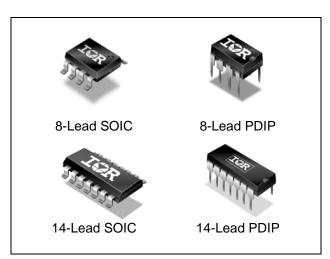


High and Low Side Driver

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage
- dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V and 5 V logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5 V offset
- Lower di/dt gate driver for better noise immunity
- Output source/sink current 4 A / 4 A
- RoHS compliant


Description

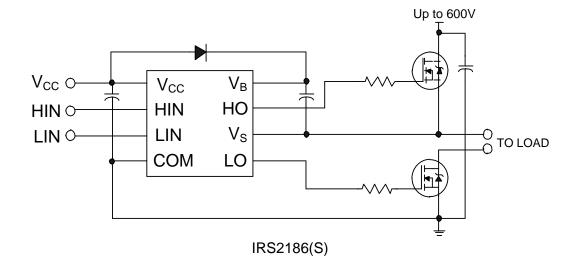
The IRS2186(4) are high voltage, high speed power MOSFET and IGBT drivers with independent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

Product Summary

V _{OFFSET}	600 V
I _{O+/-}	4 A / 4 A
V _{OUT}	10 V – 20 V
Ton/off (typ.)	170 & 170 ns

Package Options

Ordering Information


Daga Bart Novelson	Package Type	Standar	d Pack	Orderskie Deut Normber	
Base Part Number	Form Quantity		Orderable Part Number		
IRS2186SPBF	SO8N	Tube 95		IRS2186SPBF	
IRS2186SPBF	SO8N	Tape and Reel 2500		IRS2186STRPBF	
IRS21864SPBF	SO14N	Tube	55	IRS21864SPBF	
IRS21864SPBF	SO14N	Tape and Reel 2500		IRS21864STRPBF	
IRS2186PBF	PDIP8	Tube	50	IRS2186PBF	
IRS21864PBF	PDIP14	Tube	25	IRS21864PBF	

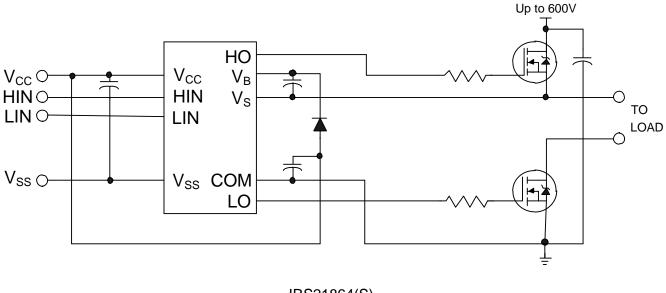


Table of Contents	Page
Description	1
Ordering Information	1
Typical Connection Diagram	3
Absolute Maximum Ratings	4
Recommended Operating Conditions	4
Dynamic Electrical Characteristics	5
Static Electrical Characteristics	5
Functional Block Diagrams	6
Lead Definitions	7
Lead Assignments	7
Application Information and Additional Details	8
Package Details: PDIP8, SO8N	21
Package Details: PDIP14, SO14N	22
Tape and Reel Details: SO8N	23
Tape and Reel Details: SO14N	24
Part Marking Information	25
Qualification Information	27

Typical Connection Diagram

IRS21864(S)

(Refer to Lead Assignments for correct pin configuration). These diagrams show electrical connections only. Please refer to our Application Notes and Design Tips for proper circuit board layout.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating absolute voltage		-0.3	620 [†]	
Vs	High side floating supply offset voltage	9	V _B - 20	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	
Vcc	Low side and logic fixed supply voltag	е	-0.3	20 [†]	V
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN & LIN)		V _{SS} - 0.3	V _{CC} + 0.3	
V _{SS}	Logic ground (IRS21864)		V _{CC} - 20	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transic	Allowable offset supply voltage transient			V/ns
		8 lead PDIP	_	1	
	Package power dissipation	8 lead SOIC	_	0.625	1 ,,,
P_{D}	@ T _A ≤ +25°C	14 lead PDIP	_	1.6	W
		14 lead SOIC	_	1	
		8 lead PDIP	_	125	
5.1	Thermal resistance, junction to	8 lead SOIC	_	200	oc/w ∣
Rth _{JA}	ambient	14 lead PDIP	_	75	- 0/00
		14 lead SOIC	_	120	
TJ	Junction temperature	_	150		
T _S	Storage temperature	-50	150	°C	
TL	Lead temperature (soldering, 10 seco	nds)	_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating is tested with all supplies biased at 15 V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	††	600	
V _{HO}	High side floating output voltage	Vs	V_{B}	
V _C C	Low side and logic fixed supply voltage	10	20	V
V_{LO}	Low side output voltage	0	V _{CC}	
V_{IN}	Logic input voltage (HIN & LIN)	V _{SS}	V _{CC}	
V _{SS}	Logic ground (IRS21864)	-5	5	
T _A	Ambient temperature	-40	125	°C

