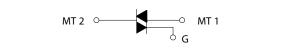


BTB12-600CW3G, BTB12-800CW3G

Description

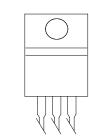
Designed for high performance full-wave ac control applications where high noise immunity and high commutating di/dt are required.

Features


- Blocking Voltage to 800 V
- On-State Current Rating of 12 Amperes RMS at 25°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt

 1500 V/µs minimum at 125°C
- Minimizes Snubber Networks for Protection

Po


- Industry Standard TO-220AB Package
- High Commutating dl/dt – 3.0. A/ms minimum at 125°C
- These are Pb–Free Devices

Functional Diagram

TO-220AB CASE 221A STYLE 4

Pin Out

Additional Information

Resources

Samples

Maximum Ratings (T = 25°C unless otherwise noted)

e de la companya de l				
Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_{_J}$ = -40° to 125°C)	BTB12–600BW3G BTB12–800BW3G	V _{drm} , V _{rrm}	600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 80^{\circ}$ C)		I _{T (RMS)}	12	A
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _c = 25°C)		I _{TSM}	120	A
Circuit Fusing Consideration (t = 10 ms)		l²t	78	A²sec
Non–Repetitive Surge Peak Off–State Voltage ($T_J = 25^{\circ}$ C, t = 10 ms)		V _{DSM} /V _{RSM}	V _{DSM} /V _{RSM} +100	V
Peak Gate Current ($T_J = 125^{\circ}C$, t = 20ms)		I _{GM}	4.0	W
Peak Gate Power (Pulse Width \leq 1.0 µs, T _c = 80°C)		P _{GM}	20	W
Average Gate Power ($T_{J} = 125^{\circ}C$)		P _{G(AV)}	1.0	W
Operating Junction Temperature Range		TJ	-40 to +125	°C
Storage Temperature Range		T _{stg}	-40 to +125	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

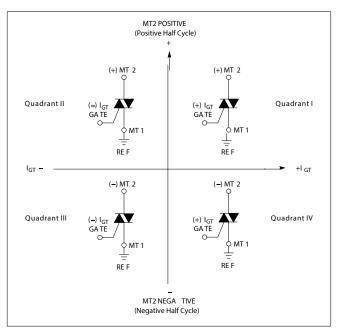
Thermal Characteristics Rating Symbol Value Unit Junction-to-Case (AC) $\mathsf{R}_{_{\Theta JC}}$ 2.3 Thermal Resistance °C/W Junction-to-Ambient R_{eja} 60 Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 260 °C T_{L} 10 seconds

Electrical Characteristics OFF (T₁ = 25°C unless otherwise noted ; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Мах	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.005	~^
$(V_{D} = V_{DRM} = V_{RRM}; \text{ Gate Open})$	T_ = 125°C	I RRM	-	-	1.0	mA

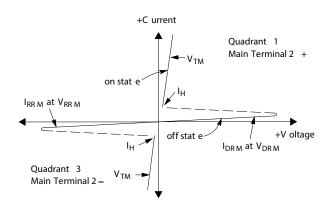
Electrical Characteristics \cdot **ON** (T₁ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Forward On-State Voltage (Note 2) ($I_{TM} = \pm 17 \text{ A Peak}$)		V _{TM}	-	-	1.55	V
	MT2(+), G(+)		2.0	-	35	
Gate Trigger Current (Continuous dc) (V $_{\rm D}$ = 12 V, R $_{\rm L}$ = 30 $\Omega)$	MT2(+), G(-)	I _{GT}	2.0	-	35	mA
	MT2(-), G(-)		2.0	-	35	
Holding Current ($V_{D} = 12$ V, Gate Open, Initiating Current = ±100 mA)		I _H	_	_	45	mA
	MT2(+), G(+)	- 	_	-	50	mA
Latching Current ($V_{D} = 12 \text{ V}, \text{ I}_{G} = 42 \text{ mA}$)	MT2(+), G(-)		_	-	80	
	MT2(-), G(-)		_	-	50	
	MT2(+), G(+)		0.5	_	1.7	
Gate Trigger Voltage (V $_{_{\rm D}}$ = 12 V, R $_{_{\rm L}}$ = 30 $\Omega)$	MT2(+), G(-)	V _{gt}	0.5	-	1.1	V
	MT2(-), G(-)		0.5	_	1.1	
	MT2(+), G(+)		0.2	-	-	
Gate Non-Trigger Voltage ($T_{J} = 125^{\circ}C$)	MT2(+), G(-)	V _{gd}	0.2	-	-	V
	MT2(-), G(-)		0.2	-	-	1

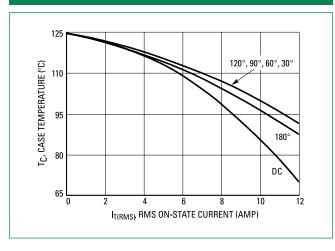

2. Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%.

