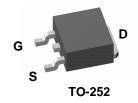


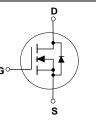
ON Semiconductor®

FDD2670


200V N-Channel PowerTrench[®] MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.


These MOSFET's feature faster switching and lower gate charge than other MOSFET's with comparable $\mathsf{RDS}_{(\mathsf{ON})}$ specifications.

The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 3.6 A, 200 V. $R_{DS(ON)}$ = 130 m Ω @ V_{GS} = 10 V
- Low gate charge
- Fas t switching speed
- + High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		200	V
V _{GSS}	Gate-Source Voltage		±20	V
ID	Drain Current – Continuous	(Note 1)	3.6	A
	Drain Current – Pulsed		20	
PD	Maximum Power Dissipation @ T _C = 25°C	(Note 1)	70	W
	(a) $T_A = 25^{\circ}C$ (Note 1a)	3.2	
	(a) $T_A = 25^{\circ}C$ (Note 1b)	1.3	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	3.2	V/ns
T _J , T _{STG}	Operating and Storage Junction Temperature	Range	-55 to +150	°C

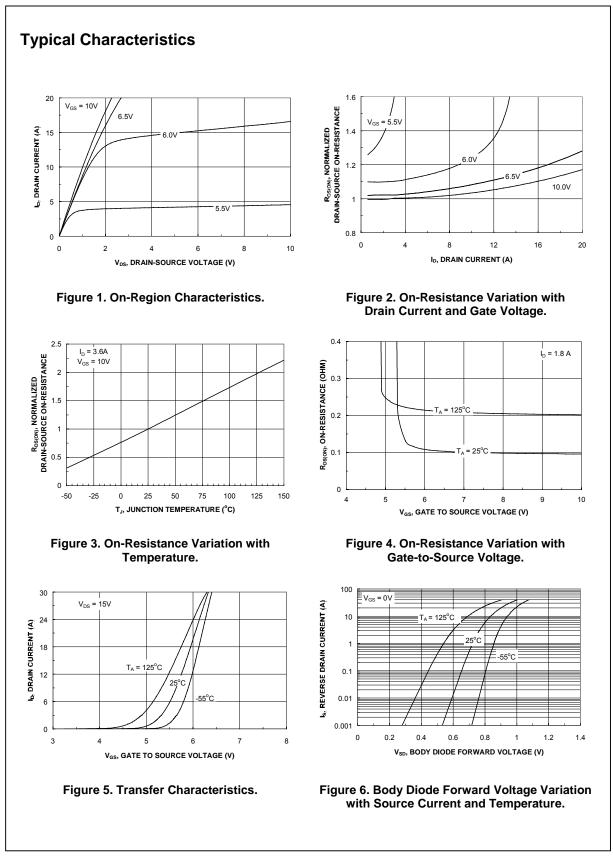
	Onaracteristics			
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	1.8	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W

Package Marking and Ordering Information

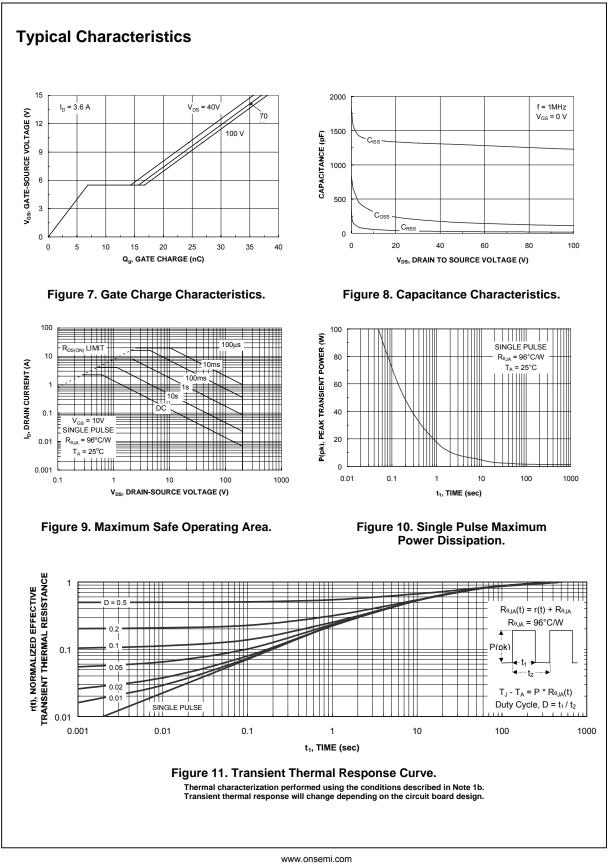
Device Marking	Device	Reel Size	Tape width	Quantity
FDD2670	FDD2670	13"	16mm	2500 units