[†] All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply

www.irf.com

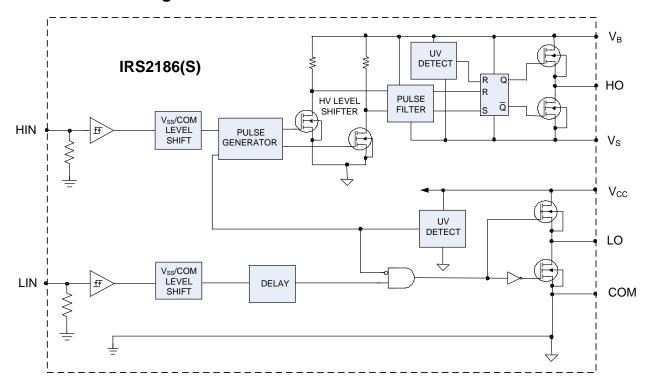
© 2015 International Rectifier

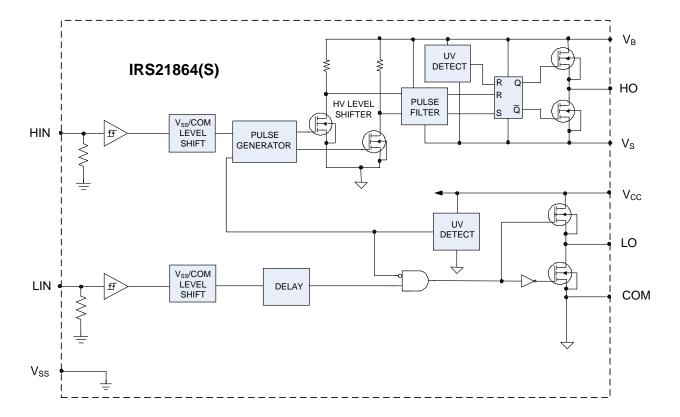
th Logic operational for V_S of -5 V to 600 V. Logic state held for V_S of -5 V to $-V_{BS}$ (Please refer to the Design Tip DT97-3 for more details)

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF and T_A = 25 °C unless otherwise specified.

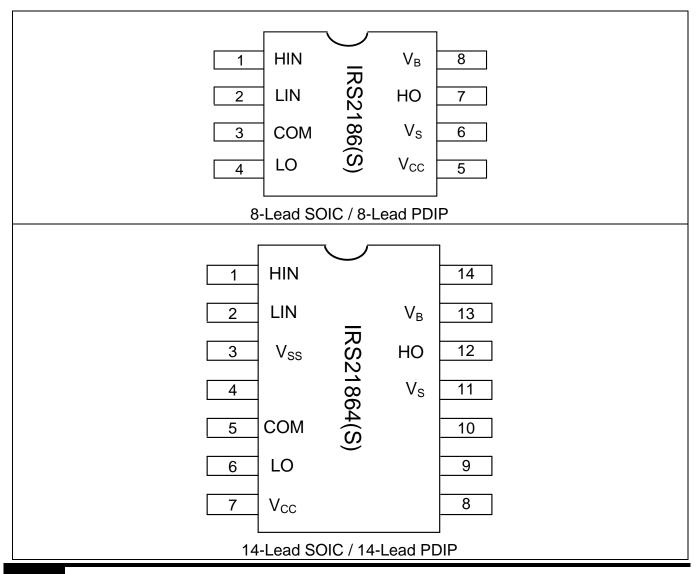
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	_	170	250		$V_S = 0 V$
t _{off}	Turn-off propagation delay		170	250		V _S = 0 V or 600 V
t _r	Turn-on rise time	_	22	38	ns	V 0.V
t _f	Turn-off fall time	_	18	30		$V_S = 0 V$
MT	Delay matching, HS & LS turn on/off		0	35		


Static Electrical Characteristics


 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, V_{SS} = COM, and T_A = 25 °C unless otherwise specified. The V_{IL} , V_{IH} , and I_{IN} parameters are referenced to V_{SS}/COM and are applicable to the respective input leads HIN and LIN. The V_O, I_O, and RON parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage	2.5	_	_		V 10 V to 20 V
V_{IL}	Logic "0" input voltage	_	_	0.8	V	$V_{CC} = 10 \text{ V to } 20 \text{ V}$
V_{OH}	High level output voltage, V_{BIAS} - V_{O}	—	—	1.4	V	$I_O = 0 A$
V_{OL}	Low level output voltage, VO	_	_	0.15		$I_O = 20 \text{ mA}$
I_{LK}	Offset supply leakage current	_	_	50		$V_B = V_S = 600 \text{ V}$
I _{QBS}	Quiescent V _{BS} supply current	20	60	150		\/ = 0 \/ or 5 \/
Iqcc	Quiescent V _{CC} supply current	50	120	240	μA	$V_{IN} = 0 \text{ V or 5 V}$
I _{IN+}	Logic "1" input bias current	_	25	60		$V_{IN} = 5 V$
I _{IN-}	Logic "0" input bias current	_	_	5		$V_{IN} = 0 V$
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage	8	8.9	9.8		
V _{BSUV+}	positive going threshold		0.0	0.0		
V _{CCUV} - V _{BSUV} -	V _{CC} and V _{BS} supply undervoltage negative going threshold	7.4	8.2	9	V	
V _{CCUVH} V _{BSUVH}	Hysteresis	0.3	0.7			
I _{O+}	Output high short circuit pulsed current	2	4	_	А	V _O = 0 V, PW ≤ 10 μs
I _O -	Output low short circuit pulsed current	2	4	_	A	V _O = 15 V, PW ≤ 10 μs

