port.

Use a Buspirate to Upload firmware / bootloader

I'm explaining three methods of programming (all using the buspirate):

- programming through the ISP.

- programming using avrdude and manual reset (no patching necessary)

- programming through avrdude with a tiny patch.

DISCONNECT THE RAINBOWDUINO FROM THE DISPLAY AND POWER.

STEP 1: To use the Buspirate you need a new version of avrdude [1]. I'm using version 5.10 and that recognizes the '-

c buspirate' programmer option. You can test this with

./avrdude -c buspirate -C ./avrdude.conf

If this complains about the programmer, then you need a newer version of the buspirate.

http://download.savannah.gnu.org/releases/avrdude/
http://www.seeedstudio.com/wiki/File:RAINBOW-beeONE.jpg
http://www.seeedstudio.com/wiki/File:RAINBOW-beeTWO.jpg

STEP 2: connect the buspirate to the rainbowduino ISP connector like this:

Buspirate ISP ISP pin

GND GND 6

+5V Vcc 2

CS RESET 5

MOSI MOSI 4

MISO MISO 1

SCL/CLK SCK 3

STEP 3: find the correct bootloader (I'm using the tiny optiboot firmware). Copy this file to your freshly compiled

avrdude directory.

STEP 4: program the atmega 328p with

./avrdude -v -c buspirate -p m328p -C ./avrdude.conf -P /dev/ttyUSB0 -U

flash:w:optiboot_atmega328.hex

This takes a very long time...

I started with uploading firmwares without the bootloader and that works fine. Trick is to get the HEX files from the

arduino IDE. In version 0.22-Linux they are stored in /tmp/buildXXXXXXXXXXXX and NOT in the sketches

directory. Just issue the 'Upload' command without any programmer connected (press <shift> during while pressing

the 'upload' button to get much debug info from the arduino ide).

After you have the bootloader on the rainbowduino you can use the transparent serial interface of the buspirate. Set

the baudrate to 115200 and enter the '(3)' macro to activate transparent mode. The buspirate now acts like a USB-

serial converter (any other FTDI like usb-serial converter could be used). Issue with the buspirate is that there is no

DTR to reset the arduino with. You now have to time the reset and upload manually. Pressing reset after starting the

upload seems to work best.

HiZ>m

1. HiZ

2. 1-WIRE

3. UART

4. I2C

5. SPI

6. JTAG

7. RAW2WIRE

8. RAW3WIRE

9. PC KEYBOARD

10. LCD

(1) >3

Mode selected

Set serial port speed: (bps)

1. 300

2. 1200

3. 2400

4. 4800

5. 9600

6. 19200

7. 38400

8. 57600

9. 115200

10. 31250 (MIDI)

(1) >9

Data bits and parity:

1. 8, NONE *default

2. 8, EVEN

3. 8, ODD

4. 9, NONE

(1) >

Stop bits:

1. 1 *default

2. 2

(1) >

Receive polarity:

1. Idle 1 *default

2. Idle 0

(1) >

Select output type:

1. Open drain (H=Hi-Z, L=GND)

2. Normal (H=3.3V, L=GND)

(1) >2

READY

UART>(3)

UART bridge. Space continues, anything else exits.

Reset to exit.

After that you can program the arduino with the bootloader:

./avrdude -v -c stk500v1 -p m328p -b 115200 -F -C ./avrdude.conf -P /dev/ttyUSB0 -U

flash:w:Rainbow_Plasma.cpp.hex

One step further is to patch avrdude in the file 'arduino.c'. The buspirate sends the 'rts' signal with the wrong polarity

to the arduino but by swapping 1 for 0 and 0 for 1 that is fixed.From then on you have to choose 'arduino' as

programmer instead of 'stk500v1'.

static int arduino_open(PROGRAMMER * pgm, char * port)

{

 fprintf(stderr, "arduino_open...\n");

 strcpy(pgm->port, port);

 serial_open(port, pgm->baudrate? pgm->baudrate: 115200, &pgm->fd);

 /* Clear DTR and RTS to unload the RESET capacitor

 * (for example in Arduino) */

 serial_set_dtr_rts(&pgm->fd, 1);

 usleep(50*1000);

 /* Set DTR and RTS back to high */

 serial_set_dtr_rts(&pgm->fd, 0);

 usleep(50*1000);

 /*

 * drain any extraneous input

 */

 stk500_drain(pgm, 0);

 if (stk500_getsync(pgm) < 0)

 return -1;

 return 0;

}

Note: change the programmer type used by the arduino ide in the 'boards.txt' file.

Source: buspirate-avr-programming [2], Bus_Pirate_AVR_Programming [3], Optiboot [4]

Rainbowdunio Firmware

This list should give you an overview on all available firmwares today.

