

Q6035NAH5

Main Features

Symbol	Value	Unit
I _{T(RMS)}	35	А
V_{DRM}/V_{RRM}	600	V
I _{GT (O1)}	50	mA

Description

The 35 Amp bi-directional solid state switch series is designed for AC switching and phase control applications such as motor speed and temperature modulation controls, lighting controls, and static switching relays.

Standard type components normally operate in Quadrants I & III triggered from AC line.

Standard alternistor triac components operate with in-phase signals in Quadrants I or III and ONLY unipolar negative gate pulses for Quadrant II or III. The alternistor triac will not operate in Quadrant IV. These are used in circuit applications requiring a high dv/dt capability.

Features & Benefits

- RoHS Compliant
- Glass passivated junctions
- Voltage capability up to 600V
- AEC-Q101 Qualified
- Surge capability up to 350A at 60 Hz half cycle
- L-Package isolation rating of 2500V rms
- Automotive Level Manufacture Control

Applications

Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls.

Typical applications are AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances.

Alternistor Triacs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Schematic Symbol

Absolute Maximum Ratings — Alternistor Triac (3 Quadrants)

Symbol	Param	Value	Unit		
I _{T(RMS)}	RMS on-state current (full sine wave)	Q6035NAH5	T _C = 90°C	35	А
I _{TSM}	Non repetitive surge peak on-state current (full cycle, T _J initial = 25°C)	f = 50 Hz f = 60 Hz	t = 20 ms t = 16.7 ms	290 350	А
l²t	I²t Value for fusing	-	$t_p = 8.3 \text{ ms}$	508	A²s
di/dt	Critical rate of rise of on-state current $(I_G = 200 \text{mA})$ with $\leq 0.1 \mu \text{s}$ rise time)	f = 120 Hz	T _J = 125°C	100	A/µs
I _{GTM}	Peak gate trigger current	t _p =20μs	T _J = 125°C	4	А
$P_{G(AV)}$	Average gate power dissipation		T _J = 125°C	0.5	W
T_{stg}	Storage temperature range			-40 to 125	°C
T_J	Operating junction temperature range			-25 to 125	°C

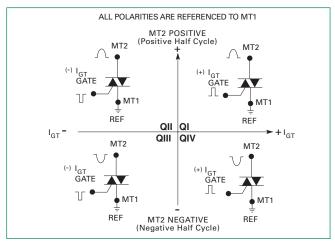
Electrical Characteristics (T_J = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants)

Symbol	Test Conditions	Quadrant		Q6035NAH5	Unit
I _{GT}	$V_D = 12V R_L = 30 \Omega$	1 – 11 – 111	MAX.	50	mA
$V_{\rm GT}$	$V_D = 12V R_L = 30 \Omega$	1 – 11 – 111	MAX.	2	V
$V_{\sf GD}$	V_{GD} $V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_J = 125 ^{\circ}\text{C}$		MIN.	0.2	V
I _H	$I_T = 400 \text{mA}$		MAX.	75	mA
dv/dt	$V_D = V_{DRM}$ Gate Open $T_J = 125^{\circ}C$	600V	MIN.	400	V/µs
(dv/dt)c	$(di/dt)c = 18.9 \text{ A/ms T}_J = 125^{\circ}\text{C}$		MIN.	20	V/µs
t _{gt}	35A device $I_g = 2 \times I_{gT}$ PW = 15 μ s $I_T = 49.5$ A(pk)	I – II III	TYP.	3 11	μs

Note: xx = voltage/10

Static Characteristics

Symbol	Test Conditions					Value	Unit
V_{TM}	35A device $I_{TM} = 49.5A t_p = 380 \mu s$ MAX.					1.5	V
I _{DRM}	\/ -\/ /\/	Q6035NAH5	T _J = 25°C	600V	MAX.	10	μА
I	$V_{D} = V_{DRM} / V_{RRM}$	Q0035INAH5	T _J = 125°C	600V	IVIAA.	2	mA


Thermal Resistances

Symbol	Parameter		Value	Unit
$R_{\theta(J-C)}$	Junction to case (AC)	Q6035NAH5	0.85	°C/W

Note: xx = voltage/10

Figure 1: Definition of Quadrants

Note: Alternistors will not operate in QIV

Figure 3: Normalized DC Holding Current vs. Junction Temperature

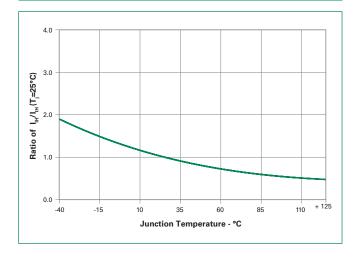


Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

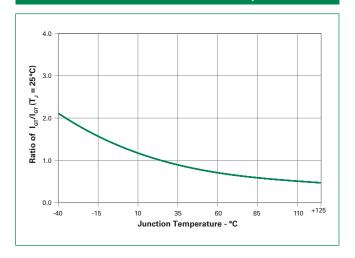


Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

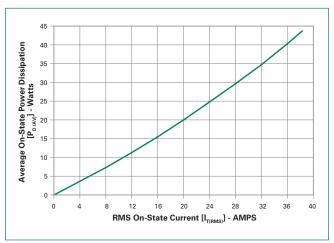



Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Note: xx = voltage

Figure 7: On-State Current vs. On-State Voltage (Typical)