Functional Block Diagram



Lead Definitions

Symbol	Description
HIN	Logic input for high side gate driver output (HO), in phase
LIN	Logic input for low side gate driver output (LO), in phase
V _{SS}	Logic ground (IRS21864)
V _B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
V _{CC}	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Application Information and Additional Details

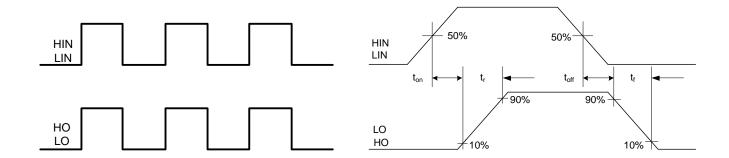


Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

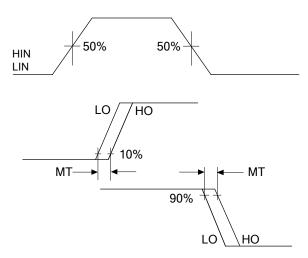
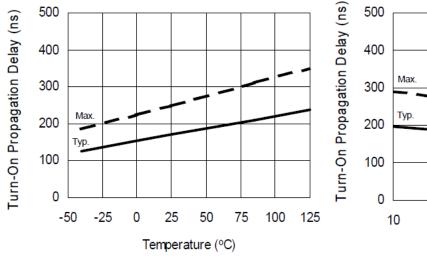



Figure 3. Delay Matching Waveform Definitions

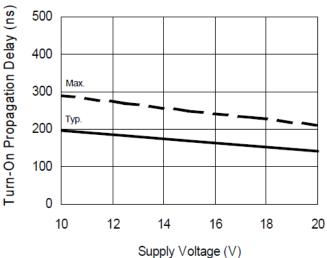
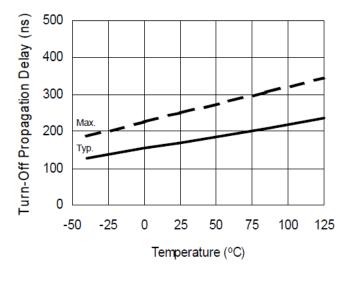



Figure 4A. Turn-On Propagation Delay vs. **Temperature**

Figure 4B. Turn-on Propagation Delay vs. Supply Voltage

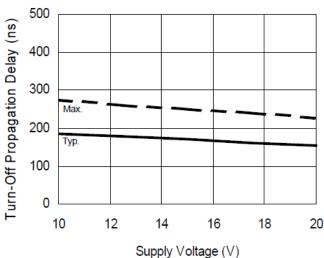
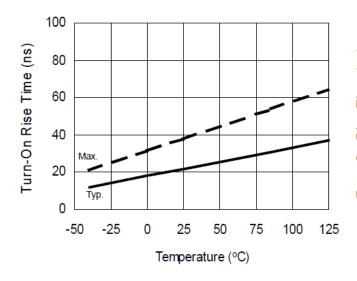
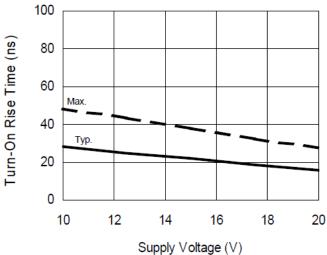
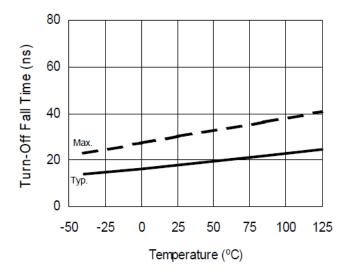




