ON Semiconductor ${ }^{\circledR}$
FXLA104

Low-Voltage Dual-Supply 4-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing

Features

- Bi-Directional Interface between Two Levels: from 1.1 V to 3.6 V
- Fully Configurable: Inputs and Outputs Track V_{cc}
- Non-Preferential Power-Up; Either Vcc May Be Powered Up First
- Outputs Switch to 3-State if Either V_{CC} is at GND
- Power-Off Protection
- Bus-Hold on Data Inputs Eliminates the Need for Pull-Up Resistors; Do Not Use Pull-Up Resistors on A or B Ports
- Control Input (/OE) Referenced to VCCA Voltage
- Available in 16 -Terminal UMLP ($1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$) and 12-Terminal, Quad UMLP, $1.8 \times 1.8 \mathrm{~mm}$ Packages
- Direction Control Not Necessary
- 100 Mbps Throughput when Translating Between 1.8 V and 2.5 V
- ESD Protection Exceeds:
- 8kV HBM (per JESD22-A114 \& Mil Std 883e 3015.7)
- 2kV CDM (per ESD STM 5.3)

Applications

- Cell Phone, PDA, Digital Camera, Portable GPS

Description

The FXLA104 is a configurable dual-voltage supply translator for both uni-directional and bi-directional voltage translation between two logic levels. The device allows translation between voltages as high as 3.6 V to as low as 1.1 V . The A port tracks the $\mathrm{V}_{\mathrm{CCA}}$ level and the B port tracks the $\mathrm{V}_{\mathrm{CCB}}$ level. This allows for bi-directional voltage translation over a variety of voltage levels: 1.2 V , $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V .
The device remains in three-state as long as either $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$, allowing either V_{cc} to be powered up first. Internal power-down control circuits place the device in 3-state if either V_{Cc} is removed.

The /OE input, when HIGH, disables both the A and B ports by placing them in a 3-state condition. The /OE input is supplied by $\mathrm{V}_{\text {CCA }}$.

The FXLA104 supports bi-directional translation without the need for a direction control pin. The two ports of the device have auto-direction sense capability. Either port may sense an input signal and transfer it as an output signal to the other port.

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FXLA104UMX	-40 to $85^{\circ} \mathrm{C}$	XJ	16-Terminal UMLP $1.8 \times 2.6 \mathrm{~mm}$ Package	5K Units Tape and Reel
FXLA104UM12X		XJ	12-Terminal, Quad UMLP, $1.8 \times 1.8 \mathrm{~mm}$ Package	

Pin Configuration

Figure 1. 16-Pin UMLP (Top Through View)

Figure 2. 12-Pin UMLP (Top Through View)

Pin Definitions

$\mathbf{1 6 ~ P i n ~ \# ~}$	$\mathbf{1 2 ~ P i n ~ \# ~}$	Name	Description
1	3	A0	A-Side Inputs or 3-State Outputs
2	4	A1	A-Side Inputs or 3-State Outputs
3	5	A2	A-Side Inputs or 3-State Outputs
4	6	A3	A-Side Inputs or 3-State Outputs
5		NC	No Connect
6,7	7	GND	Ground
8	8	/OE	Output Enable Input
9	9	B3	B-Side Inputs or 3-State Outputs
10	10	B2	B-Side Inputs or 3-State Outputs
11	11	B1	B-Side Inputs or 3-State Outputs
12	12	B0	B-Side Inputs or 3-State Outputs
13	1	VCCB	B-Side Power Supply
14,15		NC	No Connect
16	2	V $_{\text {CCA }}$	A-Side Power Supply

