

C2M0040120D

Silicon Carbide Power MOSFET C2M[™] MOSFET Technology

N-Channel Enhancement Mode

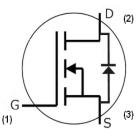
Features

- High Blocking Voltage with Low On-Resistance
- High Speed Switching with Low Capacitances
- Easy to Parallel and Simple to Drive
- . Resistant to Latch-Up
- . Halogen Free, RoHS Compliant

Benefits

- **Higher System Efficiency** .
- **Reduced Cooling Requirements**
- Increased Power Density
- Increased System Switching Frequency

Applications


- Solar Inverters
- Switch Mode Power Supplies
- High Voltage DC/DC converters
- . **Battery Chargers**
- Motor Drives
- . **Pulsed Power Applications**

V _{DS}	1200 V
I _D @ 25℃	55 A
$R_{DS(on)}$	40 mΩ

Package

TO-247-3

Part Number	Package	Marking	
C2M0040120D	TO-247-3	C2M0040120	

Maximum Ratings (T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{DSmax}	Drain - Source Voltage	1200	V	V _{GS} = 0 V, I _D = 100 μA	
V_{GSmax}	Gate - Source Voltage	-10/+25	V	Absolute maximum values	
V _{GSop}	Gate - Source Voltage	-5/+20	V	Recommended operational values	
	Orational Desig Oracat	55	_	V _{GS} = 20 V, T _C = 25°C	Fig. 19
ID	Continuous Drain Current	36		V _{GS} = 20 V, T _C = 100°C	
I _{D(pulse)}	Pulsed Drain Current	160	А	Pulse width t_P limited by T_{jmax}	Fig. 22
P _D	Power Dissipation	278	w	T _c =25°C, T _J = 150 °C	Fig. 20
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to +150	°C		
TL	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s	
M _d	Mounting Torque	1 8.8	Nm Ibf-in	M3 or 6-32 screw	

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	1200		İ	V	V _{GS} = 0 V, I _D = 100 µA		
V	Cata Threshold Valtage	2.0	3.2	4	V	V_{DS} = V_{GS} , I_{D} = 10mA	Fig. 11	
$V_{GS(th)}$	Gate Threshold Voltage		2.4		V	$V_{\text{DS}} = V_{\text{GS}}$, $I_{\text{D}} = 10 \text{mA}$, $T_{\text{J}} = 150 \text{ °C}$		
I _{DSS}	Zero Gate Voltage Drain Current		1	100	μA	V _{DS} = 1200 V, V _{GS} = 0 V		
I _{GSS}	Gate-Source Leakage Current			250	nA	V _{GS} = 20 V, V _{DS} = 0 V		
R	Drain-Source On-State Resistance		44	52	mΩ	V _{GS} = 20 V, I _D = 40 A	Fig. 4,5,6	
$R_{DS(on)}$			82		11152	V _{GS} = 20 V, I _D = 40 A, T _J = 150 °C		
g _{fs}	Transconductance		18.2		s	V _{DS} = 20 V, I _{DS} = 40 A	— Fig. 7	
915			17.2			V _{DS} = 20 V, I _{DS} = 40 A, T _J = 150 °C		
C_{iss}	Input Capacitance		2440			$V_{GS} = 0 V$	Fig. 17,18	
Coss	Output Capacitance		171		pF	$V_{DS} = 1000 V$		
Crss	Reverse Transfer Capacitance		11	1	1	f = 1 MHz	17,10	
E _{oss}	C _{oss} Stored Energy		89	İ	μJ	V _{AC} = 25 mV	Fig 16	
Eon	Turn-On Switching Energy (Body Diode)		1.7			V _{DS} = 800 V, V _{GS} = -5/20 V	Fig. 25	
EOFF	Turn Off Switching Energy (Body Diode)		0.4		mJ	$I_{D} = 40A, R_{G(ext)} = 2.5\Omega, L = 99 \ \mu H$		
Eon	Turn-On Switching Energy (External SiC Diode)		1.3			V _{DS} = 800 V, V _{GS} = -5/20 V		
EOFF	Turn Off Switching Energy (External SiC Diode)		0.4]	$I_{D} = 40A, R_{G(ext)} = 2.5\Omega, L = 99 \ \mu H$		
$t_{\text{d(on)}}$	Turn-On Delay Time		13			V _{DD} = 800 V, V _{GS} = -5/20 V		
tr	Rise Time		61]	$I_{\rm D} = 40$ A		
$t_{\text{d(off)}}$	Turn-Off Delay Time		25		ns	$R_{G(ext)} = 2.5 \Omega, R_{L} = 20 \Omega$ Timing relative to V _{DS}	Fig. 27	
t _f	Fall Time		13		1	Per IEC60747-8-4 pg 83		
$R_{G(int)}$	Internal Gate Resistance		1.8		Ω	f = 1 MHz, V _{AC} = 25 mV		
Q_{gs}	Gate to Source Charge		34			V _{DS} = 800 V, V _{GS} = -5/20 V		
\mathbf{Q}_{gd}	Gate to Drain Charge		42		nC	I _D = 40 A	Fig. 12	
Qg	Total Gate Charge		120]	Per IEC60747-8-4 pg 21		

Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Reverse Diode Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _{SD}	Diode Forward Voltage			V	V _{GS} = - 5 V, I _{SD} = 20 A, T _J = 25 °C	Fig. 8, 9,
V SD		3.6		V	V _{GS} = - 5 V, I _{SD} = 20 A, T _J = 150 °C	10
ls	Continuous Diode Forward Current		60	А	T _c = 25 °C	Note 1
I _{S, pulse}	Diode Pulse Current		160	А	V_{gs} = - 5 V, Pulse width t _P limited by T _{jmax}	
t _{rr}	Reverse Recovery Time	54		ns	V _{GS} = - 5 V, I _{SD} = 40 A T _J = 25 °C	Note 1
Q _{rr}	Reverse Recovery Charge	283		nC	VR = 800 V dif/dt = 1000 A/µs	
۱ ۳۳۳	Peak Reverse Recovery Current	15		А		

Note (1): When using SiC Body Diode the maximum recommended V_{gs} = -5V

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
R _{eJC}	Thermal Resistance from Junction to Case	0.33	0.45	°C/W		Fig. 01
R _{eJC}	Thermal Resistance from Junction to Ambient		40	C/W		Fig. 21

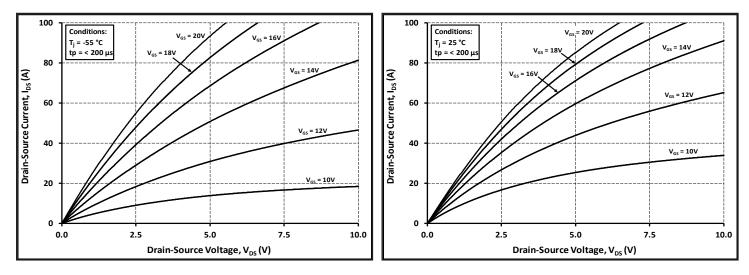


Figure 1. Output Characteristics T_J = -55 °C

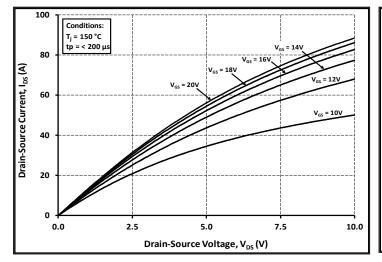


Figure 3. Output Characteristics T_J = 150 °C

140 Conditions: V_{GS} = 15 V _p < 200 μs 120 On Resistance, R_{DS On} (mOhms) 100 T_j = 150 80 60 T_j = 25 °C 40 T_i = -55 °C 20 0 0 20 40 60 80 100 Drain-Source Current, I_{DS} (A)

Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 2. Output Characteristics T_J = 25 °C