Figure 5A. Turn-Off Propagation Delay vs. **Temperature**

Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage



6A. Turn-On Rise Time vs. Temperature

Figure 6B. Turn-On Rise Time vs. Supply Voltage

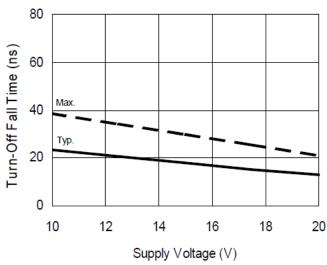


Figure 7A. Turn-Off Fall Time vs. Temperature

Figure 7B. Turn-Off Fall Time vs. Supply Voltage

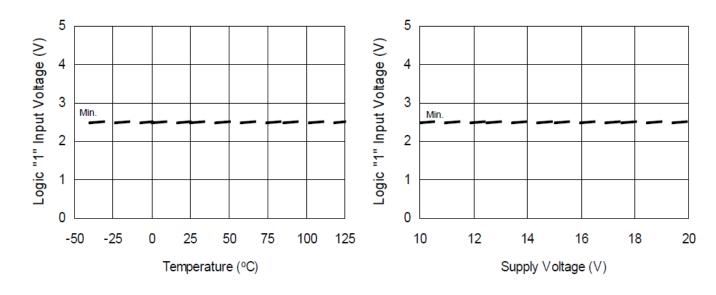


Figure 8A. Logic "1" Input Voltage vs. Temperature

Figure 8B. Logic "1" Input Voltage vs. Supply Voltage

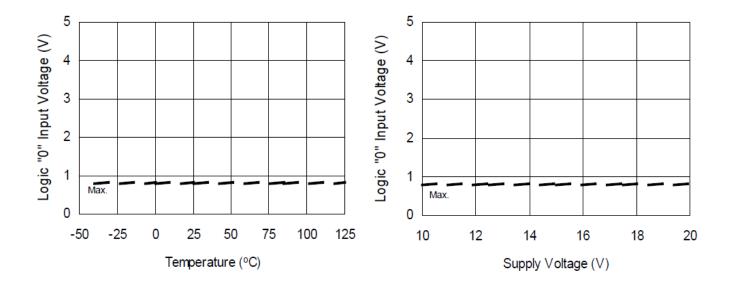
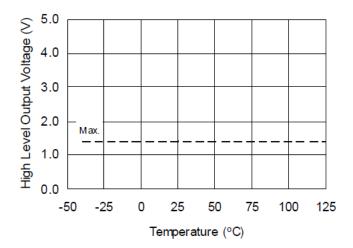



Figure 9A. Logic "0" Input Voltage vs. Temperature

Figure 9B. Logic "0" Input Voltage vs. Supply Voltage

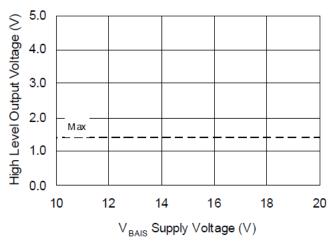
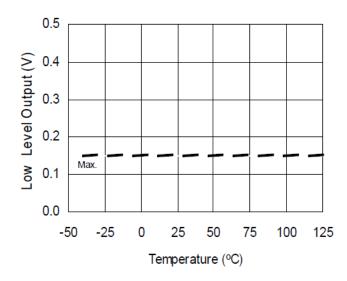



Figure 10A. High Level Output Voltage vs. Temperature (lo = 0mA)

Figure 10B. High Level Output Voltage vs. Supply Voltage (lo = 0mA)

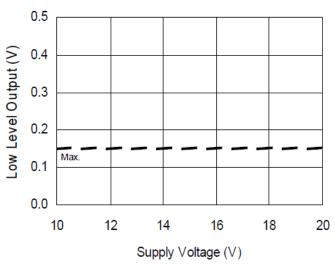
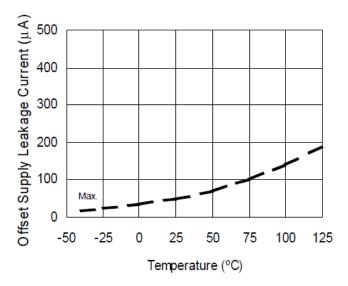



Figure 11A. Low Level Output vs. Temperature

Figure 11B. Low Level Output vs. Supply Voltage

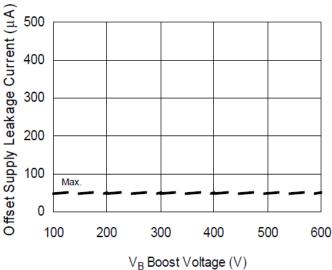
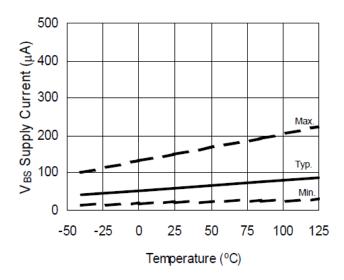



Figure 12A. Offset Supply Leakage Current

Figure 12B. Offset Supply Leakage Current vs. V_B **Boost Voltage**

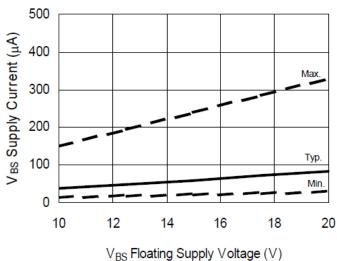
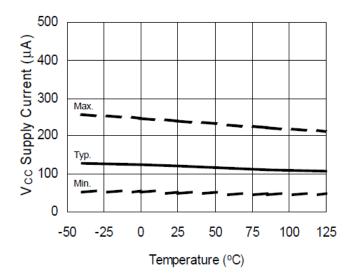



