

2 Ω , CMOS, ± 5 V/+5 V SPST Switches

Data Sheet

ADG601/ADG602

FEATURES

Low on resistance, 2.5 Ω maximum <0.65 Ω on-resistance flatness Dual ± 2.7 V to ± 5.5 V or single +2.7 V to +5.5 V supplies Rail-to-rail input signal range Tiny, 6-lead SOT-23; 8-lead MSOP; and 820 μ m \times 2255 μ m die Low power consumption TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment
Power routing
Communication systems
Data acquisition systems
Sample-and-hold systems
Avionics
Relay replacement
Battery-powered systems

GENERAL DESCRIPTION

The ADG601/ADG602 are monolithic, CMOS single-pole single-throw (SPST) switches with on resistance typically less than 2.5 Ω . The low on-resistance flatness makes the ADG601/ADG602 ideally suited to many applications, particularly those requiring low distortion. These switches are ideal replacements for mechanical relays because they are more reliable, have lower power requirements, and are available in much smaller package sizes.

The ADG601 is a normally open (NO) switch, and the ADG602 is a normally closed (NC) switch. Each switch conducts equally well in both directions when the device is on, with the input signal range extending to the supply rails.

The switches are available in tiny, 6-lead SOT-23; 8-lead MSOP; and 820 $\mu m \times 2255~\mu m$ die.

FUNCTIONAL BLOCK DIAGRAMS

Table 1. Truth Table

ADG601 IN	ADG602 IN	Switch Condition
0	1	Off
1	0	On

PRODUCT HIGHLIGHTS

- 1. Low on resistance (2 Ω typical)
- 2. Dual ± 2.7 V to ± 5.5 V or single +2.7 V to +5.5 V supplies
- 3. Tiny, 6-lead SOT-23; 8-lead MSOP; and 820 μ m \times 2255 μ m die
- 4. Rail-to-rail input signal range

Rev. D

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Applications1
Functional Block Diagrams1
General Description1
Product Highlights1
Revision History2
Specifications3
Dual Supply3
Single Supply 4
REVISION HISTORY
3/15—Rev. C to Rev. D
Changes to IR Reflow, Peak Temperature Parameter, Table 4 5
Updated Outline Dimensions11
Changes to Ordering Guide
3/07—Rev. B to Rev. C
Added Die PackageUniversal
Changes to Specifications
Added Figure 4 and Table 66
Changes to Ordering Guide

Absolute Maximum Ratings	
ESD Caution	
Pin Configurations and Function Descriptions	6
Typical Performance Characteristics	
Terminology	9
Test Circuits	10
Outline Dimensions	11
Ordering Guide	12

3/06—Rev. A to Rev. B

Updated Format	Universal
Changes to 6-Lead SOT-23 (RJ-6) Pin Configuration	6
Added Pin Function Descriptions Table	6
Changes to Figure 19	9
Updated Outline Dimensions	11
Changes to Ordering Guide	11
6/03—Rev. 0 to Rev. A	
Changes to Specifications	2
Changes to Ordering Guide	4
Updated Outline Dimensions	8

