HVR25, HVR37

www.vishay.com

Vishay BCcomponents

High Ohmic (up to 10 M Ω)/High Voltage (up to 3.5 kV) Metal Film Leaded Resistors

DESIGN SUPPORT TOOLS

3D Models Available

A homogenous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to the end-caps. The resistors are coated with a blue, non-flammable lacquer, which provides electrical, mechanical, and climatic protection.

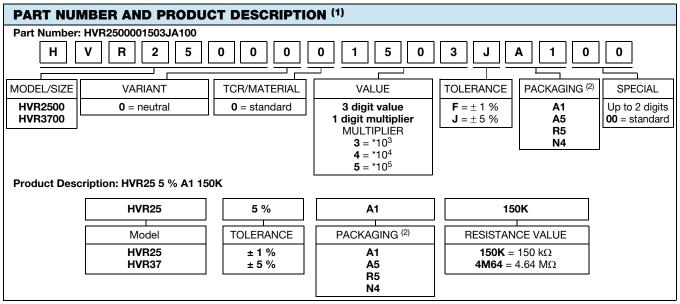
FEATURES

- Technology: metal film
- High pulse loading (up to 10 kV) capability
- Small size (0207/0411)
- Compatible with lead (Pb)-free and lead containing soldering processes
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Power supplies
- Electronic ballast
- White goods
- Television

TECHNICAL SPECIFICATIONS					
DESCRIPTION	HV	R25	HVR37		
Resistance range	100 kΩ t	to 10 MΩ	100 kΩ t	ο 10 ΜΩ	
Resistance tolerance	± 5 %	±1%	± 5 %	±1%	
E-series	E24 series	E24/E96 series	E24 series	E24/E96 series	
Temperature coefficient		± 200	ppm/K		
Climatic category (LCT/UCT/days)		55/155/56			
Rated dissipation, P ₇₀	0.2	5 W	0.5 W		
Maximum permissible voltage U _{max.}					
DC	160	00 V	3500 V		
RMS	S 1150 V 2500		2500 V		
Basic specification		IEC 60)115-1		
Stability after:					
Load (1000 h, P ₇₀)	\pm (5 % R + 0.1 Ω)	\pm (1.5 % <i>R</i> + 0.1 Ω)	± (5 % R + 0.1 Ω)	± (1.5 % R + 0.1 Ω)	
Long term damp heat test (56 days)	\pm (1.5 % R + 0.1 Ω)	\pm (1.5 % <i>R</i> + 0.1 Ω)	\pm (1.5 % <i>R</i> + 0.1 Ω)	± (1.5 % R + 0.1 Ω)	
Soldering (10 s, 260 °C)	\pm (1 % <i>R</i> + 0.1 Ω)	\pm (1 % <i>R</i> + 0.1 Ω)	\pm (1 % <i>R</i> + 0.1 Ω)	\pm (1 % <i>R</i> + 0.1 Ω)	

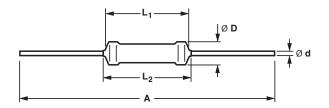

COMPLIANT

Document Number: 30260

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay BCcomponents


Notes

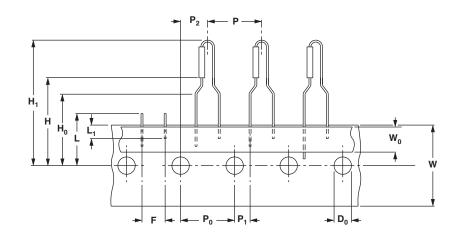
⁽¹⁾ The PART NUMBER is shown to facilitate the introduction of the unified part numbering system

⁽²⁾ Please refer to table PACKAGING, see next page

PACKAGING					
MODEL	TAPING	АММО	PACK	REEL	
WODEL	TAPING	PIECES	CODE	PIECES	CODE
	Axial, 52 mm	5000	A5	5000	R5
HVR25		1000	A1		
	Radial	4000	N4		
HVR37	Axial, 52 mm	1000	A1	5000	R5