Figure 13A. V_{BS} Supply Current vs. Temperature

Figure 13B. V_{BS} Supply Current vs. V_{BS} Floating **Supply Voltage**

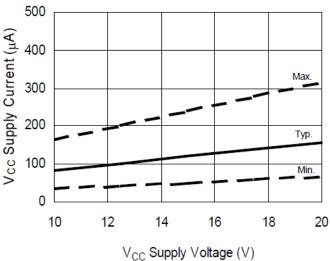
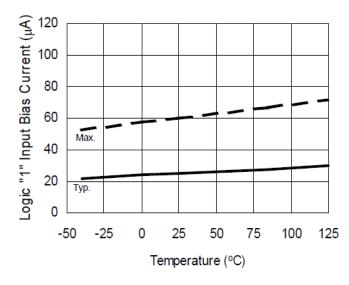



Figure 14A. V_{CC} Supply Current vs. Temperature

Figure 14B. V_{CC} Supply Current vs. Supply Voltage

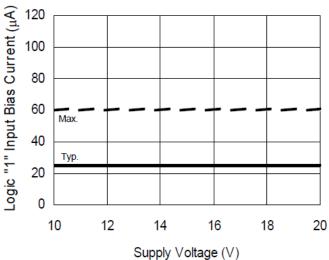
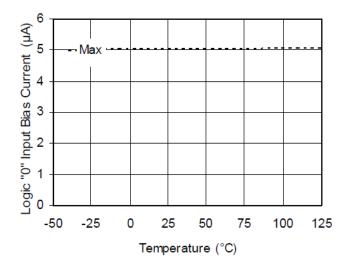



Figure 15A. Logic "1" Input Bias Current vs. Temperature

Figure 15B. Logic "1" Input Bias Current vs. Supply Voltage

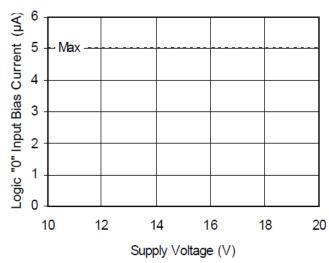
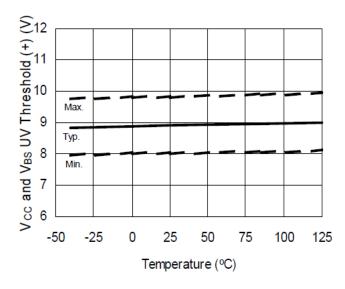



Figure 16A. Logic "0" Input Bias Current vs. **Temperature**

Figure 16B. Logic "0" Input Bias Current vs. Voltage

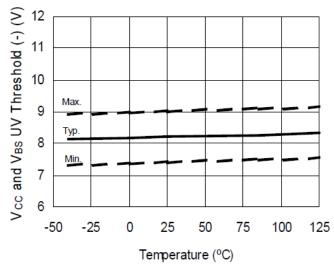
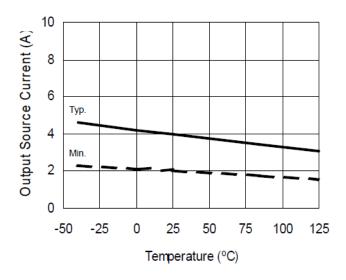



Figure 17. V_{CC} and V_{BS} Undervoltage Threshold (+) vs. Temperature

Figure 18. V_{CC} and V_{BS} Undervoltage Threshold (-) vs. Temperature

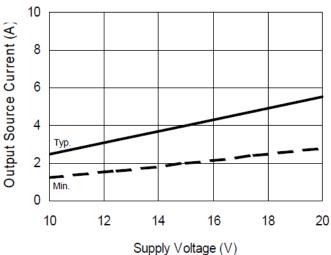
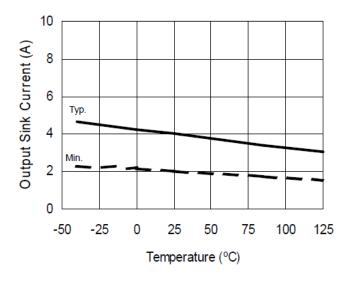



Figure 19A. Output Source Current vs. Temperature

Figure 19B. Output Source Current vs. Supply Voltage

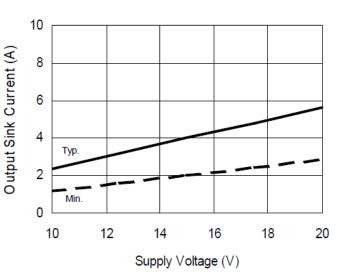
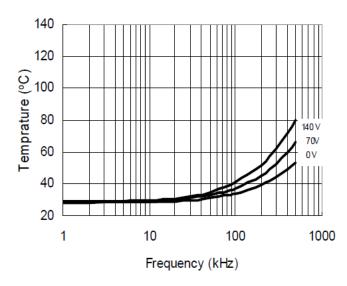



Figure 20A. Output Sink Current vs. Temperature

Figure 10B. Output Sink Current vs. Supply Voltage

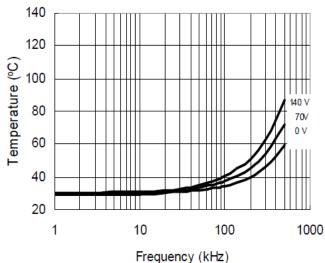
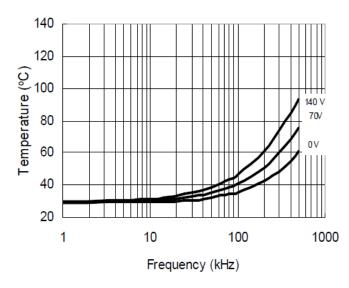