11/01—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

	B Version ¹				
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		V_{SS} to V_{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$	
On Resistance (RoN)	2		Ωtyp	$V_S = \pm 4.5 \text{ V}$, $I_{DS} = -10 \text{ mA}$; see Figure 15	
	2.5	5.5	Ω max		
On-Resistance Flatness (R _{FLAT (ON)})	0.35	0.4	Ω typ	$V_S = \pm 3.3 \text{ V, } I_{DS} = -10 \text{ mA}$	
	0.6	0.65	Ω max		
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$	
Source Off Leakage, Is (Off)	±0.01		nA typ	$V_S = +4.5 \text{ V/}-4.5 \text{ V}, V_D = -4.5 \text{ V/}+4.5 \text{ V}$; see Figure 16	
	±0.25	±1	nA max		
Drain Off Leakage, I _D (Off)	±0.01		nA typ	$V_S = +4.5 \text{ V/}-4.5 \text{ V}, V_D = -4.5 \text{ V/}+4.5 \text{ V}$; see Figure 16	
	±0.25	±1	nA max		
Channel On Leakage, I _D , I _S (On)	±0.01		nA typ	$V_S = V_D = +4.5 \text{ V or } -4.5 \text{ V; see Figure 17}$	
	±0.25	±1	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, VINL		0.8	V max		
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		±0.1	μA max		
Digital Input Capacitance, C _{IN}	2		pF typ		
DYNAMIC CHARACTERISTICS ²					
ton	80		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	120	155	ns max	$V_S = 3.3 \text{ V}$; see Figure 18	
toff	45		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	75	90	ns max	$V_S = 3.3 \text{ V}$; see Figure 18	
Charge Injection	250		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 19}$	
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 20	
Bandwidth –3 dB	180		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 21	
C _s (Off)	50		pF typ	f = 1 MHz	
C _D (Off)	50		pF typ	f = 1 MHz	
C_D , C_S (On)	145		pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$	
I_{DD}	0.001		μA typ	Digital inputs = 0 V or 5.5 V	
		1.0	μA max		
I _{SS}	0.001		μA typ	Digital inputs = 0 V or 5.5 V	
		1.0	μA max		

 $^{^{1}}$ Temperature range for B version is -40° C to $+85^{\circ}$ C.

² Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 5 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

	B Version ¹			
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	$V_{DD} = 4.5 \text{ V}$
On Resistance (RoN)	3.5		Ω typ	$V_S = 0 \text{ V to } 4.5 \text{ V, } I_{DS} = -10 \text{ mA; see Figure } 15$
	5	8	Ω max	
On-Resistance Flatness (R _{FLAT (ON)})	0.2	0.2	Ω typ	$V_S = 1.5 \text{ V to } 3.3 \text{ V, } I_{DS} = -10 \text{ mA}$
		0.6	Ω max	
LEAKAGE CURRENTS				$V_{DD} = 5.5 \text{ V}$
Source Off Leakage, I₅ (Off)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}; \text{ see Figure 16}$
	±0.25	±1	nA max	
Drain Off Leakage, I _D (Off)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}; \text{ see Figure 16}$
	±0.25	±1	nA max	
Channel On Leakage, ID, IS (On)	±0.01		nA typ	$V_S = V_D = 4.5 \text{ V or } 1 \text{ V; see Figure } 17$
	±0.25	±1	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{on}	110		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	220	280	ns max	V _S = 3.3 V; see Figure 18
t _{OFF}	50		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	80	110	ns max	$V_S = 3.3 \text{ V}$; see Figure 18
Charge Injection	20		pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 19
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 20
Bandwidth –3 dB	180		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 21
C _s (Off)	50		pF typ	f = 1 MHz
C _D (Off)	50		pF typ	f = 1 MHz
C _D , C _s (On)	145		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$
IDD	0.001		μA typ	Digital inputs = 0 V or 5.5 V
		1.0	μA max	

 $^{^1}$ Temperature range for B version is -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