Functional Diagram

Figure 3. Functional Diagram

Function Table

Control	Outputs
IOE	Normal Operation
LOW Logic Level	3-State
HIGH Logic Level	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V_{cc}	Supply Voltage	$\mathrm{V}_{\text {CCA }}$	-0.5	4.6	V
		$V_{\text {CCB }}$	-0.5	4.6	
V_{1}	DC Input Voltage	I/O Ports A and B	-0.5	4.6	V
		Control Input (/OE)	-0.5	4.6	
V_{o}	Output Voltage ${ }^{(2)}$	Output 3-State	-0.5	4.6	V
		Output Active (A_{n})	-0.5	$\mathrm{V}_{\mathrm{CCA}}+0.5$	
		Output Active (B_{n})	-0.5	$\mathrm{V}_{\text {CCB }}+0.5$	
$\mathrm{I}_{\text {K }}$	DC Input Diode Current	$\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$		-50	mA
lok	DC Output Diode Current	$\mathrm{V}_{\mathrm{o}}<0 \mathrm{~V}$		-50	mA
		$\mathrm{V}_{0}>\mathrm{V}_{\text {cc }}$		+50	
$\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	DC Output Source/Sink Current		-50	+50	mA
Icc	DC V ${ }_{\text {cc }}$ or Ground Current (per Supply Pin)			± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
PD	Power Dissipation			17	mW
ESD	Electrostatic Discharge Capability	Human Body Model (per JESD22A114 \& Mil Std 883e 3015.7)		8	kV
		Charged Device Model (per ESD STM 5.3)		2	

Notes:

1. Io absolute maximum ratings must be observed.
2. All unused inputs and input/outputs must be held at $\mathrm{V}_{\mathrm{cci}}$ or GND.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V_{cc}	Power Supply	Operating $\mathrm{V}_{\text {CCA }}$ or $\mathrm{V}_{\text {CCB }}$	1.1	3.6	V
VIN	Input Voltage	Ports A and B	0	3.6	V
		Control Input (/OE)	0	$\mathrm{V}_{\text {CCA }}$	V
T_{A}	Operating Temperature, Free Air		-40	+85	${ }^{\circ} \mathrm{C}$
dt/dV	Minimum Input Edge Rate	$\mathrm{V}_{\text {CCA/B }}=1.1$ to 3.6 V		10	ns / V
$\Theta_{J A}$	Thermal Resistance: Junction-to-Ambient	UMLP-16		315	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		UMLP-12		300	
$\Theta_{\text {Jc }}$	Thermal Resistance: Junction-to-Case	UMLP-16		155	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		UMLP-12		165	

Power-Up/Power-Down Sequence

FXL translators offer an advantage in that either V_{cc} may be powered up first. This benefit derives from the chip design. When either V_{cc} is at 0 V , outputs are in a high-impedance state. The control input (/OE) is designed to track the $\mathrm{V}_{\text {cca }}$ supply. A pull-up resistor tying /OE to $\mathrm{V}_{\mathrm{CCA}}$ should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up or power-down. The size of the pull-up resistor is based upon the current-sinking capability of the device driving the /OE pin.
The recommended power-up sequence is:

1. Apply power to the first V_{cc}.
2. Apply power to the second V_{cc}.
3. Drive the /OE input LOW to enable the device.

The recommended power-down sequence is:

1. Drive /OE input HIGH to disable the device.
2. Remove power from either V_{cc}.
3. Remove power from other V_{cc}.

Pull-Up/Pull-Down Resistors

Do not use pull-up or pull-down resistors. This device has bus-hold circuits: pull-up or pull-down resistors are not recommended because they interfere with the output state. The current through these resistors may exceed the hold drive, $I_{(\text {HOLD })}$ and/or $I_{(O D)}$ bus-hold currents, resulting in data transition and/or autodirection sensing failures. The bus-hold feature eliminates the need for extra resistors.