Figure 21. IRS2186 vs. Frequency (IRFBC20) $R_{gate} = 33\Omega$, $V_{CC} = 15V$

Figure 22. IRS2186 vs. Frequency (IRFBC30) $R_{gate} = 22\Omega$, $V_{CC} = 15V$

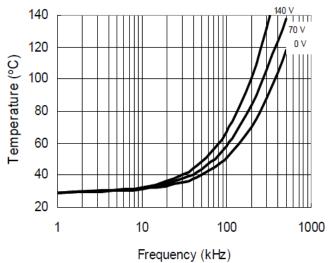
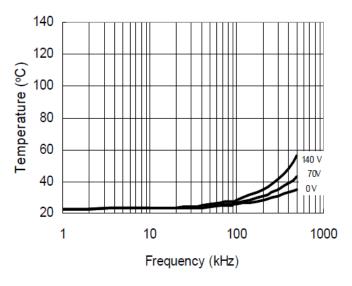



Figure 23. IRS2186 vs. Frequency (IRFBC40) $R_{gate} = 15\Omega$, $V_{CC} = 15V$

Figure 24. IRS2186 vs. Frequency (IRFPE50) $R_{gate} = 10\Omega$, $V_{CC} = 15V$

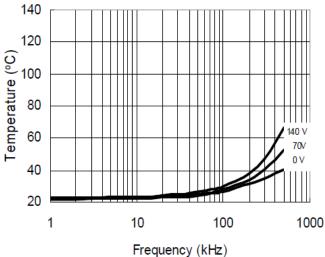
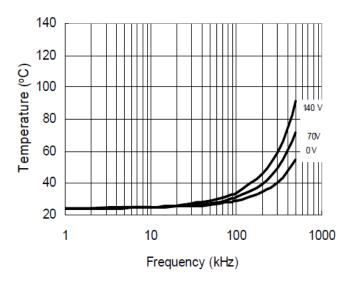



Figure 25. IRS21864 vs. Frequency (IRFBC20) $R_{\text{gate}} = 33\Omega, \, V_{\text{CC}} = 15 \text{V}$

Figure 26. IRS21864 vs. Frequency (IRFBC30) $R_{gate} = 22\Omega$, $V_{CC} = 15V$

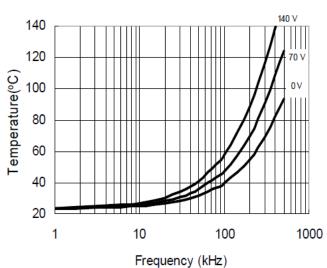
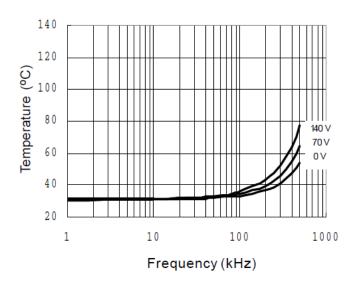



Figure 27. IRS21864 vs. Frequency (IRFBC40) $R_{gate} = 15\Omega$, $V_{CC} = 15V$

Figure 28. IRS21864 vs. Frequency (IRFPE50) $R_{gate} = 10\Omega$, $V_{CC} = 15V$

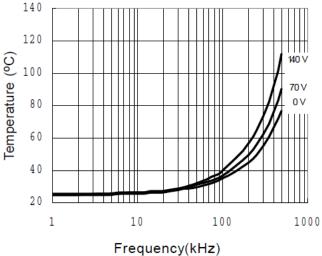
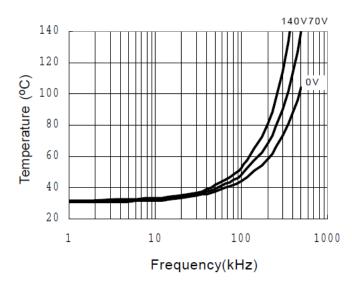



Figure 29. IRS2186S vs. Frequency (IRFBC20) $R_{gate} = 33\Omega$, $V_{CC} = 15V$

Figure 30. IRS2186S vs. Frequency (IRFBC30) $R_{gate} = 22\Omega$, $V_{CC} = 15V$

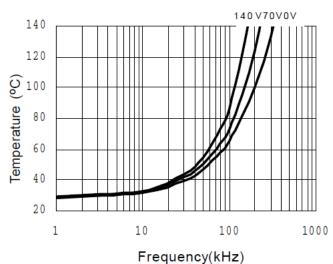
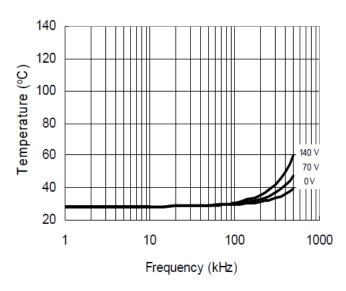