ParameterRatingVDD to VSS13 VVDD to GND−0.3 V to +6.5 VVSS to GND+0.3 V to −6.5 VAnalog Inputs¹VSS − 0.3 V to VDD + 0.3 V or 30 mA (whichever occurs first)Digital Inputs¹−0.3 V to VDD + 0.3 V or 30 mA (whichever occurs first)Continuous Current, S or D100 mAPeak Current, S or D200 mA(Pulsed at 1 ms, 10% Duty Cycle Max)200 mAOperating Temperature Range−40°C to +85°CIndustrial (B Version)−40°C to +85°CStorage Temperature Range−55°C to +150°CJunction Temperature150°CThermal ResistanceMSOPΘJA206°C/WΘJA206°C/WΘJA229.6°C/WΘJA229.6°C/WΘJA9JCLead Temperature, Soldering (10 sec)300°C	1 able 4.	
$V_{DD} \text{ to GND} \\ V_{SS} \text{ to GND} \\ Analog Inputs^1 \\ Digital Inputs^1 \\ Continuous Current, S or D \\ Peak Current, S or D \\ (Pulsed at 1 ms, 10% Duty Cycle Max) \\ Operating Temperature Range Industrial (B Version) \\ Storage Temperature Range Junction Temperature Thermal Resistance MSOP \theta_{JA} \\ \theta_{JC} \\ \\ \theta_{JC$	Parameter	Rating
$V_{SS} \text{ to GND} \\ \text{Analog Inputs}^1 \\ \text{Digital Inputs}^1 \\ \text{Continuous Current, S or D} \\ \text{Peak Current, S or D} \\ \text{(Pulsed at 1 ms, 10\% Duty Cycle Max)} \\ \text{Operating Temperature Range} \\ \text{Industrial (B Version)} \\ \text{Storage Temperature Range} \\ \text{Junction Temperature} \\ \text{Thermal Resistance} \\ \text{MSOP} \\ \theta_{JA} \\ \theta_{JC} \\ \text{SOT-23} \\ \theta_{JA} \\ \theta_{JC} \\ \text{91.99°C/W} \\ \\ \text{1.99°C/W} \\ \\ \text{4.03 V to -6.5 \text{ V}} \\ \text{V}_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V} \\ \text{-0.3 V to } V_{DD} + 0.3 \text{ V} \\ \text{or 30 mA (whichever occurs first)} \\ \text{100 mA} \\ \text{200 mA} \\ \text{200 mA} \\ \text{-40°C to +85°C} \\ -65°C \text{ to +150°C} \\ \text{150°C} \\ \text{150°C} \\ \text{-65°C to +150°C} \\ \text{-206°C/W} \\ \text{-44°C/W} \\ \text{-91.99°C/W} \\ -91.99$	V _{DD} to V _{SS}	13 V
Analog Inputs¹ $V_{SS} = 0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ Digital Inputs¹ $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or}$ 30 mA (whichever 0 occurs first) 100 mA Peak Current, S or D $(\text{Pulsed at 1 ms, 10\% Duty Cycle Max})}$ Operating Temperature Range Industrial (B Version) $-40^{\circ}\text{C to +85°C}$ Storage Temperature Range Junction Temperature Thermal Resistance $MSOP$ θ_{JA} θ_{JC} $SOT-23$ θ_{JA} θ_{JC} $SOT-23$ θ_{JA} θ_{JC} 229.6°C/W 44°C/W 229.6°C/W 91.99°C/W	V _{DD} to GND	-0.3 V to +6.5 V
Digital Inputs¹ -0.3 V to V _{DD} + 0.3 V or 30 mA (whichever occurs first) Continuous Current, S or D Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature Thermal Resistance MSOP θ _{JA} θ _{JC} SOT-23 θ _{JA} θ _{JC} 91.99°C/W	V_{SS} to GND	+0.3 V to -6.5 V
Continuous Current, S or D Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature Thermal Resistance MSOP θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} S100 mA 200 °C (to +85°C -65° C to +150°C 150° C 44° C/W 44° C/W 229.6° C/W 91.99° C/W 91.99° C/W	Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Continuous Current, S or D Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature Thermal Resistance MSOP θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} SOZ-27 θ_{JA} θ_{JC} SOZ-28 θ_{JA} θ_{JC} SOZ-29.6°C/W 91.99°C/W	Digital Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or}$
Continuous Current, S or D Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature Thermal Resistance MSOP θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} SOZ-29.6°C/W 91.99°C/W		,
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature Thermal Resistance MSOP θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} SOS-29 θ_{JA} θ_{JC} SOT-29		occurs first)
(Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature Thermal Resistance MSOP θ _{JA} θ _{JC} SOT-23 θ _{JA} θ _{JC} SOT-23 θ _{JA} θ _{JC} 1200 mA 200 mA	Continuous Current, S or D	100 mA
Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature Thermal Resistance MSOP θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} 129.6°C/W 91.99°C/W	Peak Current, S or D	
Industrial (B Version) $-40^{\circ}\text{C to } +85^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$ Junction Temperature 150°C Thermal Resistance $000000000000000000000000000000000000$	(Pulsed at 1 ms, 10% Duty Cycle Max)	200 mA
Storage Temperature Range Junction Temperature Thermal Resistance MSOP θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC} θ_{JA} θ_{JC} 129.6°C/W 91.99°C/W	Operating Temperature Range	
Junction Temperature Thermal Resistance MSOP $\theta_{JA} \qquad 206^{\circ}\text{C/W}$ $\theta_{JC} \qquad 44^{\circ}\text{C/W}$ SOT-23 $\theta_{JA} \qquad 229.6^{\circ}\text{C/W}$ $\theta_{JC} \qquad 91.99^{\circ}\text{C/W}$	Industrial (B Version)	−40°C to +85°C
Thermal Resistance MSOP θ_{JA} θ_{JC} SOT-23 θ_{JA} θ_{JC}	Storage Temperature Range	−65°C to +150°C
MSOP θ _{JA} 206°C/W θ _{JC} 44°C/W SOT-23 θ _{JA} 229.6°C/W θ _{JC} 91.99°C/W	Junction Temperature	150°C
θ_{JA} 206°C/W θ_{JC} 44°C/W SOT-23 θ_{JA} 229.6°C/W θ_{JC} 91.99°C/W	Thermal Resistance	
θ _{JC} 44°C/W SOT-23 θ _{JA} 229.6°C/W θ _{JC} 91.99°C/W	MSOP	
SOT-23 θ _{JA} 229.6°C/W θ _{JC} 91.99°C/W	Θ_{JA}	206°C/W
θ _{JA} 229.6°C/W θ _{JC} 91.99°C/W	θις	44°C/W
θ _{JC} 91.99°C/W	SOT-23	
	Θ_{JA}	229.6°C/W
Lead Temperature, Soldering (10 sec) 300°C	θ_{JC}	91.99°C/W
	Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature 260°C	IR Reflow, Peak Temperature	260°C