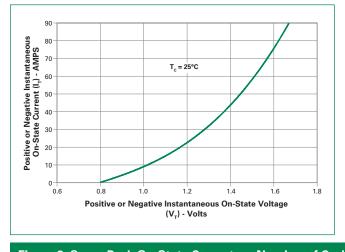


Figure 6: Maximum Allowable Case Temperature vs. On-State Current

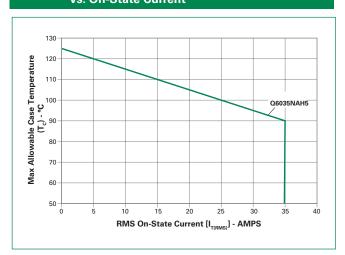
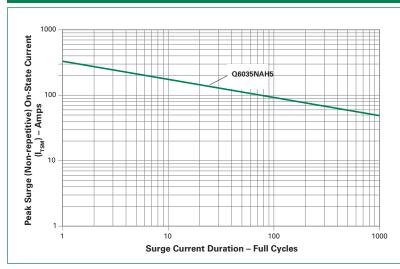
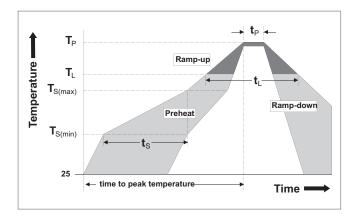



Figure 8: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal

Load: Resistive

RMS On-State [I_{\mathsf{T(RMS)}}]: Max Rated Value at Specific Case Temperature


Notes:

- Gate control may be lost during and immediately following surge current interval.
- 2) Overload may not be repeated until junction temperature has returned to steady-state rated value.

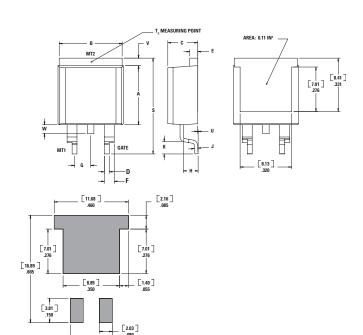
Soldering Parameters

Reflow Cond	lition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	- Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L -	Ramp-up Rate	5°C/second max	
D-fl	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Time (min to max) (t _s)	60 - 150 seconds	
Peak Temper	rature (T _p)	260+0/-5 °C	
Time within (t _p)	5°C of actual peak Temperature	20 - 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to	peak Temperature (T _p)	8 minutes Max.	
Do not exceed		280°C	

Physical Specifications

Terminal Finish	100% Matte Tin-plated.
Body Material	UL Recognized compound meeting flammability rating V-0
Terminal Material	Copper Alloy

Design Considerations


Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 1000 cycles; -40°C to +150°C; 15-min dwell- time
Temperature/Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
UHAST	JESD22A-118, 96 hrs, 130°C/ 85% RH
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

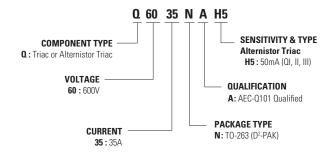
Dimensions — TO-263 (N-Package) — D² Pak Surface Mount

Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
Α	0.360	0.370	9.14	9.40
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
E	0.045	0.060	1.14	1.52
F	0.060	0.075	1.52	1.91
G	0.095	0.105	2.41	2.67
Н	0.092	0.102	2.34	2.59
J	0.018	0.024	0.46	0.61
K	0.090	0.110	2.29	2.79
S	0.590	0.625	14.99	15.88
V	0.035	0.045	0.89	1.14
U	0.002	0.010	0.05	0.25
w	0.040	0.070	1.016	1.78

Thyristors35 Amp Alternistor (High Commutation) Triacs

Product Selector

Part Number	Gate Sens		sitivity Quadrants		Туре	Poolvogo	
Part Number	600V	I – II – III IV	IV	T(RMS)	туре	Package	
Q6035NAH5	Χ	50 mA		35A	Alternistor Triac	TO-263 D ² -PAK	

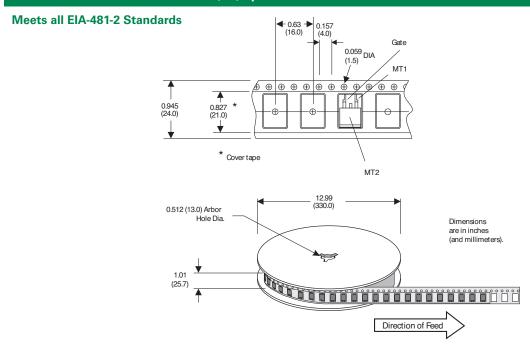

Note: xx = Voltage/10

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Q6035NAH5RP	Q6035NAH5	1.60 g	Embossed Carrier	500

xx = voltage/10

Part Numbering System



Part Marking System

TO-263 AB - (N Package)

TO-263 Embossed Carrier Reel Pack (RP) Specifications

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

<u>Littelfuse</u>: Q6035NAH5RP