Figure 31. IRS2186S vs. Frequency (IRFBC40) R_{gate} = 15 Ω , V_{CC} = 15V

Figure 32. IRS2186S vs. Frequency (IRFPE50) $R_{\text{gate}} = 10\Omega$, $V_{\text{CC}} = 15V$

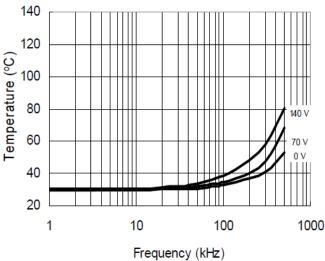
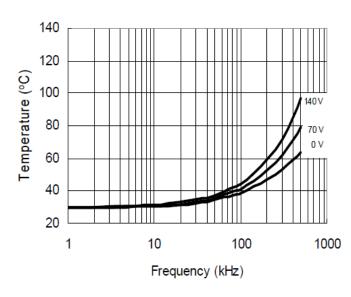
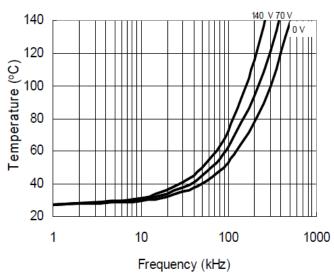
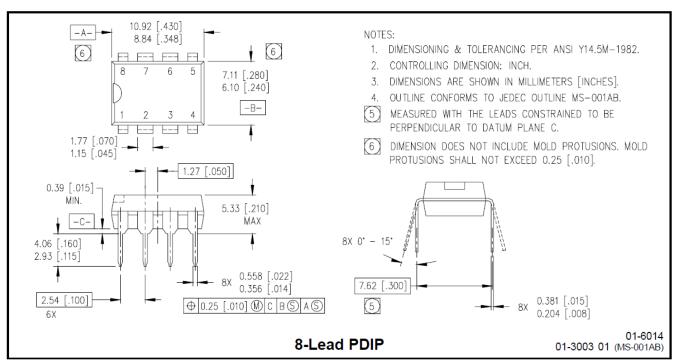



Figure 33. IRS21864S vs. Frequency (IRFBC20) $R_{\text{qate}} = 33\Omega, V_{\text{CC}} = 15V$

Figure 34. IRS21864S vs. Frequency (IRFBC30) $R_{\text{qate}} = 22\Omega$, $V_{\text{CC}} = 15V$

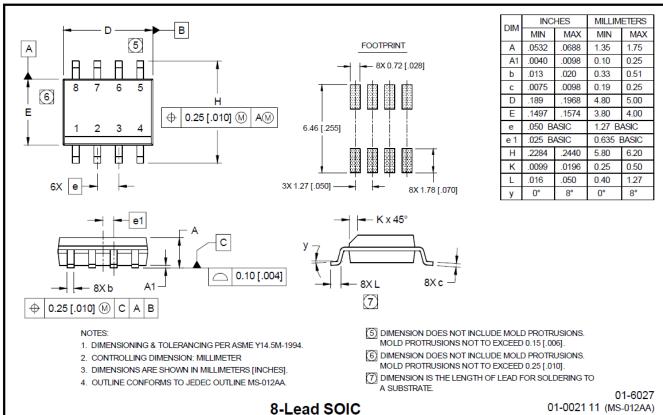
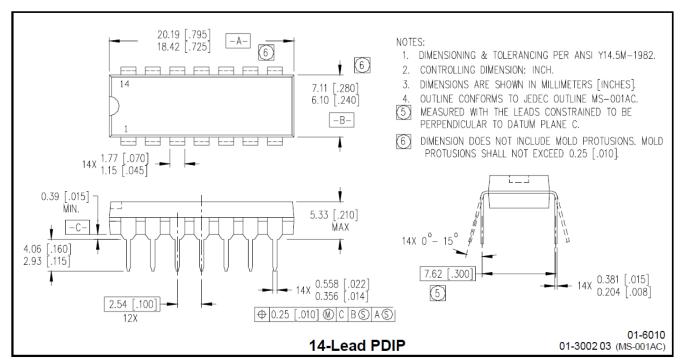
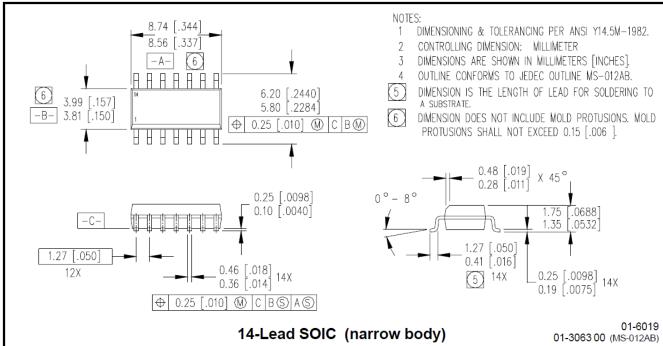
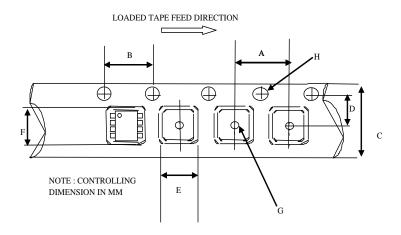
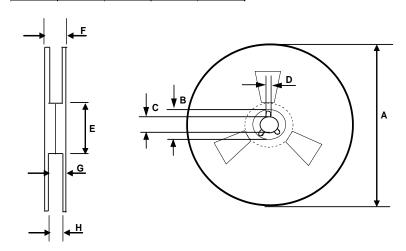