©2001 Semiconductor Components Industries, LLC. November-2017, Rev. 2

Publication Order Number: FDD2670/D


FDD2670

W _{DSS} 5 I _{AR} I Off Chara I BV _{DSS} I ΔBV _{DSS} I ΔT _J G I _{DSS} 2 I _{GSSF} G	Urce Avalanche Ratings (Note Single Pulse Drain-Source Avalanche Energy Maximum Drain-Source Avalanche Current Incteristics Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	1) $V_{DD} = 100 \text{ V}, I_D = 3.6 \text{ A}$ $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ $I_D = 250 \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$	200		375 3.6	mJ A
W _{DSS} 5 I _{AR} Γ Off Chara Γ BV _{DSS} Γ <u>ΔBV_{DSS}</u> Γ ΔT _J Γ I _{DSS} 2 I _{GSSF} Γ	Single Pulse Drain-Source Avalanche Energy Maximum Drain-Source Avalanche Current Incteristics Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient	V _{DD} = 100 V, I _D = 3.6 A V _{GS} = 0 V, I _D = 250 μA	200			
I _{AR} Γ Off Chara BV _{DSS} Γ ΔBV _{DSS} Γ ΔTJ Γ I _{DSS} 2 I _{GSSF} Γ	Maximum Drain-Source Avalanche Current Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient		200		3.6	A
BV _{DSS} Ι ΔBV _{DSS} Ι ΔΤ _J Ο Ι _{DSS} 2 Ι _{GSSF} Ο	Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient		200			
BV _{DSS} Ι ΔBV _{DSS} Ι ΔΤ _J Ο Ι _{DSS} 2 Ι _{GSSF} Ο	Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient		200			
$\begin{array}{c c} \underline{\Delta B V_{DSS}} \\ \underline{\Delta T_J} \\ I_{DSS} \\ I_{GSSF} \end{array} \qquad \begin{array}{c} I \\ I $	Breakdown Voltage Temperature Coefficient					V
I _{DSS} Z	Zero Gate Voltage Drain Current			214		mV/°C
	baile to the brain out off	V _{DS} = 160 V, V _{GS} = 0 V			1	μA
	Gate-Body Leakage, Forward	$V_{GS} = 20 V$, $V_{DS} = 0 V$			100	NA
-0001	Gate–Body Leakage, Reverse	$V_{GS} = -20 V$, $V_{DS} = 0 V$			-100	NA
On Chara	Cteristics (Note 2)	· ·				
	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	4	4.5	V
$\Delta V_{GS(th)}$ (Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		-10		mV/°C
00(011)	Static Drain–Source On–Resistance	V_{GS} = 10 V, I_D = 3.6 A V_{GS} = 10 V, I_D = 3.6 A T _J = 125°C		100 205	130 275	mΩ
I _{D(on)}	On–State Drain Current	V_{GS} = 10 V, V_{DS} = 5 V	20			А
g _{FS} I	Forward Transconductance	$V_{DS} = 5 V$, $I_{D} = 3.6 A$		15		S
Dvnamic (Characteristics					
	Input Capacitance	$V_{DS} = 100 V$, $V_{GS} = 0 V$,		1228		PF
C _{oss} (Output Capacitance	f = 1.0 MHz		112		PF
C _{rss} I	Reverse Transfer Capacitance			17		pF
Curitalia a	g Characteristics (Note 2)	•				
Switching						
	Turn–On Delay Time	Vpp = 100 V Ip = 1 A		13	23	ns
t _{d(on)}		$V_{DD} = 100 V,$ $I_D = 1 A,$ $V_{GS} = 10 V,$ $R_{GEN} = 6 \Omega$		13 8	23 16	ns ns
t _{d(on)} t _r	Turn–On Delay Time	V_{DD} = 100 V, I_D = 1 A, V _{GS} = 10 V, R_{GEN} = 6 Ω				
t _{d(on)} - t _r - t _{d(off)} -	Turn–On Delay Time Turn–On Rise Time			8	16	ns
t _{d(on)} - t _r - t _{d(off)} - t _f -	Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		8 30	16 48	ns ns
t _{d(on)} - t _r - t _{d(off)} - t _f - Q _g -	Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time			8 30 25	16 48 40	ns ns ns
td(on) - tr - td(off) - tf - Qg - Qgs -	Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge	V_{GS} = 10 V, R_{GEN} = 6 Ω V_{DS} = 100 V, I_D = 3.6 A,		8 30 25 27	16 48 40	ns ns ns nC
td(on) - tr - td(off) - tr - Qg - Qgs - Qgd -	Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge Gate–Drain Charge	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 100 \text{ V}, \qquad I_D = 3.6 \text{ A},$ $V_{GS} = 10 \text{ V}$		8 30 25 27 7	16 48 40	ns ns nC nC
t _{d(on)} - t _r - t _{d(off)} - t _f - Q _g - Q _{gs} (Q _{gd} (Drain–Sou	Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 100 \text{ V}, \qquad I_D = 3.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ and Maximum Ratings		8 30 25 27 7	16 48 40	ns ns nC nC


Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

3. $I_{SD} \leq$ 3A, di/dt \leq 100A/µs, $V_{DD} \leq BV_{DSS},$ Starting T_{J} = 25°C

FDD2670

FDD2670

4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDD2670