 $^{^{\}rm 1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at a time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 6-Lead SOT-23 (RJ-6)

Figure 3. 8-Lead MSOP (RM-8)

Table 5. Pin Function Descriptions

Pin No.			
6-Lead SOT-23	8-Lead MSOP	Mnemonic	Description
1	4	V _{DD}	Most Positive Power Supply Potential.
2	8	S	Source Terminal. Can be an input or output.
3	5	V _{SS}	Most Negative Power Supply Potential.
4	7	GND	Ground (0 V) Reference.
5	1	D	Drain Terminal. Can be an input or output.
6	6	IN	Logic Control Input.
N/A ¹	2, 3	NC	No Connect.

¹ N/A is not applicable.

Figure 4. Die (820 μ m imes 2255 μ m)

Table 6. Die Pad Coordinates¹

		Pad linates		
Die Pad No.	X (μm)	Υ (μm)	Mnemonic	Description
1	-265	+754	NC	No Connect.
2	-265	+525	D	Drain Terminal. Can be an input or output. ²
3	-265	+241	D	Drain Terminal. Can be an input or output. ²
4	-265	+141	D	Drain Terminal. Can be an input or output. ²
5	-265	-191	NC	No Connect.
6	-265	-409	NC	No Connect.
7	-265	-549	NC	No Connect.
8	-265	-787	V_{DD}	Most Positive Power Supply Potential.
9	+265	-767	V _{SS}	Most Negative Power Supply Potential.
10	+265	-429	IN	Logic Control Input.
11	+265	-289	GND	Ground (0 V) Reference.
12	+265	+189	S	Source Terminal. Can be an input or output.3
13	+265	+521	S	Source Terminal. Can be an input or output.3
14	+265	+661	NC	Source Terminal. Can be an input or output.