Figure 35. IRS21864S vs. Frequency (IRFBC40) R_{gate} = 15 Ω , V_{CC} = 15V

Figure 36. IRS21864S vs. Frequency (IRFPE50) R_{gate} = 10 Ω , V_{CC} = 15V


Package Details: PDIP8, SO8N



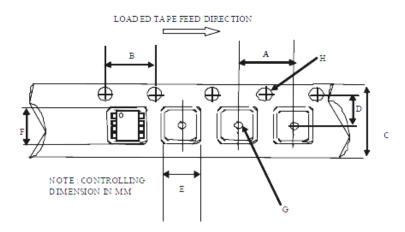

Package Details: PDIP14, SO14N



Tape and Reel Details: SO8N

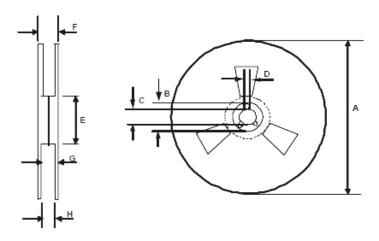
CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 8SOICN

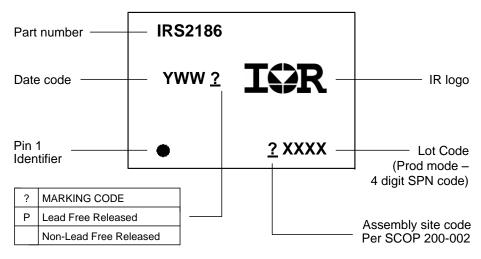
	Metric		Imp	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566



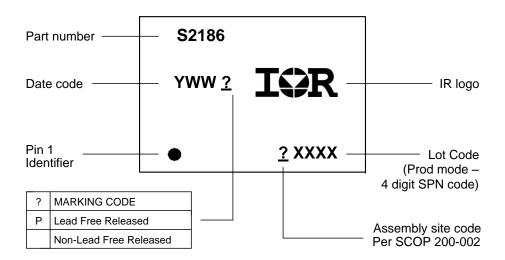
Tape and Reel Details: SO14N

CARRIER TAPE DIMENSION FOR 14 SOICN

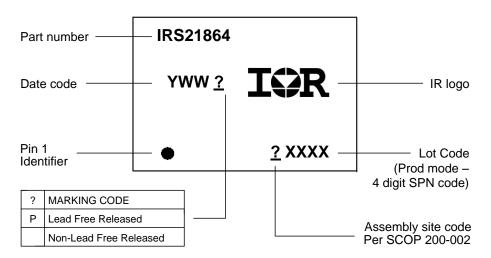
	M etric		lm p	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
B 3	.90	4.10	0.153	0.161
O	15.70	16.30	0.618	0.641
D	7 .4 0	7.60	0.291	0.299
E	6.40	6.60	0.252	0.260
F	9.40	9.60	0.370	0.378
G	1.50	n/a	0.059	n/a
H	1.50	1.60	0.059	0.062



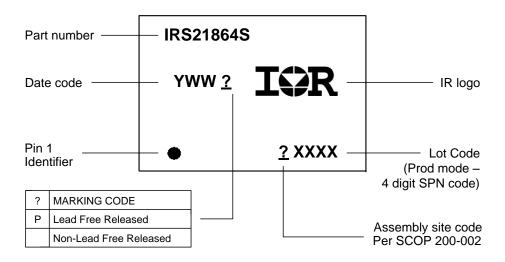
REEL DMENSIONS FOR 14 SOICN


	Me	tric	Im p	erial
Code	Min	Max	M in	Max
A	329.60	330.25	12.976	13.001
A B	20.95	21.45	0.824	0.844
C D	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	22.40	n/a	0.881
G H	18.50	21.10	0.728	0.830
Н	16.40	18.40	0.645	0.724

Part Marking Information



8-Lead PDIP



8-Lead SOIC

14-Lead PDIP

14-Lead SOIC

Qualification Information[†]

Qualification Level	Industrial ^{††} (per JEDEC JESD 47)	
	Comments: This family of ICs has passed JEDEC's Industrial qualification. IR's Consumer qualification level is	
	granted by extension of the higher Industrial level.	
Moisture Sensitivity Level	SOIC8N	MSL2 ^{†††} (per IPC/JEDEC J-STD 020)
	PDIP8	Not applicable (non-surface mount package style)
	SOIC14N	MSL2 ^{†††} (per IPC/JEDEC J-STD 020)
	PDIP14	Not applicable (non-surface mount package style)
RoHS Compliant	Yes	

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

27

www.irf.com

© 2015 International Rectifier