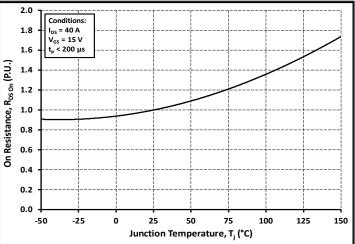
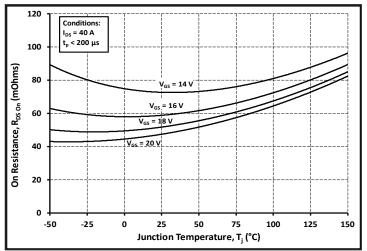
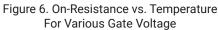
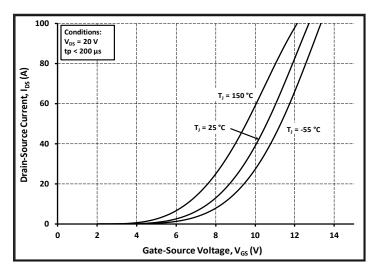
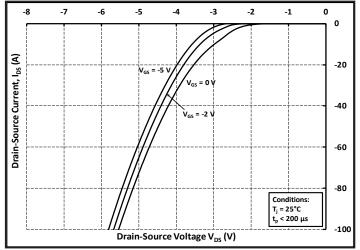
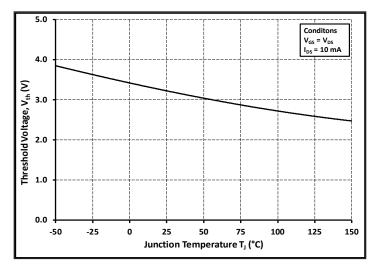




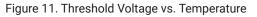
Figure 4. Normalized On-Resistance vs. Temperature

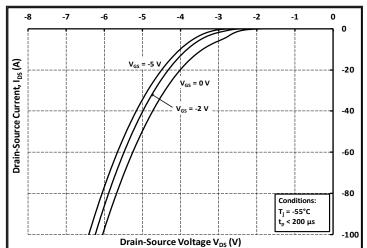



4

Downloaded from Arrow.com.







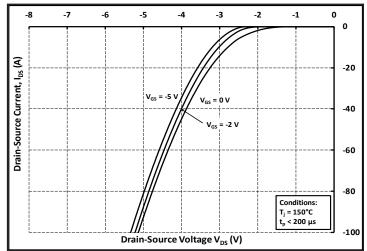
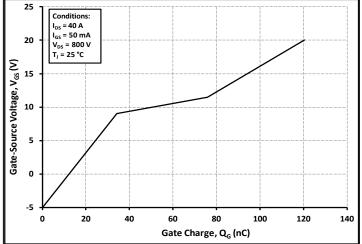
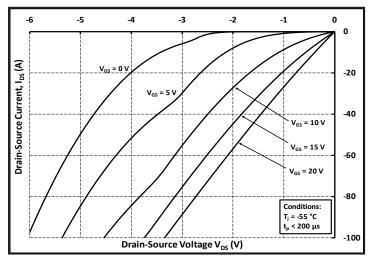
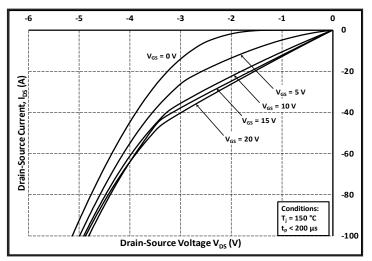
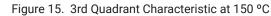
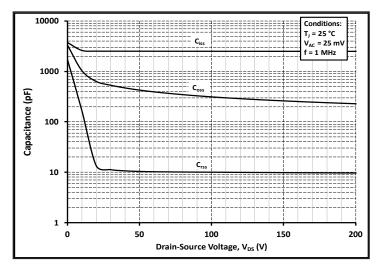
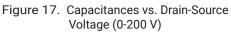
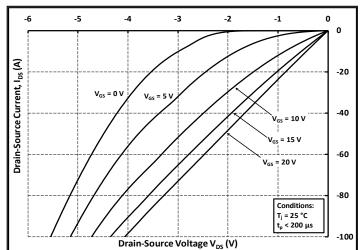