 $^{^{\}scriptscriptstyle 1}$ Measured from the center of the die.

² Bond the D pads together to a single point to preserve the on resistance and current handling capability. The common point acts as the drain pin of the switch.

³ Bond the S pads together to a single point to preserve the on resistance and current handling capability. The common point acts as the source pin of the switch.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. V_D, V_S (Dual Supply)

Figure 8. On Resistance vs. V_D, V_S for Different Temperatures (Single Supply)

Figure 6. On Resistance vs. V_D , V_S (Single Supply)

Figure 9. Leakage Currents vs. Temperature (Dual Supply)

Figure 7. On Resistance vs. V_D, V_S for Different Temperatures (Dual Supply)

Figure 10. Leakage Currents vs. Temperature (Single Supply)

Figure 11. Charge Injection vs. Source Voltage

Figure 12. ton/toff Times vs. Temperature

Figure 13. Off Isolation vs. Frequency

Figure 14. On Response vs. Frequency

TERMINOLOGY

 \mathbf{V}_{DD}

Most positive power supply potential.

 \mathbf{V}_{ss}

Most negative power supply potential.

 I_{DD}

Positive supply current.

Iss

Negative supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or an output.

D

Drain terminal. Can be an input or an output.

IN

Logic control input.

 V_D, V_S

Analog voltage on Terminal D and Terminal S.

 \mathbf{R}_{ON}

Ohmic resistance between Terminal D and Terminal S.

R_{FLAT} (ON)

Flatness is defined as the difference between the maximum and minimum values of on resistance as measured over the specified analog signal range.

Is (Off)

Source leakage current with the switch off.

I_D (Off)

Drain leakage current with the switch off.

 I_D , I_S (On)

Channel leakage current with the switch on.

 \mathbf{V}_{INL}

Maximum input voltage for Logic 0.

 V_{INH}

Minimum input voltage for Logic 1.

 $I_{INL}(I_{INH})$

Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.

C_D (Off)

Off switch drain capacitance. Measured with reference to ground.

C_D, C_s (On)

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

ton

Delay between applying the digital control input and the output switching on.

toff

Delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

On Response

Frequency response of the on switch.

Insertion Loss

Loss due to the on resistance of the switch.

TEST CIRCUITS

Figure 16. Off Leakage

Figure 18. Switching Times

Figure 19. Charge Injection

Figure 20. Off Isolation

Figure 21. Bandwidth

OUTLINE DIMENSIONS

Figure 22. 8-Lead Mini Small Outline Package [MSOP] (RM-8)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-AB

Figure 23. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters

Rev. D | Page 11 of 12

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding ²
ADG601BRTZ-REEL	-40°C to +85°C	6-Lead SOT-23	RJ-6	STB#
ADG601BRTZ-REEL7	-40°C to +85°C	6-Lead SOT-23	RJ-6	STB#
ADG601BRMZ	-40°C to +85°C	8-Lead MSOP	RM-8	S1G
ADG601BRMZ-REEL7	-40°C to +85°C	8-Lead MSOP	RM-8	S1G
ADG601C-PT7		Die		
ADG602BRTZ-REEL7	-40°C to +85°C	6-Lead SOT-23	RJ-6	S18
ADG602BRMZ	−40°C to +85°C	8-Lead MSOP	RM-8	S18
ADG602BRMZ-REEL7	-40°C to +85°C	8-Lead MSOP	RM-8	S18

 $^{^{1}}$ Z = RoHS Compliant Part, # denotes RoHS compliant product, may be top or bottom marked.

Rev. D | Page 12 of 12

² Branding on SOT-23 and MSOP is limited to three characters due to space constraints.