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cca}}(\mathrm{V})$	$\mathrm{V}_{\text {ccB }}(\mathrm{V})$	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {IHA }}$	High-Level Input Voltage	Data Inputs A_{n} Control Pin /OE	2.70 to 3.60	1.10 to 3.60	2.00			V
			2.30 to 2.70		1.60			
			1.65 to 2.30		. $65 \times \mathrm{VV}_{\text {ccA }}$			
			1.40 to 1.65		. $65 \times \mathrm{V}_{\text {CCA }}$			
			1.10 to 1.40		. $90 \times \mathrm{xV}$ CCA			
$\mathrm{V}_{\text {IHB }}$		Data Inputs B_{n}	1.10 to 3.60	2.70 to 3.60	2.00			V
				2.30 to 2.70	1.60			
				1.65 to 2.30	. $65 \times \mathrm{V} \mathrm{C}_{\text {cв }}$			
				1.40 to 1.65	. $65 \times \mathrm{V}_{\text {ccв }}$			
				1.10 to 1.40	. $90 \times \mathrm{V} \mathrm{V}_{\text {ccв }}$			
VILA	Low-Level Input Voltage	Data Inputs A_{n} Control Pin /OE	2.70 to 3.60	1.10 to 3.60			. 80	V
			2.30 to 2.70				. 70	
			1.65 to 2.30				. $35 \times \mathrm{V} \mathrm{CCCA}$	
			1.40 to 1.65				. $35 \times \mathrm{V}$ CCA	
			1.10 to 1.40				.10xV ${ }_{\text {cca }}$	
$V_{\text {ILB }}$		Data Inputs B_{n}	1.10 to 3.60	2.70 to 3.60			. 80	V
				2.30 to 2.70			. 70	
				1.65 to 2.30			. $35 \times \mathrm{V} \mathrm{VCCB}$	
				1.40 to 1.65			. $35 \times \mathrm{x} \mathrm{V}_{\text {ccB }}$	
				1.10 to 1.40			. $10 \times \mathrm{V}_{\text {CCB }}$	
Vонa	High-Level Output Voltage ${ }^{(3)}$	$\mathrm{I}_{\text {он }}=-4 \mu \mathrm{~A}$	1.10 to 3.60	1.10 to 3.60	$\mathrm{V}_{\text {CCA }}-.4$			V
$\mathrm{V}_{\text {OHB }}$		$\mathrm{l}_{\mathrm{OH}}=-4 \mu \mathrm{~A}$	1.10 to 3.60	1.10 to 3.60	$\mathrm{V}_{\text {CCB }}-.4$			
Vola	Low-Level Output Voltage ${ }^{(3)}$	$\mathrm{l}_{\mathrm{OL}}=4 \mu \mathrm{~A}$	1.10 to 3.60	1.10 to 3.60			. 4	V
Volb		$\mathrm{log}_{\mathrm{ol}}=4 \mu \mathrm{~A}$	1.10 to 3.60	1.10 to 3.60			. 4	
$\mathrm{I}_{\text {(HOLD) }}$	Bus-Hold Input Minimum Drive Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	3.00	3.00	75.0			$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$	3.00	3.00	-75.0			
		$\mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V}$	2.30	2.30	45.0			
		$\mathrm{V}_{\mathrm{IN}}=1.6 \mathrm{~V}$	2.30	2.30	-45.0			
		$\mathrm{V}_{\text {IN }}=0.57 \mathrm{~V}$	1.65	1.65	25.0			
		$\mathrm{V}_{\text {IN }}=1.07 \mathrm{~V}$	1.65	1.65	-25.0			
		$\mathrm{V}_{\text {IN }}=0.49 \mathrm{~V}$	1.40	1.40	11.0			
		$\mathrm{V}_{\text {IN }}=0.91 \mathrm{~V}$	1.40	1.40	-11.0			
		$\mathrm{V}_{\text {IN }}=0.11 \mathrm{~V}$	1.10	1.10		4.0		
		$\mathrm{V}_{\text {IN }}=0.99 \mathrm{~V}$	1.10	1.10		-4.0		

Note:

3. This is the output voltage for static conditions. Dynamic drive specifications are given in the Dynamic Output Electrical Characteristics table.

Continued on following page...

