
AUTOMOTIVE GRADE

AUIRF7342Q

Features

- Advanced Planar Technology
- Low On-Resistance
- Logic Level Gate Drive
- Dual P Channel MOSFET
- Dynamic dv/dt Rating
- 150°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free, RoHS Compliant
- Automotive Qualified *

G	D	S
Gate	Drain	Source

Description

Specifically designed for Automotive applications, this cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

Bass part number	Baakaga Tupa	Standard Pack		Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
AUIRF7342Q	SO-8	Tape and Reel	4000	AUIRF7342QTR

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units	
V _{DS}	Drain-Source Voltage	-55	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.4		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-2.7	A	
I _{DM}	Pulsed Drain Current ①	-27		
P _D @T _A = 25°C	Maximum Power Dissipation ①	2.0	10/	
P _D @T _A = 70°C	T _A = 70°C Maximum Power Dissipation		- W	
Linear Dearating Factor		0.016	mW°/C	
V _{GS}			N/	
V _{GSM}	** **		- V	
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 2	114	mJ	
dv/dt Peak Diode Recovery dv/dt ③		5.0	V/ns	
TJ	Operating Junction and -55 to + 150		°C	
T _{STG}	Storage Temperature Range		C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JA}$	Junction-to-Ambient		62.5	°C/W

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

AUIRF7342Q

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-55			V	V _{GS} = 0V, I _D = -250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.054		V/°C	Reference to 25°C, $I_D = -1mA$
D	Statia Drain ta Source On Desistence		0.095	0.105	0	V _{GS} = -10V, I _D = -3.4A ④
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.150	0.170	Ω	V _{GS} = -4.5V, I _D = -2.7A ④
V _{GS(th)}	Gate Threshold Voltage	-1.0		-3.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
gfs	Forward Trans conductance	3.3			S	V _{DS} = -10V, I _D = -3.1A
	Drain to Source Lookage Current			-2.0	uА	V_{DS} = -55V, V_{GS} = 0V
	Drain-to-Source Leakage Current			-25	μΑ	V _{DS} = -55V,V _{GS} = 0V,T _J =55°C
1	Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
IGSS				100	nA	V _{GS} = 20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Paramotor	Min	Typ	Max	Unite	Conditions
Diode Cha	racteristics			_	_	
C _{rss}	Reverse Transfer Capacitance		86			<i>f</i> = 1.0MHz, See Fig.9
Coss	Output Capacitance		210		pF	V _{DS} = -25V
C _{iss}	Input Capacitance		690			V _{GS} = 0V
t _f	Fall Time		22	32		R _D = 16Ω ④
t _{d(off)}	Turn-Off Delay Time		43	64	115	$R_G = 6.0\Omega$
t _r	Rise Time		10	15	ns	I _D = -1.0A
t _{d(on)}	Turn-On Delay Time		14	22		$V_{DD} = -28V$
Q _{gd}	Gate-to-Drain Charge		8.4	13		V _{GS} = -10V, See Fig.10 ④
Q _{gs}	Gate-to-Source Charge		3.0	4.5	nC	$V_{DS} = -44V$
Q_{g}	Total Gate Charge		26	38		I _D = -3.1A
	9 , (,		

Parameter Min. | Typ. | Max. | Units Conditions **Continuous Source Current** MOSFET symbol -2.0 ls (Body Diode) showing the А Pulsed Source Current integral reverse -27 I_{SM} (Body Diode) ① p-n junction diode. Diode Forward Voltage -1.2 V V_{SD} $T_J = 25^{\circ}C, I_S = -2.0A, V_{GS} = 0V ④$ Reverse Recovery Time 54 T_J = 25°C ,I_F = -2.0A, 80 t<u>rr</u> ns Q_{rr} Reverse Recovery Charge 85 130 nC di/dt = 100A/µs ④

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11)
- ② Starting $T_J = 25^{\circ}C$, L = 20mH, $R_G = 25\Omega$, $I_{AS} = -3.4A$. (See Fig. 8)
- $\label{eq:ISD} \textcircled{3} \quad I_{SD} \leq \textbf{-3.4A}, \ di/dt \leq 150 \text{A}/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 150^\circ C.$
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- $\ensuremath{\mathbb{S}}$ When mounted on 1" square copper board , t < 10sec.