Figure 10. Body Diode Characteristic at 150 °C


Figure 13. 3rd Quadrant Characteristic at -55 °C

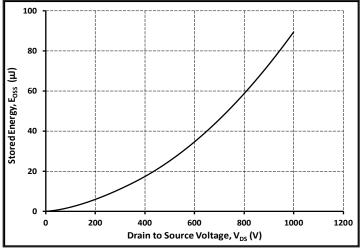
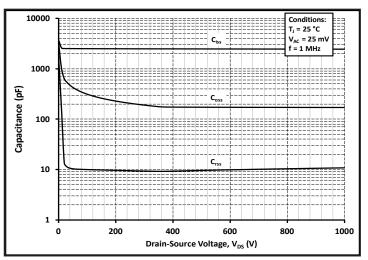
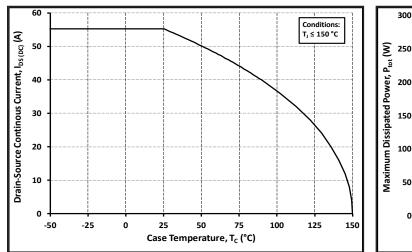
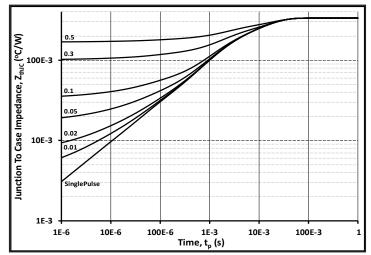
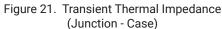
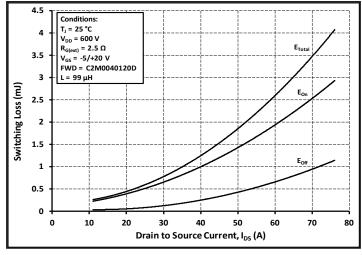
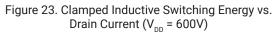


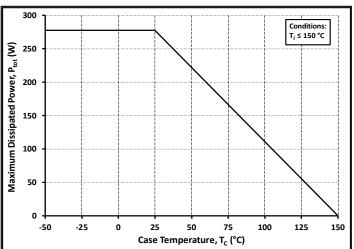
Figure 16. Output Capacitor Stored Energy

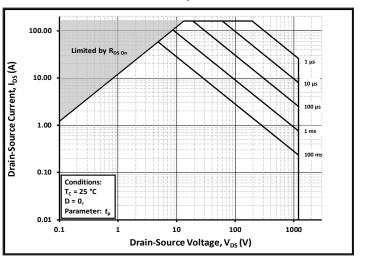




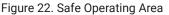

Figure 18. Capacitances vs. Drain-Source Voltage (0-1000 V)











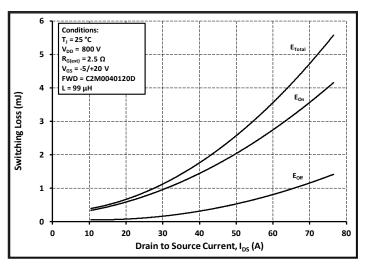


Figure 24. Clamped Inductive Switching Energy vs. Drain Current (V_{DD} = 800V)

7

Downloaded from Arrow.com.

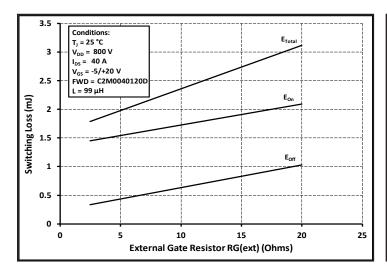


Figure 25. Clamped Inductive Switching Energy vs. $R_{G(ext)}$

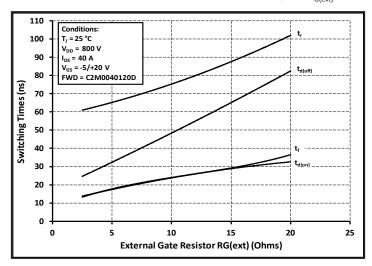
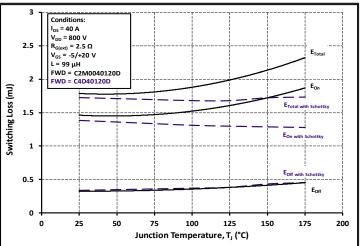
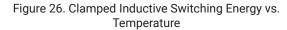