DC Electrical Characteristics (Continued)
$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{CCA}}(\mathrm{V})$	$\mathrm{V}_{\text {cci }}(\mathrm{V})$	Min.	Max.	Units
$I_{1(O D H)}$	Bus-Hold Input Overdrive High Current ${ }^{(4)}$	Data Inputs $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	3.60	3.60	450.0		$\mu \mathrm{A}$
			2.70	2.70	300.0		
			1.95	1.95	200.0		
			1.60	1.60	120.0		
			1.40	1.40	80.0		
$I_{\text {(ODL) }}$	Bus-Hold Input Overdrive Low Current ${ }^{(5)}$	Data Inputs $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	3.60	3.60	-450.0		$\mu \mathrm{A}$
			2.70	2.70	-300.0		
			1.95	1.95	-200.0		
			1.60	1.60	-120.0		
			1.40	1.40	-80.0		
1	Input Leakage Current	Control Inputs /OE, $\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}$ or GND	1.10 to 3.60	3.60		± 1.0	$\mu \mathrm{A}$
loff	Power-Off Leakage Current	$\mathrm{A}_{\mathrm{n}} \mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}$ to 3.6 V	0	3.60		± 2.0	$\mu \mathrm{A}$
		$\mathrm{B}_{\mathrm{n}} \mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}$ to 3.6 V	3.60	0		± 2.0	
loz	3-State Output Leakage	$\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}} \mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}$ or 3.6 V , $/ \mathrm{OE}=\mathrm{V}_{\mathrm{IH}}$	3.60	3.60		± 5.0	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{A}_{\mathrm{n}} \mathrm{~V}_{\mathrm{o}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \\ & / \mathrm{OE}=\mathrm{GND} \end{aligned}$	3.60	0		± 5.0	
		$\begin{aligned} & \mathrm{B}_{\mathrm{n}} \mathrm{~V}_{\mathrm{o}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \\ & \mathrm{OE}=\mathrm{GND} \end{aligned}$	0	3.60		± 5.0	
$I_{\text {CCAB }}$	Quiescent Supply	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{ccI}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0, \\ & / \mathrm{OE}=\mathrm{GND} \end{aligned}$	1.10 to 3.60	1.10 to 3.60		10.0	$\mu \mathrm{A}$
Iccz	Current ${ }^{6,7}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCI}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{IOE}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	1.10 to 3.60	1.10 to 3.60		10.0	$\mu \mathrm{A}$
$I_{\text {cca }}$	Quiescent Supply Current	$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\text {CCB }}$ or GND ; $\mathrm{I}_{\mathrm{o}}=0$ B-to-A Direction, /OE=GND	0	1.10 to 3.60		-10.0	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\text {CCA }} \text { or GND; } I_{0}=0 \\ & \text { A-to-B Direction } \end{aligned}$	1.10 to 3.60	0		10.0	
Іссв		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}$ or GND ; $\mathrm{I}_{\mathrm{O}}=0$, A-to-B Direction, /OE=GND	1.10 to 3.60	0		-10.0	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\text {CCB }} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \\ & \text { B-to-A Direction } \end{aligned}$	0	1.10 to 3.60		10.0	

Notes:

4. An external drive must source at least the specified current to switch LOW-to-HIGH.
5. An external drive must source at least the specified current to switch HIGH-to-LOW.
6. V_{cc} is the V_{cc} associated with the input side.
7. Reflects current per supply, $\mathrm{V}_{\mathrm{ccA}}$ or $\mathrm{V}_{\text {ссв }}$.

Dynamic Output Electrical Characteristic

A Port (A_{n})

Output Load: $C_{L}=15 p F, R_{L} \geq M \Omega\left(C_{110}=4 p F\right), T_{A}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{ccA}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$	Units
		Typ.	Max.	Typ.	Max.	Typ.	Max	Typ.	Max.	Typ.	
$\mathrm{t}_{\text {rise }}$	Output Rise Time A Port ${ }^{(9)}$		3.0		3.5		4.0		5.0	7.5	ns
$\mathrm{t}_{\text {fall }}$	Output Fall Time A Port ${ }^{(10)}$		3.0		3.5		4.0		5.0	7.5	ns
Іонд	Dynamic Output Current High ${ }^{(9)}$	-11.4		-7.5		-4.7		-3.2		-1.7	mA
lold	Dynamic Output Current Low ${ }^{(10)}$	+11.4		+7.5		+4.7		+3.2		+1.7	mA

B Port (B_{n})