DIMENSIONS

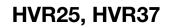
DIMENSIONS - Resistor types, mass and relevant physical dimensions						
ТҮРЕ	L _{1 max.} (mm)	L _{2 max.} (mm)	D _{max.} (mm)	Ø d (mm)	A (mm)	MASS (mg)
HVR25	6.5	7.5	2.5	0.58 ± 0.05	52.5 ± 1.5	220
HVR37	10	12	4	$\textbf{0.70} \pm \textbf{0.03}$	52.5 ± 1.5	500


Revision: 11-Jul-2018

2

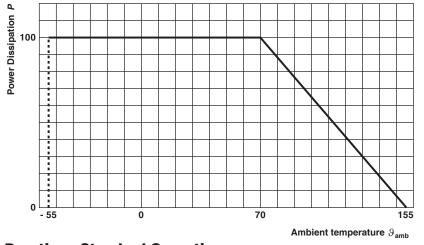
Document Number: 30260

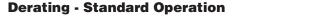
PRODUCTS WITH RADIAL LEADS (HVR25)


DIMENSIONS	- Radial taping			
SYMBOL	PARAMETER	VALUE	TOLERANCE	UNIT
Р	Pitch of components	12.7	± 1.0	mm
P ₀	Feed-hole pitch	12.7	± 0.2	mm
P ₁	Feed-hole centre to lead at topside at the tape	3.85	± 0.5	mm
P ₂	Feed-hole center to body center	6.35	± 1.0	mm
F	Lead-to-lead distance	4.8	+0.7/-0	mm
W	Tape width	18.0	± 0.5	mm
W ₀	Minimum hold down tape width	5.5	-	mm
H1	Component height	29	Max.	mm
H ₀	Lead wire clinch height	16.5	0.5	mm
н	Height of component from tape center	19.5	± 1	mm
D ₀	Feed-hole diameter	4.0	± 0.2	mm
L	Maximum length of snipped lead	11.0	-	mm
L ₁	Minimum lead wire (tape portion) shortest lead	2.5	-	mm

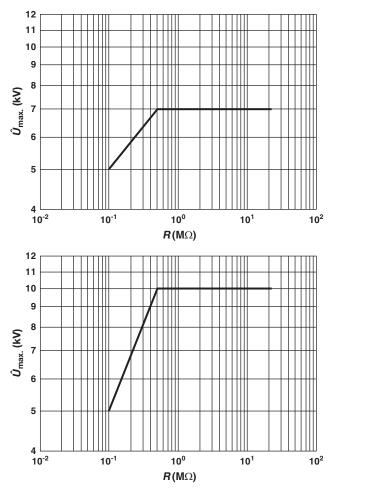
Note

• Please refer document number 28721 "Packaging" for more detail


MARKING


The nominal resistance and tolerance are marked on the resistor using four or five colored bands in accordance with IEC 60062, marking codes for resistors and capacitors. Standard values of nominal resistance are taken from the E24 and E24/E96 series for resistors with a tolerance of ± 5 % or ± 1 % respectively. The values of the E24/E96 series are in accordance with IEC 60063. Yellow and grey are used instead of gold and silver because metal particles in the lacquer could affect high-voltage properties.

FUNCTIONAL PERFORMANCE



Maximum dissipation (Pmax.) in percentage of rated power as a function of ambient temperature (Tamb)

PULSE LOADING CAPABILITY

Note

 Maximum allowed peak pulse voltage in accordance with IEC 60065, 14.1.a; 50 discharges from a 1 nF capacitor charged to U_{max}; 12 discharges/min

HVR25 $\Delta R = \pm (4.0 \% R + 0.1 Ω)$

HVR37 For 5 % tolerance $\Delta R = \pm (4.0 \% R + 0.1 \Omega)$ For 1 % tolerance $\Delta R = \pm (2.0 \% R + 0.1 \Omega)$

Revision: 11-Jul-2018

4

Document Number: 30260

For technical questions, contact: <u>filmresistorsleaded@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with IEC 60115-1, category 55/155/56 (rated temperature range -55 °C to +155 °C; damp heat, long term, 56 days) and along the lines of IEC 60068-2-xx test method. The tests are carried out under standard atmospheric conditions according to IEC 60068-1, 5.3 unless otherwise specified. In some instances deviations from IEC recommendations were necessary for our method of specifying.