Neorainbowduino Firmware

http://hintshop.ludvig.co.nz/show/buspirate-avr-programming/
http://dangerousprototypes.com/docs/Bus_Pirate_AVR_Programming
http://code.google.com/p/optiboot/

This firmware bundle comes with two firmwares (one for a Arduino, one for the Rainbowduino) and a Processing

library. You can send data from any Application via the serial line to the Arduino - the Arduino then sends the images

to the corresponding Rainbowduino device. I created an easy-to-use Processing library to get started.

Source: http://code.google.com/p/neorainbowduino/

Features:

 I2C enabled firmware (supports multiple Rainbowduino’s)

 Processing library, so you can easily control your Rainbowduino from Processing!

 Send full frames from Processing to Rainbowduino

 Send frames from Processing to your RGB matrix, each frame has a size of 8x8 pixel, 12bit color resolution

(4096 colors). The color conversion is handled by the library

 Optimized processing lib - send only frames to Rainbowduino if needed (save ~50% of traffic - of course it

depends on your frames)

 Fixed buffer swapping (no more flickering)

 Added i2c bus scanner, find your Rainbowduinos if you forget their addresses

Supported Work Modes: I2C

Requirements

This firmware allows you to use Processing to control the rainbowduino, so its obvious you need:

 Processing Software, get it from http://processing.org/

If you don't like Processing (JAVA) you are not limited to it. Check http://wish.seeedstudio.com/?p=320 for an

example using autoitscript sending data to the Arduino.

Patches for Arduino IDE

Because the neorainbowduino firmware sends full frames via I2c (92 bytes) we need to patch the I2c buffer size for

the arduino (to optimize transfer speed). I hope the Arduino supports variable buffer size in near future. Make sure

your Arduino IDE is closed if you patch the files!

File to patch: Java/libraries/Wire/utility/twi.h

Reason: Increase the I2C speed from 100kHz to 400kHz, increase the I2C buffer size from 32 bytes to 98 bytes

Original File Patched File

#ifndef TWI_FREQ

#define TWI_FREQ 100000L

#endif

#ifndef TWI_BUFFER_LENGTH

#define TWI_BUFFER_LENGTH 32

#endif

#ifndef TWI_FREQ

#define TWI_FREQ 400000L

#endif

#ifndef TWI_BUFFER_LENGTH

#define TWI_BUFFER_LENGTH 98

#endif

File to patch: Java/libraries/Wire/Wire.h

Reason: Increase the Serial buffer size from 32 bytes to 98 bytes

Original File Patched File

#define BUFFER_LENGTH 32 #define BUFFER_LENGTH 98

Upload Firmware to Rainbowduino

Upload the firmware (see Upload Firmware), the firmware file you need is

rainbowduinoFw/Rainbow_V2_71/Rainbow_V2_71.pde.

http://code.google.com/p/neorainbowduino/
http://processing.org/
http://wish.seeedstudio.com/?p=320
http://www.autoitscript.com/autoit3/index.shtml

Note: This firmware use the I2C protocol to communicate - each Rainbowduino needs a unique I2C address. The

address can be configured by editing the Rainbowduino.h file (#define I2C_DEVICE_ADDRESS 0x06). So dont

forget to change the address if you upload this firmware to more than one rainbowduino's!

Upload Firmware to Arduino

Disconnect the RX/TX lines between Rainbowduino and Arduino. Upload the Arduino firmware

arduinoFw/neoLed/neoLed.pde to the Arduino.

Interact with Rainbowduino

This chapter will show you a simple way to communicate with your Rainbowduino. You need an Arduino (working

as a serial to I2C gateway) and a Rainbowduino with an I2C address of 0x06.

The connection between the Rainbowduino and Arduino should look like this:

We use an external power source, however you could also use the 5V from the Arduino.

Arduino Rainbowduino

RESET DTR

GND GND

Analog IN 4 SDA

Analog IN 5 SDL

Install Processing Libraries

After you installed the Processing Software, you'll need to install the neorainbowduino libraray. You can find the

processing library in the processingLib\distribution\neorainbowduino-x.y\download directory. Unpack the zip-file

to your Processing home folder (there is a README.TXT file inside for detailed instructions, how to install).

http://www.seeedstudio.com/wiki/File:RAINBOW-neorainbow.png

When you start Processing you should able to import the neorainbowduino library):

Simple Example

Here is a very simple Processing sketch to send som random rectangles to the rainbowduino.

 import processing.serial.*;

 import com.neophob.lib.rainbowduino.test.*;

 import com.neophob.lib.rainbowduino.*;

 static final int SIZE = 400;