Output Load: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geq \mathrm{M} \Omega\left(\mathrm{C}_{1 / 0}=5 \mathrm{pF}\right), \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CcB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$	Units
		Typ.	Max.	Typ.	Max.	Typ.	Max	Typ.	Max.	Typ.	
$\mathrm{t}_{\text {rise }}$	Output Rise Time B Port ${ }^{(9)}$		3.0		3.5		4.0		5.0	7.5	ns
$\mathrm{t}_{\text {fall }}$	Output Fall Time B Port ${ }^{(10)}$		3.0		3.5		4.0		5.0	7.5	ns
Іонd	Dynamic Output Current High ${ }^{(9)}$	-12.0		-7.9		-5.0		-3.4		-1.8	mA
Iold	Dynamic Output Current Low ${ }^{(10)}$	+12.0		+7.9		+5.0		+3.4		+1.8	mA

Notes:

8. Dynamic output characteristics are guaranteed, but not tested.
9. See Figure 8.
10. See Figure 9.

AC Characteristics

$\mathrm{V}_{\mathrm{CCA}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Typ.	
$\mathrm{tPLH}, \mathrm{tPHL}$	A to B	0.2	4.0	0.3	4.2	0.5	5.4	0.6	6.8	6.9	ns
	B to A	0.2	4.0	0.2	4.1	0.3	5.0	0.5	6.0	4.5	ns
$\mathrm{t}_{\text {PzL }, t_{\text {pzH }}}$	/OE to A, /OE to B		1.7		1.7		1.7		1.7	1.7	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SKEW }}$	A Port, B Port ${ }^{(11)}$		0.5		0.5		0.5		1.0	1.0	ns

$$
\mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C}
$$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{ccB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CCB}}=1.1 \mathrm{~V} \\ & \text { to } 1.3 \mathrm{~V} \end{aligned}$	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Typ.	
$\mathrm{t}_{\text {PLH, }}$, tPHL	A to B	0.2	4.1	0.4	4.5	0.5	5.6	0.8	6.9	7.0	ns
	B to A	0.3	4.2	0.4	4.5	0.5	5.5	0.5	6.5	4.8	ns
$\mathrm{t}_{\text {pzL, }} \mathrm{t}_{\text {pzH }}$	IOE to A, /OE to B		1.7		1.7		1.7		1.7	1.7	$\mu \mathrm{s}$
tskew	A Port, B Port ${ }^{(11)}$		0.5		0.5		0.5		1.0	1.0	ns

$V_{C C A}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{cCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{cCB}}=1.1 \mathrm{~V} \\ & \text { to } 1.3 \mathrm{~V} \end{aligned}$	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Typ.	
tPLh,tPHL	A to B	0.3	5.0	0.5	5.5	0.8	6.7	0.9	7.5	7.5	ns
	B to A	0.5	5.4	0.5	5.6	0.8	6.7	1.0	7.0	5.4	ns
$\mathrm{t}_{\text {PzL, }} \mathrm{t}_{\text {PzH }}$	IOE to A, /OE to B		1.7		1.7		1.7		1.7	1.7	$\mu \mathrm{s}$
$\mathrm{t}_{\text {skew }}$	A Port B Port ${ }^{(11)}$		0.5		0.5		0.5		1.0	1.0	ns

Note:
11. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (A_{n} or B_{n}) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 11). Skew is guaranteed, but not tested.

AC Characteristics (Continued)
$\mathrm{V}_{\mathrm{Cc}}=1.4 \mathrm{~V}$ to $1.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{ccB}}=1.4 \mathrm{~V} \\ & \text { to } 1.6 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Typ.	
$\mathrm{t}_{\text {PLH, }}$,tPHL	A to B	0.5	6.0	0.5	6.5	1.0	7.0	1.0	8.5	7.9	ns
	B to A	0.6	6.8	0.8	6.9	0.9	7.5	1.0	8.5	6.1	ns
$\mathrm{t}_{\text {PzL }, \text { tpzh }}$	/OE to A, /OE to B		1.7		1.7		1.7		1.7	1.7	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SkEw }}$	A Port, B Port ${ }^{(12)}$		1.0		1.0		1.0		1.0	1.0	ns

