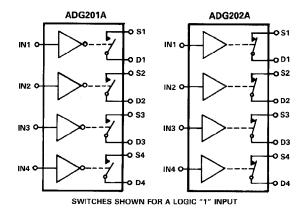
ANALOG DEVICES


FEATURES

44V Supply Maximum Rating \pm 15V Analog Signal Range Low R_{ON} (60 Ω) Low Leakage (0.5nA) Break Before Make Switching Extended Plastic Temperature Range (-40°C to +85°C) Low Power Dissipation (33mW) Available in 16-Lead DIP/SOIC and 20-Lead PLCC/LCCC Packages Superior Second Source: ADG201A Replaces DG201A, HI-201 ADG202A Replaces DG202

LC²MOS Quad SPST Switches

ADG201A/ADG202A

FUNCTIONAL BLOCK DIAGRAMS

GENERAL DESCRIPTION

The ADG201A and ADG202A are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC^2MOS process which gives an increased signal handling capability of $\pm 15V$. These switches also feature high switching speeds and low R_{ON} .

The ADG201A and ADG202A consist of four SPST switches. They differ only in that the digital control logic is inverted. All devices exhibit break before make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. Extended Signal Range:

These switches are fabricated on an enhanced LC^2MOS process, resulting in high breakdown and an increased analog signal range of $\pm 15V$.

2. Single Supply Operation:

For applications where the analog signal is unipolar (0V to 15V), the switches can be operated from a single +15V supply.

3. Low Leakage:

Leakage currents in the range of 500pA make these switches suitable for high precision circuits. The added feature of Break before Make allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum.

ADG201A	ADG202A	SWITCH
IN	IN	CONDITION
0	1	ON
1	0	OFF

Table I. Truth Table

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 617/329-4700
 Fax: 617/326-8703
 Twx: 710/394-6577

 Telex: 924491
 Cable: ANALOG NORWOODMASS

ADG201A/ADG202A — SPECIFICATIONS ($V_{DD} = +15V$, $V_{SS} = -15V$, unless otherwise specified)

	KV	resion	BV	ersion	Т	ersion	ſ	· · · · · · · · · · · · · · · · · · ·
Demonstern	2500	-40°C to	2500	-40°C to	0.000	- 55°C to		
Parameter	25°C	+85°C	25°C	+85°C	25°C	+125°C	Units	Test Conditions
ANALOG SWITCH								
Analog Signal Range	±15	±15	±15	±15	±15	±15	Volts	
R _{ON}	60 90	145	60	1.45	60	1.45	Ωtyp	$-10V \le V_S \le +10V$
	90	145	90	145	90	145	Ω max	$I_{DS} = 1.0 \text{mA}$ Test Circuit 1
$\mathbf{R}_{\mathbf{ON}}$ vs. $\mathbf{V}_{\mathbf{D}}(\mathbf{V}_{\mathbf{S}})$	20		20		20		% typ	
R _{ON} Drift	0.5		0.5		0.5		%/°Ctyp	
R _{ON} Match	5		5		5		%typ	$V_{\rm S}=0V, I_{\rm DS}=1\rm{m}A$
I _S (OFF)	0.5		0.5		0.5		nA typ	$V_D = \pm 14V$; $V_S \mp 14V$; Test Circuit 2
OFF Input Leakage	2	100	2	100	1	100	nA max	
I _D (OFF)	0.5		0.5		0.5		nA typ	$V_D = \pm 14V$; $V_S = \mp 14V$; Test Circuit 2
OFF Output Leakage	2	100	2	100	1	100	nA max	
I _D (ON)	0.5		0.5		0.5		nA typ	$V_{\rm D} = \pm 14V$; Test Circuit 3
ON Channel Leakage	2	200	2	200	1	200	nA max	
DIGITAL CONTROL								
V _{INH} , Input High Voltage		2.4		2.4		2.4	Vmin	
VINL, Input Low Voltage		0.8		0.8		0.8	Vmax	
I _{INL} or I _{INH}		1		1		1	μA max	
DYNAMIC CHARACTERISTICS								
t _{OPEN}	30		30		30		nstyp	,
t _{ON} ¹	300		300		300		ns max	Test Circuit 4
t _{OFF} ¹	250		250		250		ns max	Test Circuit 4
OFF Isolation	80		80		80		dB typ	$V_s = 10V(p-p); f = 100kHz$ $R_1 = 75\Omega; Test Circuit 6$
Channel-to-Channel Crosstalk	80		80		80		dB typ	Test Circuit 7
C _S (OFF)	5		5		5		pF typ	i bit chivait i
C _D (OFF)	5		5		5		pFtyp	
$C_{\rm D}, C_{\rm S}({\rm ON})$	16		16		16		pF typ	
CIN Digital Input Capacitance	5		5		5		pF typ	
Q_{INJ} Charge Injection	20		20		20		pC typ	$R_S = 0\Omega; C_L = 1000 pF; V_S = 0V$ Test Circuit 5
POWER SUPPLY								
I _{DD}	0.6		0.6		0.6		mA typ	Digital Inputs = V_{INL} or V_{INH}
I _{DD}		2		2		2	mA max	
I _{SS}	0.1		0.1		0.1		mA typ	
I _{SS}		0.2		0.2		0.2	mA max	
Power Dissipation		33		33		33	mW max	