VGS -15V -12V -10V -8.0V -4.5V -4.0V -3.5V -3.0V

1000

тор

BOTTOM

≤60µs PULSE WIDTH

100

Tj = 25°C

10

-V $_{\text{DS}}$, Drain-to-Source Voltage (V)

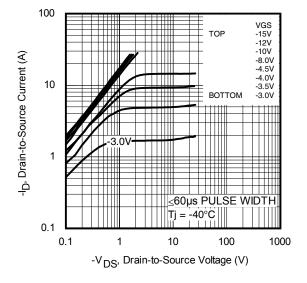


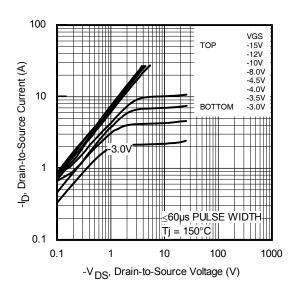
Fig. 1 Typical Output Characteristics

Fig. 2 Typical Output Characteristics

100

10

1


0.1

0.1

·З

1

-I_D, Drain-to-Source Current (A)

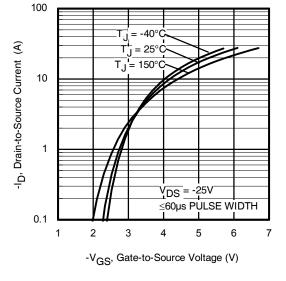


Fig. 3 Typical Output Characteristics

Fig. 4 Typical Transfer Characteristics

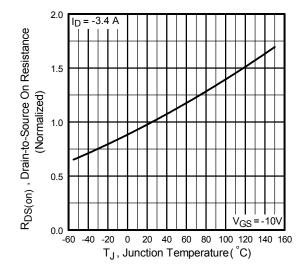
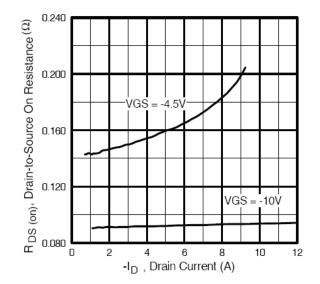
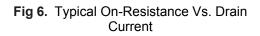




Fig 5. Normalized On-Resistance Vs. Temperature

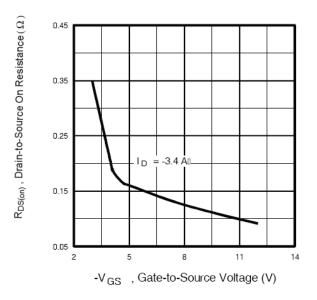
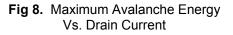



Fig. 7 Typical On-Resistance Vs. Gate Voltage

300 ١D E_{AS} , Single Pulse Avalanche Energy (mJ) TOP -1.5A -2.7A -3.4A 250 BOTTOM 200 150 100 50 0 L 25 50 125 150 75 100 Starting T J Junction Temperature (°C)

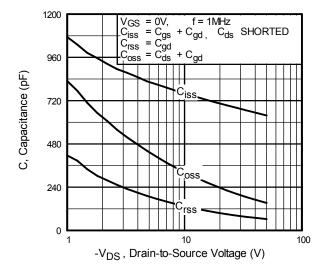
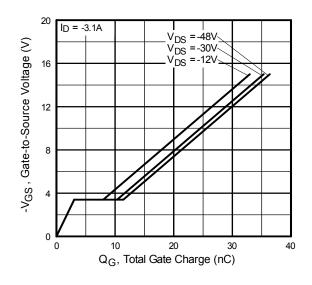
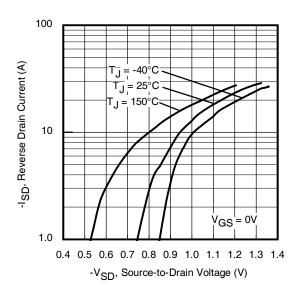
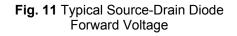
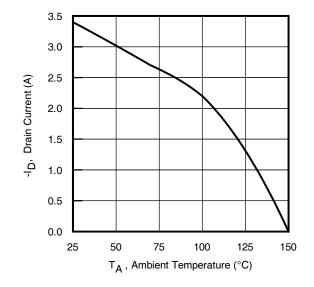
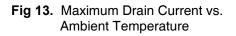


Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage


Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

100 **OPERATION IN THIS AREA** LIMITED BY R_{DS}(on) Drain-to-Source Current (A) 10 00µsec msed 1 10msec ہ ٩ Tc = 25°C Tj = 150°C Single Pulse 0.1 10 100 1 $-V_{DS}$, Drain-toSource Voltage (V)

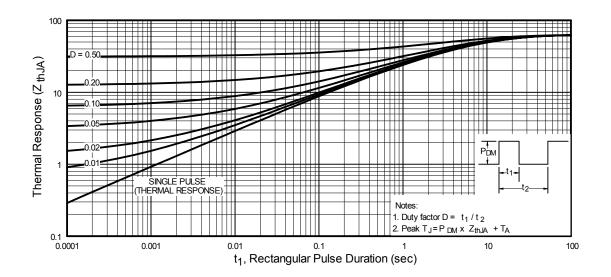
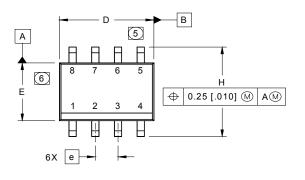
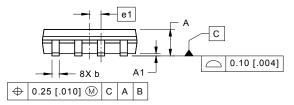
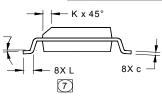
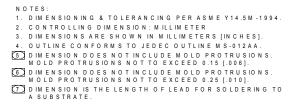
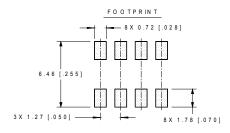
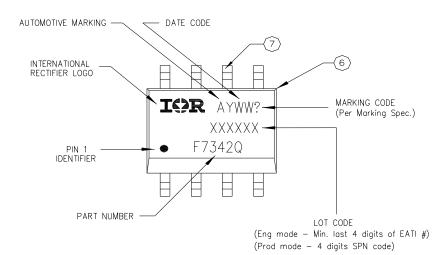




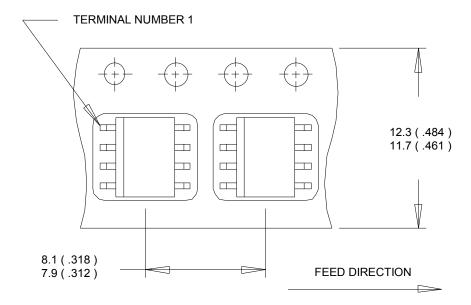
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient



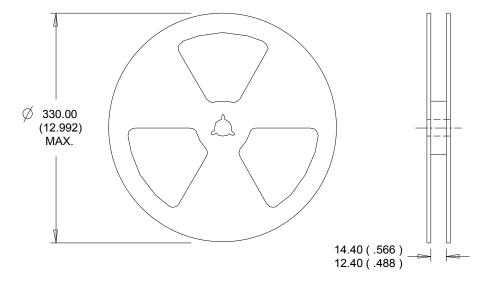

SO-8 Package Outline (Dimensions are shown in millimeters (inches)




DIM	INCHES		MILLIM	ETERS	
DIN	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B/	ASIC	1.27 BASIC		
e 1	.025 B/	ASIC	0.635 E	BASIC	
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	



SO-8 Part Marking Information



SO-8 Tape and Reel (Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Qualification Information

		Automotive (per AEC-Q101)					
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.					
Moisture Sensitivity Level		SO-8	MSL1				
			Class M2 (+/- 200V) [†]				
	Machine Model		AEC-Q101-002				
	Liveran Dady Madal		Class H1A (+/- 500V) [†]				
ESD	Human Body Model	AEC-Q101-001					
		Class C5 (+/- 1125V) [†]					
	Charged Device Model		AEC-Q101-005				
RoHS Compliant		Yes					

+ Highest passing voltage.

Revision History

Date	Comments			
3/27/2014	Added "Logic Level Gate Drive" bullet in the features section on page 1			
5/2//2014	Updated data sheet with new IR corporate template			
9/30/2015	Updated datasheet with corporate template			
9/30/2015	Corrected ordering table on page 1.			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.