$V_{C C A}=1.1 \mathrm{~V}$ to $1.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{cCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cCB}}=1.1 \mathrm{~V} \\ & \text { to } 1.3 \mathrm{~V} \end{aligned}$	Units
		Typ.	Typ.	Typ.	Typ.	Typ.	
$\mathrm{t}_{\text {PLL }, \mathrm{t}_{\text {PHL }}}$	A to B	4.6	4.8	5.4	6.2	9.2	ns
	B to A	6.8	7.0	7.4	7.8	9.1	ns
$\mathrm{t}_{\text {PzL, }}$ tpzH	/OE to A, /OE to B	1.7	1.7	1.7	1.7	1.7	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SKEW }}$	A Port, B Port ${ }^{(12)}$	1.0	1.0	1.0	1.0	1.0	ns

Note:
12. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (A_{n} or B_{n}) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 11). Skew is guaranteed, but not tested.

Maximum Data Rate ${ }^{(13,14)}$
$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

$\mathbf{V}_{\text {cca }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{ccB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CcB}}=1.1 \mathrm{~V} \text { to } \\ 1.3 \mathrm{~V} \end{gathered}$	Units
	Min.	Min.	Min.	Min.	Typ.	
$\mathrm{V}_{\text {CCA }}=3.00 \mathrm{~V}$ to 3.60 V	140	120	100	80	40	Mbps
$\mathrm{V}_{\text {CCA }}=2.30 \mathrm{~V}$ to 2.70 V	120	120	100	80	40	Mbps
$\mathrm{V}_{\text {CCA }}=1.65 \mathrm{~V}$ to 1.95 V	100	100	80	60	40	Mbps
$\mathrm{V}_{\text {CCA }}=1.40 \mathrm{~V}$ to 1.60 V	80	80	60	60	40	Mbps
$\mathrm{V}_{\text {CCA }}=1.10 \mathrm{~V}$ to 1.30 V	Typ.	Typ.	Typ.	Typ.	Typ.	
	40	40	40	40	40	Mbps

Notes:

13. Maximum data rate is guaranteed, but not tested.
14. Maximum data rate is specified in megabits per second (see Figure 10). It is equivalent to two times the F-toggle frequency, specified in megahertz. For example, 100Mbps is equivalent to 50 MHz .

Capacitance

Symbol	Parameter		Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Typical	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance Control Pin (/OE)		$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=\mathrm{GND}$	3	pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	Input/Output Capacitance	A_{n}	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, / \mathrm{OE}=\mathrm{V}_{\mathrm{CCA}}$	4	pF
		B_{n}		5	
C_{pd}	Power Dissipation Capacitance		$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{Cc}}, \mathrm{f}=10 \mathrm{MHz}$	25	pF

I/O Architecture Benefit

The FXLA104 I/O architecture benefits the end user, beyond level translation, in the following three ways:

Auto Direction without an external direction pin.
Drive Capacitive Loads. Automatically shifts to a higher current drive mode only during "Dynamic Mode" or HL / LH transitions.

Lower Power Consumption. Automatically shifts to low-power mode during "Static Mode" (no transitions), lowering power consumption.
The FXLA104 does not require a direction pin. Instead, the I/O architecture detects input transitions on both side and automatically transfers the data to the corresponding output. For example, for a given channel, if both A and B side are at a static LOW, the direction has been established as $A \rightarrow B$, and a LH transition occurs on the B port; the FXLA104 internal I/O architecture automatically changes direction from $A \rightarrow B$ to $B \rightarrow A$.

During HL / LH transitions, or "Dynamic Mode," a strong output driver drives the output channel in parallel with a weak output driver. After a typical delay of approximately $10 \mathrm{~ns}-50 \mathrm{~ns}$, the strong driver is turned off, leaving the weak driver enabled for holding the logic state of the channel. This weak driver is called the "bus
hold." "Static Mode" is when only the bus hold drives the channel. The bus hold can be over ridden in the event of a direction change. The strong driver allows the FXLA104 to quickly charge and discharge capacitive transmission lines during dynamic mode. Static mode conserves power, where I_{cc} is typically $<5 \mu \mathrm{~A}$.

Bus Hold Minimum Drive Current

Specifies the minimum amount of current the bus hold driver can source/sink. The bus hold minimum drive current ($\|_{\text {Hold }}$) is $\mathrm{V}_{\text {cc }}$ dependent and guaranteed in the DC Electrical tables. The intent is to maintain a valid output state in a static mode, but that can be overridden when an input data transition occurs.