NOTES

¹Sample tested at 25°C to ensure compliance.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

 $(T_A = +25^{\circ}C \text{ unless otherwise stated})$

V_{DD} to V_{SS}
V_{DD} to GND
V_{SS} to GND
Analog Inputs ¹
Voltage at S, D V_{SS} -0.3V to
$V_{DD} + 0.3V$
Continuous Current, S or D
Pulsed Current S or D
1ms Duration, 10% Duty Cycle 70mA
Digital Inputs ¹
Voltage at IN \ldots \ldots \ldots \ldots \ldots \ldots V_{SS} -2V to
$V_{DD} + 2V \text{ or}$
20mA, Whichever Occurs First

Power Dissipation (Any Package)
Up to $+75^{\circ}C$
Derates above $+75^{\circ}$ C by
Operating Temperature
Commercial (K Version) $\ldots \ldots \ldots \ldots -40^{\circ}$ C to $+85^{\circ}$ C
Industrial (B Version)
Extended (T Version)
Storage Temperature Range 65°C to +150°C
Lead Temperature (Soldering 10sec) + 300°C

NOTE

¹Overvoltage at IN, S or D will be clamped by diodes. Current should be limited to the Maximum Rating above.

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may be applied at any one time.

ADG201A/ADG202A

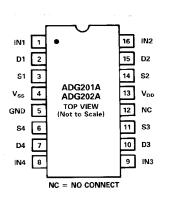
CAUTION

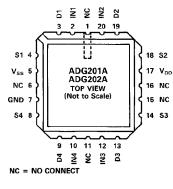
ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

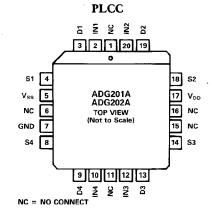
ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²
ADG201AKN	-40°C to +85°C	N-16
ADG201AKR	-40° C to $+85^{\circ}$ C	R-16A
ADG201AKP	-40° C to $+85^{\circ}$ C	P-20A
ADG201ABQ	-40° C to $+85^{\circ}$ C	Q-16
ADG201ATQ	-55° C to $+125^{\circ}$ C	Q-16
ADG201ATE	-55° C to $+125^{\circ}$ C	E-20A
ADG202AKN	- 40°C to + 85°C	N-16
ADG202AKR	-40° C to $+85^{\circ}$ C	R-16A
ADG202AKP	-40° C to $+85^{\circ}$ C	P-20A
ADG202ABQ	-40° C to $+85^{\circ}$ C	Q-16
ADG202ATQ	-55° C to $+125^{\circ}$ C	Q-16
ADG202ATE	-55°C to +125°C	E-20A

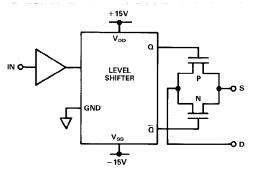
NOTES


¹To order MIL-STD-883, Class B processed parts, add/883B to T grade part numbers. See Analog Devices Military Products Databook (1990) for military data sheet.


²E = Leadless Ceramic Chip Carrier (LCCC); N = Plastic DIP; R = 0.15''Small Outline IC (SOIC); P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip.


PIN CONFIGURATIONS

LCCC


DIP, SOIC

ADG201A/ADG202A FUNCTIONAL DIAGRAM

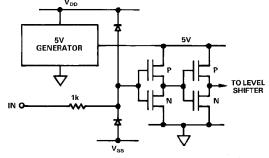
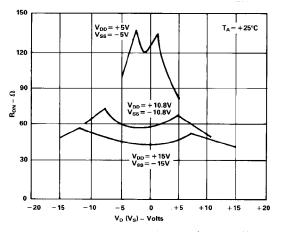
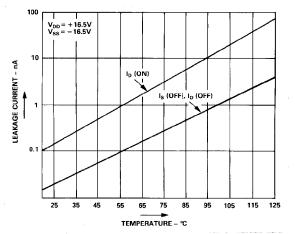
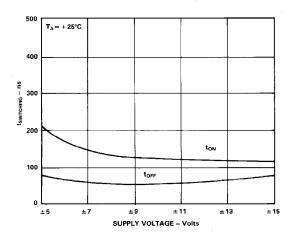
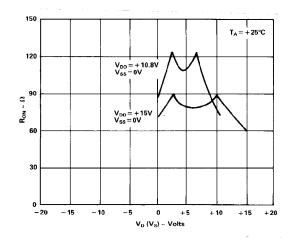



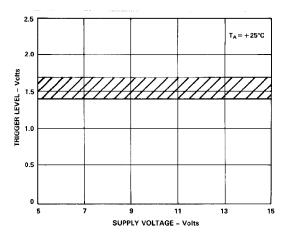
Figure 1. Typical Digital Input Cell

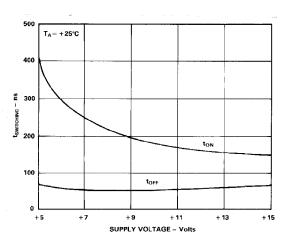

-3-

ADG201A/ADG202A—Typical Performance Characteristics

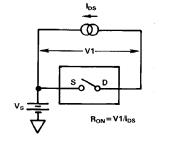

The switches are guaranteed functional with reduced single or dual supplies down to 4.5V.