Dynamic Characteristics					
Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, T _J = 125°C, No Snubber)	(dl/dt)c	3.0	-	-	A/ms
Critical Rate of Rise of On–State Current ($T_J = 125^{\circ}$ C, f = 120 Hz, $I_G = 2 \times I_{GT'}$ tr ≤ 100 ns)	dl/dt	-	-	50	A/µs
Critical Rate of Rise of Off-State Voltage ($V_D = 0.66 \times V_{DRM'}$ Exponential Waveform, Gate Open, $T_J = 125$ °C)	dV/dt	1500	-	-	V/µs

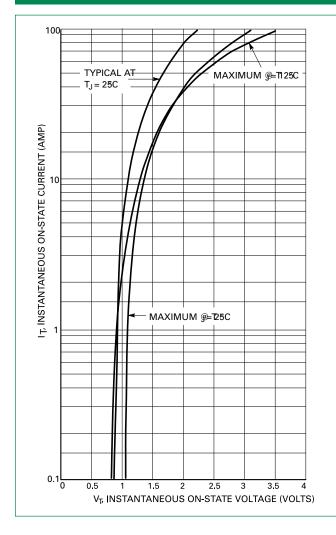
Voltage Current Characteristic of SCR

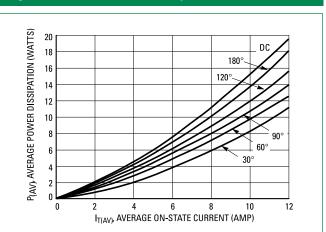

Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

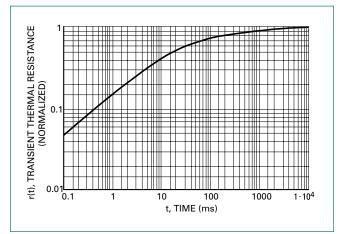
Quadrant Definitions for a Triac

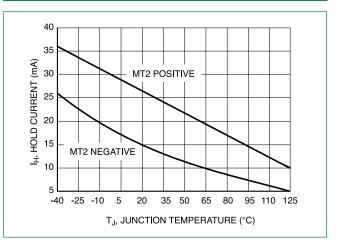

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used




Figure 1. RMS Current Derating


Figure 3. On–State Characteristics


Figure 2. On-State Power Dissipation

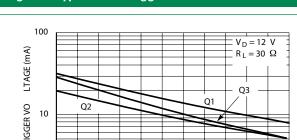
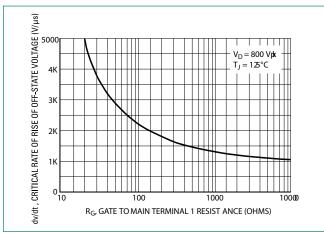
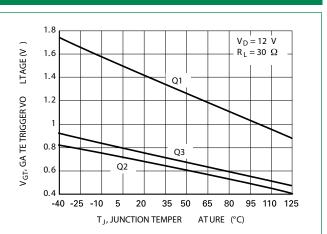

Figure 4. Thermal Response

Figure 5. Typical Hold Current Variation




Figure 6. Typical Gate Trigger Current Variation

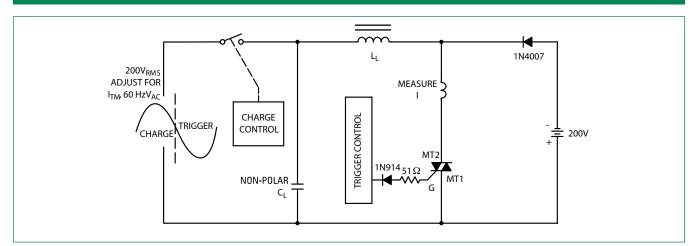
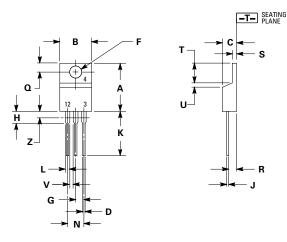
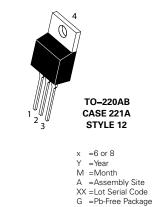
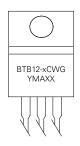

Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential Waveform)

Figure 7. Typical Gate Trigger Voltage Variation


Figure 9. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)

Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information


Dimensions



Part Marking System

S

.1

Dim	Inches		Millin	neters	
Dim	Min	Мах	Min	Max	
Α	0.590	0.620	14.99	15.75	
В	0.380	0.420	9.65	10.67	
С	0.178	0.188	4.52	4.78	
D	0.025	0.035	0.64	0.89	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.41	2.67	
Н	0.110	0.130	2.79	3.30	
J	0.018	0.024	0.46	0.61	
К	0.540	0.575	13.72	14.61	
L	0.060	0.075	1.52	1.91	
Ν	0.195	0.205	4.95	5.21	
٥	0.105	0.115	2.67	2.92	
R	0.085	0.095	2.16	2.41	
S	0.045	0.060	1.14	1.52	
т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
v	0.045		1.15		
Z		0.080		2.04	

Pin Assignment			
1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	No Connection		

Ordering	Information	

Device	Package	Shipping
BTB12-600CW3G	TO-220AB (Pb-Free)	500 Units / Rail
BTB12-800CW3G	TO-220AB (Pb-Free)	500 Units / Rail

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse: BTB12-600CW3G BTB12-800CW3G