 Rainbowduino r;

 void setup() {

 frameRate(15);

 background(0);

 size(SIZE, SIZE);

 //initialize rainbowduino

 List<Integer> list = new ArrayList<Integer>();

 list.add(6); //use rainbowduino with slave id 6

 try {

 r = new Rainbowduino(this, list);

 System.out.println("ping: "+r.ping());

 } catch (Exception e) {

 println("FAILED to open serial port!!");

 e.printStackTrace();

 }

 smooth();

 noStroke();

 }

 void draw() {

 //draw some simple stuff on screen

 color c1 = color(128+(int)random(64), 128, (int)random(255));

 fill(c1);

 int size = 80+(int)random(80);

 int x = (int)random(SIZE);

 int y = (int)random(SIZE);

 rect(x, y, size, size);

 //send PApplet to the Rainbowduino lib - and send it to slave id 6

 r.sendRgbFrame((byte)6, this);

 }

http://www.seeedstudio.com/wiki/File:RAINBOW-processing-lib.png

TODO add some screenshots

How Image resizing works

The image will be resized using an Area Averaging Filter. So its important to know, that the image should be

correctly aligned. Aligned means, that the result looks good if the image can be divided by 8. Here is a good and bad

example:

Good example (aligned) Bad example (not aligned)

mtXcontrol Firmware

Source: http://www.rngtng.com/mtxcontrol/

Features:

http://www.rngtng.com/mtxcontrol/
http://www.seeedstudio.com/wiki/File:RAINBOW-resize-good-src.png
http://www.seeedstudio.com/wiki/File:RAINBOW-resize-bad-src.png
http://www.seeedstudio.com/wiki/File:RAINBOW-resize-good-dst.png
http://www.seeedstudio.com/wiki/File:RAINBOW-resize-bad-dst.png

 mtXcontrol is an editor written in Processing to easily create image sequences for several output devices

containing multicolor LED matrix.

Supported Work Modes: ???

Firmware 3

Source: http://code.google.com/p/rainbowduino-firmware/

Features:

 double-buffering synced with refresh rate

 4 auxiliary buffers

 hi-level instruction set

 multiple controlled hardware

 I2C communication protocol

 permanent data storage in Eeprom

Supported Work Modes: I2C

RainbowDashboard

Source: http://code.google.com/p/rainbowdash/

Features:

 Clean, maintainable code base.

 Compatible with standard firmware.

 Supports UART mode (no Arduino host needed - talk to Rainbowduino directly).

 Double-buffered graphics operations.

 Software real-time clock.

 Animation driven by the Rainbowduino itself.

 Full Windows ANSI (CP1252) character set.

 High-level command set.

Supported Work Modes: UART

Can easily be changed to use I2C; only one file (RainbowDash.pde) needs to be changed.

Seeedstudio Firmware

Source: http://code.google.com/p/rainbowduino/

Supported Work Modes: ???

How the Firmware works

Microprocessor - Atmega 168/328

http://code.google.com/p/rainbowduino-firmware/
http://code.google.com/p/rainbowdash/
http://code.google.com/p/rainbowduino/

PORTD PORTB PORTC

pin02 / PD0 / RXD pin14 / PB0 / INT0 pin23 / PC0 / SDI

pin03 / PD1 / TXD pin15 / PB1 / INT1 pin24 / PC1 / CLK

pin04 / PD2 / INT0 pin16 / PB2 / INT2 pin25 / PC2 / LE

pin05 / PD3 / INT19 pin17 / PB3 / INT3 pin26 / PC3 / OE

pin06 / PD4 / INT20 pin18 / PB4 / INT4 pin27 / PC4 / SDA

pin11 / PD5 / INT21 pin19 / PB5 / INT5/SCK pin28 / PC5 / SDL

pin12 / PD6 / INT22

pin13 / PD7 / INT23

PORTB maps to Arduino digital pins 8 to 13 The two high bits (6 & 7) map to the crystal pins and are not usable.

PORTC maps to Arduino analog pins 0 to 5. Pins 6 & 7 are only accessible on the Arduino Mini.

PORTD maps to Arduino digital pins 0 to 7.

Constant Current LED driver

http://www.seeedstudio.com/wiki/File:RAINBOW-Schema.png

This driver uses the MBI5168. The MBI5168 is a 8bit shift register. It converts the serial data to parallel data. All 3

MBI5168 share the LE,CLK and OE input.

Name Desc

OE
Output Enabled, when (active) low, the output drivers are enabled; when high, all output drivers are turned

OFF (blanked).

LE
Data strobe input terminal, Serial data is transfered to the respective latch when LE is high. The data is

latched when LE goes low.

SDI Serial data input to the shift register.