PERFOR	RMANCE				
IEC 60115-1 CLAUSE	IEC 60068-2-xx TEST METHOD	TEST	PROCEDURE		REMENTS E CHANGE (∆R) HVR37
4.8	-	Temperature coefficient	Between -55 °C and +155 °C	± 200 ppm/K	
4.25.1	-	Endurance at 70 °C	1000 h; loaded with P ₇₀ or U _{max.} ; 1.5 h on; 0.5 h off for 5 % tolerance for 1 % tolerance		R + 0.1 Ω) 5 R + 0.1 Ω)
4.24	78 (Cab)	Damp heat, steady state	56 days; 40 °C; 90 % to 95 % RH loaded with 0.01 P_{70} for 5 % tolerance for 1 % tolerance	± (5 %	$R + 0.1 \Omega$) 5 $R + 0.1 \Omega$)
4.23		Climatic sequence			
4.23.2	2 (Ba)	Dry heat	16 h, 155 °C		
4.23.3	30 (Db)	Damp heat, cyclic	24 h; 25 °C to 55 °C 90 % to 100 % RH; 1 cycle	+ (1 5 %	5 R + 0.1 Ω)
4.23.4	1 (Aa)	Cold	2 h, -55 °C	<u> </u>	, , , , , , , , , , , , , , , , , , ,
4.23.6	30 (Db)	Damp heat, (accelerated) remaining cycles	5 days; 25 °C to 55 °C 90 to 100 % RH		
4.19	14 (Na)	Rapid change of temperature	30 min at LCT; 30 min at UCT; LCT = -55 °C; UCT = 155 °C; 5 cycles	No visual damage \pm (1 % R + 0.1 Ω)	
4.13	-	Short time overload	Room temperature; dissipation 6.25 x P ₇₀ (voltage not more than 2 x limiting voltage, 10 000 V _{max.}); 10 cycles 5 s on and 45 s off for 5 % tolerance for 1 % tolerance	± (1 %	R + 0.1 Ω) R + 0.1 Ω)
4.12	-	Noise	IEC 60195	Max. 5 µV/V	Max. 2.5 μV/V
4.16		Robustness of terminations:			
4.16.2	21 (Ua1)	Tensile all samples	Load 10 N; 10 s	No	damage
4.16.3	21 (Ub)	Bending half number of samples	Load 5 N; 4 x 90°	No damage ± (1 % <i>R</i> + 0.1 Ω)	
4.16.4	21 (Uc)	Torsion other half of samples	3 x 360° in opposite direction		
4.22	6 (Fc)	Vibration	Frequency 10 Hz to 500 Hz; displacement 1.5 mm or acceleration 10 g; 3 directions; total 6 h (3 x 2 h)	± (1.0 % <i>R</i> + 0.1 Ω)	

PER	FORMA	ANCE

PERFOR	MANCE				
IEC 60115-1 CLAUSE	IEC 60068-2-xx TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (∆R) HVR25 HVR37	
4.17	20 (Ta)	Solderability (after aging)	2 s; 235 °C: Solder bath method; SnPb40 3 s; 245 °C: Solder bath method; SnAg3Cu0.5	Good tinning (≥ 95 % covered); no visible damage	
4.18	20 (Tb)	Resistance to soldering heat	Thermal shock: 10 s; 260 °C; 3 mm from body	\pm (1 % R + 0.1 Ω)	
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol	No visible damage	
4.6.11	-	Insulation resistance	U = 500 V _{DC} during 1 min, V-block method	R _{ins} min. 104 MΩ	
4.7	-	Voltage proof on insulation	U _{RMS} = 700 V during 1 min, V-block method	No flashover or breakdown	

12NC INFORMATION FOR HISTORICAL CODING REFERENCE ONLY

- The resistors have a 12 digit ordering code starting with 2306
- The next 4 or 5 digits indicate the resistor type and packaging
- For 5 % tolerance the last 3 digits indicate the resistance value:
 - The first 2 digits indicate the resistance value
 - The last digit indicates the resistance decade in accordance with table
- For 1 % tolerance the last 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value
 - The last digit indicates the resistance decade in accordance with table