Figure 27. Switching Times vs. $R_{G(ext)}$

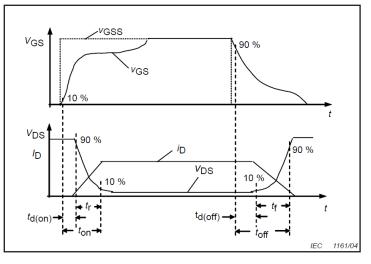


Figure 28. Switching Times Definition

Test Circuit Schematic

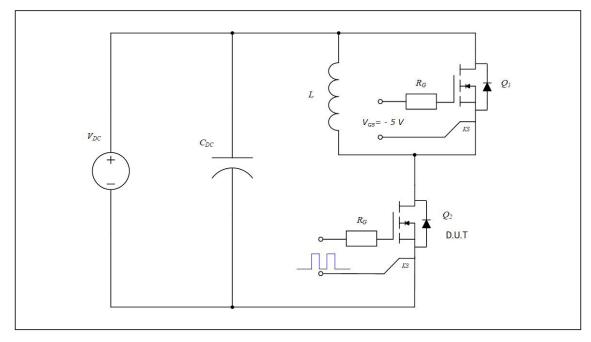
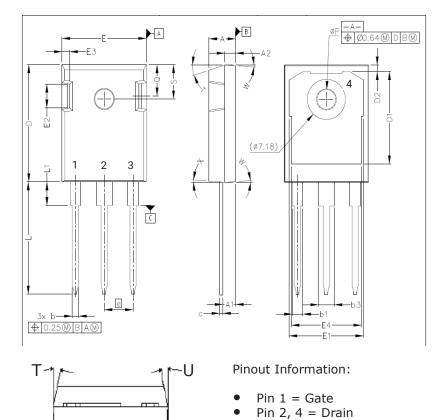


Figure 29. Clamped Inductive Switching Waveform Test Circuit

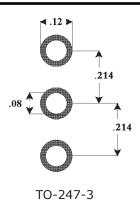

ESD Ratings

ESD Test	Resulting Classification
ESD-HBM	3A (4000V - 8000V)
ESD-CDM	C3 (>=1000V)

Package Dimensions

Package TO-247-3

•


Pin 3 =Source

	MILLIM	ETERS	INCHES			
SYM	MIN	MAX	MIN	MAX		
A	4.83	5.21	.190	.205		
A1	2.29	2.54	.090	.100		
A2	1.91	2.16	.075	.085		
b	1.07	1.33	.042	.052		
b1	1.91	2.41	.075	.095		
b3	2.87	3.38	.113	.133		
с	0.55	0.68	.022	.027		
D	20.80	21.10	.819	.831		
D1	16.25	17.65	.640	.695		
D2	0.95	1.25	.037	.049		
E	15.75	16.13	.620	.635		
E1	13.10	14.15	.516	.557		
E2	3.68	5.10	.145	.201		
E3	1.00	1.90	.039	.075		
E4	12.38	13.43	.487	.529		
e	5.44 BSC	2	.214 BSC			
N	3		3			
L	19.81	20.32	.780	.800		
L1	4.10	4.40	.161	.173		
ØP	3.51	3.65	.138	.144		
Q	5.49	6.00	.216	.236		
S	6.04	6.30	.238	.248		
Т	17.5° REF.					
W	3.5° REF.					
X	4° REF.					

Recommended Solder Pad Layout

V-

W

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems.

Related Links

- C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support

Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power