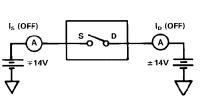

R_{ON} as a Function of V_D (V_S): Dual Supply Voltage

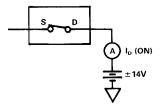

Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)


Switching Time vs. Supply Voltage (Dual Supply)

 R_{ON} as a Function of V_D (V_S): Single Supply Voltage

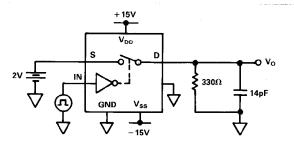


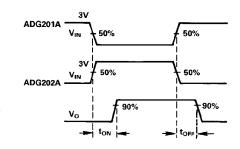

Trigger Level vs. Power Supply Voltage: Dual or Single Supply Voltage



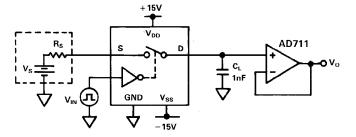
Switching Time vs. Supply Voltage (Single Supply)

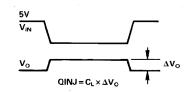
Test Circuits — ADG201A/ADG202A

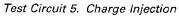


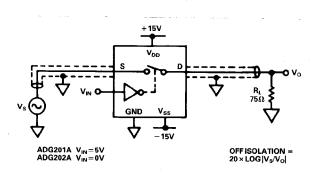


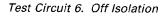
Test Circuit 1

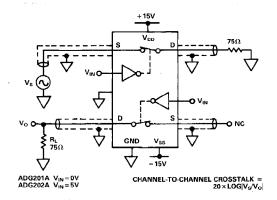



Test Circuit 3



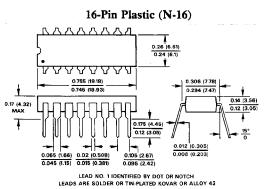


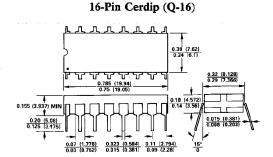

Test Circuit 4



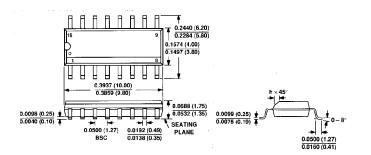
Test Circuit 7. Channel-to-Channel Crosstalk

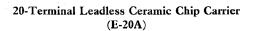
ADG201A/ADG202A

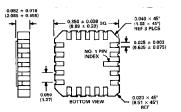

TERMINOLOGY

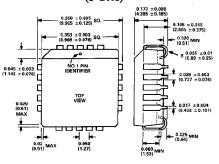

TERMINOLOGY		t _{ON}	Delay time between the 50% and 90% points of
$\label{eq:constraint} \begin{array}{l} \textbf{IERMINOL} \\ \textbf{R}_{ON} & \textbf{Match} \\ \textbf{I}_{S} & (OFF) \\ \textbf{I}_{D} & (OFF) \\ \textbf{I}_{D} & (OFF) \\ \textbf{I}_{D} & (ON) \\ \textbf{V}_{D} & (\textbf{V}_{S}) \\ \textbf{C}_{S} & (OFF) \\ \textbf{C}_{D} & (OFF) \\ \textbf{C}_{IN} \\ \textbf{C}_{D} & \textbf{C}_{S} & (ON) \end{array}$	Ohmic resistance between terminals OUT and S Difference between the R _{ON} of any two channels Source terminal leakage current when the switch is off Drain terminal leakage current when the switch is off Leakage current that flows from the closed switch into the body Analog voltage on terminal D, S Switch input capacitance "OFF" condition Switch output capacitance "OFF" condition Digital input capacitance when the switch	toff toff topen Vinl Vinh I _{INL} (I _{INH}) V _{DD} V _{SS} I _{DD}	the digital input and switch "ON" condition Delay time between the 50% and 90% points of the digital input and switch "OFF" condition "OFF" time measured between 50% points of both switches, which are connected as a multi- plexer, when switching from one address state to another Maximum Input Voltage for a Logic Low Minimum Input Voltage for a Logic High Input current of the digital input Most positive voltage supply Most negative voltage supply Positive supply current
-D) -3 ()	is on	I _{SS}	Negative supply current

MECHANICAL INFORMATION


OUTLINE DIMENSIONS


Dimensions shown in inches and (mm).





ł

20-Terminal Plastic Leaded Chip Carrier (P-20A)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: ADG202AKRZ ADG202AKNZ ADG202AKRZ-REEL ADG202AKRZ-REEL7