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE (5 %)	RESISTANCE DECADE (1 %)	LAST DIGIT
100 k Ω to 910 k Ω	100 k Ω to 976 k Ω	4
1 MΩ to 9.1 MΩ	1 M Ω to 9.76 M Ω	5
= 10 MΩ	= 10 MΩ	6

12NC Example

HVR25, 150 k $\Omega,~\pm$ 5 %, ammopack 1000 pieces is 2306 241 13154

12NC - resistor type and packaging							
			2306				
DESCRIPTION			BANDOLIER IN AMMOPACK			BANDOLIER ON REEL	
ТҮРЕ	TAPE WIDTH	TOLERANCE	RADIAL TAPED	1000 UNITS	5000 UNITS	5000 UNITS	
TTPE		IULERANCE	4000 UNITS	1000 UNITS	5000 UNITS		
HVR25	52.5	±5 %	241 36	241 13	241 53	241 23	
	52.5	±1 %	241 0	241 8	241 7	241 6	
HVR37	52.5	± 5 %	-	242 13	-	242 23	
	52.5	±1 %	_	242 8	-	242 6	

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

<u>HVR3700003573FR500</u> <u>HVR2500001004FR500</u> <u>HVR2500001783FR500</u> <u>HVR2500002003FR500</u>
HVR2500003163FR500 HVR2500003833FR500 HVR2500003903FR500 HVR2500004533FR500
HVR2500005603FR500 HVR2500006983FR500 HVR2500007873FR500 HVR3700001004FR500
HVR3700001005FR500 HVR3700001073FR500 HVR3700001183FR500 HVR3700001244FR500
HVR3700001654FR500 HVR3700001803FR500 HVR3700002204FR500 HVR3700002323FR500
HVR3700002703FR500 HVR3700003003FR500 HVR3700003603FR500 HVR3700004224FR500
HVR3700004324FR500 HVR3700005103FR500 HVR3700005113FR500 HVR3700005493FR500
HVR3700005903FR500 HVR3700007153FR500 HVR3700007504FR500 HVR3700008204FR500
HVR2500009093FR500 HVR3700001003FR500 HVR3700002204FA100 HVR3700004753FA100
HVR2500003303FR500 HVR3700002493FR500 HVR3700002494FR500 HVR3700002703JR500
HVR3700002704FR500 HVR3700002704JR500 HVR2500002204JA100 HVR2500001504JA100
HVR3700002204JA100 HVR2500004704JA100 HVR2500001005JA100 HVR2500001204JA100
HVR3700001005JA100 HVR3700004704JA100 HVR3700001504JA100 HVR3700009104FR500
HVR3700009534FR500 HVR3700004703FR500 HVR3700001204FR500 HVR3700001204JA100
HVR2500001004JR500 HVR3700007683FR500 HVR3700007874FR500 HVR3700008203FR500
HVR3700008203JR500 HVR3700008254FR500 HVR3700009094FR500 HVR3700005104FR500
HVR3700006803FR500 HVR3700006803JR500 HVR3700006804FR500 HVR3700006804JR500
HVR3700007503FR500 HVR3700004644FR500 HVR3700004703JR500 HVR3700004704FR500
HVR3700004704JR500 HVR3700004993FR500 HVR3700004994FR500 HVR3700003904FR500
HVR3700003904JR500 HVR3700003924FR500 HVR3700004024FR500 HVR3700004303FR500
HVR3700004304JR500 HVR3700003323FR500 HVR3700003324FR500 HVR3700003604FR500
HVR3700003744FR500 HVR3700003903FR500 HVR3700003903JR500 HVR3700003014FR500
HVR3700003164FR500 HVR3700003303FR500 HVR3700003303JR500 HVR3700003304FR500
HVR3700003304JR500 HVR3700002203JR500 HVR3700002204JR500 HVR3700002214FR500
HVR3700002403JR500 HVR3700002404FR500 HVR3700003004FR500 HVR3700001804FR500