SDO Serial data output to the following SDI of next driver IC.

R-

EXT
Input terminal used to connect an external resistor dor setting up output current for all output channels.

CLK Clock input terminal for data shift on rising edge

Super Source Driver

Shift out data

To display a full frame on the LED Matrix, the Rainbowduino interrupt method needs to be called 128 times. There

are 8 lines and 16 brightness levels. Each time the displayNextLine() method gets called, one line gets updated by the

current brightness level. After all 8 lines are updated the brightness level gets updated. That’s why this function needs

128 cycles until a full frame is populated on the LED Matrix.

http://en.wikipedia.org/wiki/Shift_register
http://www.seeedstudio.com/wiki/File:RAINBOW-Mbi-schema.png
http://www.seeedstudio.com/wiki/File:RAINBOW-schema-M5456.png

Below you see the LED Matrix display after 32, 64, 96 and 128 cycles. You notice how the brightness is increased.

Support more than 4096 colors (12bit)

The stock firmware (and most 3rd party firmwares) support 12bit color resolution. It is possible to increase this:

Color Resolution Payload Brightness Level

12 bit (4bit per color), 4096 Colors 96 bytes (12bit*64=768bit) 16

15 bit (5bit per color), 32768 Colors 120 bytes (15bit*64=960bit) 32

The benefit of using 4bits per color is the data storage, one byte takes 2 color values - thus it's easy to get the color

from a byte buffer. Using 5bits per color needs more cpu power or more buffer space (use 2 bytes for 3 color values -

wasting 1bit per color).

To achieve 15 bit color resolution, the firmware needs two changes:

 loop over 32 instead 16 brightness levels

 change the shift out function

Appendix

Technical Specification

Microprocessor Atmega 328

PCB size 60mm * 60mm * 1.6mm

Indicators Reset, Power, Pin 13 LED

Power supply 6.5-12 VDC (9 VDC recommended)

Power connector 2 pin JST Terminal Blocks, 3mm DC Jacks

Cascading Power Connector Terminal Blocks

Program interface UART / ISP

LED dot-matrix sockets 32

Expansion socket 2.54mm bended pinheader pair

Communication Protocols I2C / UART

RHOS Yes

Electrical Specification

Specification Min Typ Max Unit

Input Voltage 6.5 9 12 VDC

Global Current Consumption

600 2000 mA

http://www.seeedstudio.com/wiki/File:RAINBOW-fw.1.png

Constant Current Channels (Cathode)

24

Constant Current per channel (Cathode)

20 120 mA

Source Driver Current per channel (Common-Anode)

500 mA

Source Driver Voltage per channel (Common-Anode)

9 12 VDC

Source Drive Channels

8

Drive LED count

192

Circuit Response Time 10

ns

RGB Led Matrix color resolution per dot

4096

Uart Baud Rate

115200 baud

FAQ

Please list your question here:

Bug Tracker

Bug Tracker is the place you can publish any bugs you think you might have found during use. Please write down

what you have to say, your answers will help us improve our products.

There is a bug, which is only visible one several matrices, and only if you show a dark image:

Note the red and green lines.

http://www.seeedstudio.com/wiki/File:RAINBOW-bug.jpg

It may be a timing issue, its present on all popular firmwares.

Additional Idea

The Additional Idea is the place to write your project ideas about this product, or other usages you've found. Or you

can write them on Projects page.

Resources

The resources need to be downloaded, like Eagle file, Demo code, project or other datasheet.

 EAGLE Files: File:RAINBOW-Rainbowduino v2.0 Source.rar

How to buy

The Bazaar link for Rainbowduino LED driver platform - Atmega 328 is

http://www.seeedstudio.com/depot/rainbowduino-led-driver-platform-atmega-328-p-371.html?cPath=163_169, more

products information please check SEEED Bazaar, Please have fun!

See Also

Other related products and resources.

Licensing

This documentation is licensed under the Creative Commons Attribution-ShareAlike License 3.0 Source code and

libraries are licensed under GPL/LGPL, see source code files for details.

External Links

Links to external webpages which provide more application ideas, documents/datasheet or software libraries:

 A Huge DIY LED Matrix

 Generic Rainbowduino information

http://www.seeedstudio.com/wiki/File:RAINBOW-Rainbowduino_v2.0_Source.rar
http://www.seeedstudio.com/depot/rainbowduino-led-driver-platform-atmega-328-p-371.html?cPath=163_169
http://www.seeedstudio.com/depot
http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/licenses/gpl.html
http://www.neophob.com/2010/11/huge-rgb-led-matrix/
http://www.neophob.com/2010/07/rainbowduino-fun-aka-neorainbowduino/