Bus Hold Input Overdrive Drive Current

Specifies the minimum amount of current required (by an external device) to overdrive the bus hold in the event of a direction change. The bus hold overdrive ($\mathrm{I}_{\mathrm{ODH}}, \mathrm{I}_{\mathrm{ODL}}$) is V_{CC} dependent and guaranteed in the DC Electrical tables.

Dynamic Output Current

The strength of the output driver during LH / HL transitions is referenced on page 8, Dynamic Output Electrical Characteristics, IOHD, and IOLD.

Test Diagrams

Figure 4. Test Circuit

Table 1. AC Test Conditions

Test	Input Signal	Output Enable Control
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}$	Data Pulses	0 V
$\mathrm{t}_{\text {PZL }}$	0 V	HIGH to LOW Switch
$\mathrm{t}_{\text {PZH }}$	$\mathrm{V}_{\mathrm{CCI}}$	HIGH to LOW Switch

Table 2. AC Load

$\mathbf{V}_{\mathbf{C C o}}$	$\mathbf{C 1}$	$\mathbf{R 1}$
$1.2 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$

Figure 5. Waveform for Inverting and Non-Inverting Functions

Notes:

15. Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%.
16. Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only.

Figure 6. 3-State Output Low Enable Time for Low Voltage Logic

Notes:

17. Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.0 \mathrm{~ns}, 10 \%$ to 90%.
18. Input $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only.

Figure 7. 3-State Output High Enable Time for Low Voltage Logic

Notes:

19. Input $t_{R}=t_{F}=2.0 n s, 10 \%$ to 90%.
20. Input $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only.

Table 3. Test Measure Points

Symbol	V_{DD}
$\mathrm{V}_{\mathrm{MI}}{ }^{(21)}$	$\mathrm{V}_{\mathrm{CCI}} / 2$
$\mathrm{~V}_{\mathrm{MO}}$	$\mathrm{V}_{\mathrm{CCo}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$0.9 \times \mathrm{V}_{\mathrm{CCo}}$
V_{Y}	$0.1 \times \mathrm{V}_{\mathrm{CCo}}$

Note:
21. $\mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCA}}$ for control pin /OE or $\mathrm{V}_{\mathrm{MI}}\left(\mathrm{V}_{\mathrm{CCA}} / 2\right)$.

$$
\begin{aligned}
& \mathrm{V}_{\text {OUT }} \\
& I_{\text {OHD }} \approx\left(C_{L}+C_{I I O}\right) \times \frac{\Delta V_{O U T}}{\Delta t}=\left(C_{L}+C_{I I O}\right) \times \frac{(20 \%-80 \%) \cdot V_{C C O}}{t_{R I S E}}
\end{aligned}
$$

Figure 8. Active Output Rise Time and Dynamic Output Current High

Figure 9. Active Output Fall Time and Dynamic Output Current Low

Figure 10. Maximum Data Rate

Figure 11. Output Skew Time
Note:
22. $\mathrm{t}_{\text {SKEW }}=\left(\mathrm{t}_{\text {pHLLmax }}-\mathrm{t}_{\text {pHLmin }}\right)$ or $\left(\mathrm{t}_{\mathrm{pLH}}\right.$ max $\left.-\mathrm{t}_{\mathrm{pLH} \text { min }}\right)$

Physical Dimensions

NOTES:
A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.
E. DRAWING FILENAME: MKT-UMLP16Arev4.
F. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

TERMINAL SHAPE VARIANTS

Figure 12.16-Lead, UMLP, QUAD, Ultra-Thin MLP, $1.8 \times 2.6 \mathrm{~mm}$

Physical Dimensions

RECOMMENDED LAND PATTERN

NOTES:
A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY
E. DRAWING FILENAME: MKT-UMLP12Arev4.

Figure 13.12-Lead, UMLP, QUAD, JEDEC MO-252 $1.8 \times 1.8 \mathrm{~mm}$ Package

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
FXLA104UMX FXLA104UM12X FXLA104UM12X-F106

