FEATURES

Low on resistance, 2.5Ω maximum
$<0.65 \Omega$ on-resistance flatness
Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single +2.7 V to +5.5 V supplies
Rail-to-rail input signal range
Tiny, 6-lead SOT-23; 8-lead MSOP; and $820 \mu \mathrm{~m} \times 2255 \mu \mathrm{~m}$ die Low power consumption

TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment
Power routing
Communication systems
Data acquisition systems
Sample-and-hold systems
Avionics
Relay replacement
Battery-powered systems

GENERAL DESCRIPTION

The ADG601/ADG602 are monolithic, CMOS single-pole single-throw (SPST) switches with on resistance typically less than 2.5Ω. The low on-resistance flatness makes the ADG601/ ADG602 ideally suited to many applications, particularly those requiring low distortion. These switches are ideal replacements for mechanical relays because they are more reliable, have lower power requirements, and are available in much smaller package sizes.

The ADG601 is a normally open (NO) switch, and the ADG602 is a normally closed (NC) switch. Each switch conducts equally well in both directions when the device is on, with the input signal range extending to the supply rails.

The switches are available in tiny, 6-lead SOT-23; 8-lead MSOP; and $820 \mu \mathrm{~m} \times 2255 \mu \mathrm{~m}$ die.

FUNCTIONAL BLOCK DIAGRAMS

NOTES

1. SWITCHES SHOWN FOR A LOGIC 0 INPUT.

Figure 1.

Table 1. Truth Table

ADG601 IN	ADG602 IN	Switch Condition
0	1	Off
1	0	On

PRODUCT HIGHLIGHTS

1. Low on resistance (2Ω typical)
2. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single +2.7 V to +5.5 V supplies
3. Tiny, 6-lead SOT-23; 8-lead MSOP; and $820 \mu \mathrm{~m} \times 2255 \mu \mathrm{~m}$ die
4. Rail-to-rail input signal range

Rev. D

ADG601/ADG602

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 4
REVISION HISTORY
3/15—Rev. C to Rev. D
Changes to IR Reflow, Peak Temperature Parameter, Table 4.... 5
Updated Outline Dimensions 11
Changes to Ordering Guide 12
3/07-Rev. B to Rev. C
Added Die Package Universal
Changes to Specifications 3
Added Figure 4 and Table 6 6
Changes to Ordering Guide 11
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configurations and Function Descriptions 6
Typical Performance Characteristics 7
Terminology 9
Test Circuits 10
Outline Dimensions 11
Ordering Guide 12
3/06-Rev. A to Rev. B
Updated Format. Universal
Changes to 6-Lead SOT-23 (RJ-6) Pin Configuration 6
Added Pin Function Descriptions Table 6
Changes to Figure 19 9
Updated Outline Dimensions 11
Changes to Ordering Guide 11
6/03-Rev. 0 to Rev. A
Changes to Specifications 2
Changes to Ordering Guide 4
Updated Outline Dimensions 8

ADG601/ADG602

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	B Version ${ }^{1}$		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Flatness (Rflat (ON)	$\begin{aligned} & 2 \\ & 2.5 \\ & 0.35 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{S S} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5.5 \\ & 0.4 \\ & 0.65 \end{aligned}$	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{IDS}^{2}=-10 \mathrm{~mA} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, Id, Is (On)	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	± 1 ± 1 ± 1	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+4.5 \mathrm{~V} /-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-4.5 \mathrm{~V} /+4.5 \mathrm{~V} \text {; see Figure } 16 \\ & \mathrm{~V}_{\mathrm{S}}=+4.5 \mathrm{~V} /-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-4.5 \mathrm{~V} /+4.5 \mathrm{~V} \text {; see Figure } 16 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+4.5 \mathrm{~V} \text { or }-4.5 \mathrm{~V} \text {; see Figure } 17 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min \checkmark max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ ton toff Charge Injection Off Isolation Bandwidth -3 dB C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & 80 \\ & 120 \\ & 45 \\ & 75 \\ & 250 \\ & -60 \\ & 180 \\ & 50 \\ & 50 \\ & 145 \end{aligned}$	$\begin{aligned} & 155 \\ & 90 \end{aligned}$	ns typ ns max ns typ ns max pC typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} ; \text { see Figure } 18 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} ; \text { see Figure } 18 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 20 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {; see Figure } 21 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS IdD Iss	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

${ }^{1}$ Temperature range for B version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ADG601/ADG602

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.

Table 3.

Parameter	B Version ${ }^{1}$		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Flatness (Rflat (on)	$\begin{aligned} & 3.5 \\ & 5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 8 \\ & 0.2 \\ & 0.6 \end{aligned}$	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{l} \mathrm{DS}=-10 \mathrm{~mA} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \text { to } 3.3 \mathrm{~V}, \mathrm{l}_{\mathrm{DS}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, ID (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	± 1 ± 1 ± 1	nA typ nA max nA typ nA max nA typ nA max	
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, Inlo or linh Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS² ton toff Charge Injection Off Isolation Bandwidth -3 dB C_{s} (Off) C_{D} (Off) $C_{D}, C_{s}(O n)$	$\begin{aligned} & 110 \\ & 220 \\ & 50 \\ & 80 \\ & 20 \\ & -60 \\ & 180 \\ & 50 \\ & 50 \\ & 145 \\ & \hline \end{aligned}$	$\begin{aligned} & 280 \\ & 110 \end{aligned}$	ns typ ns max ns typ ns max pC typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} \text {; see Figure } 18 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} \text {; see Figure } 18 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 20 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {; see Figure } 21 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS IDD	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^0]
ADG601/ADG602

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	13 V
$V_{\text {DD }}$ to GND	-0.3 V to +6.5 V
Vss to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA (whichever occurs first)
Continuous Current, S or D	100 mA
Peak Current, S or D (Pulsed at 1 ms, 10\% Duty Cycle Max)	200 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Resistance	
MSOP	
$\theta_{\text {JA }}$	$206^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {¢ }}$	$44^{\circ} \mathrm{C} / \mathrm{W}$
SOT-23	
θ_{JA}	$229.6^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {л }}$	$91.99^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature	$260^{\circ} \mathrm{C}$

[^1]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at a time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 6-Lead SOT-23 (RJ-6)

Figure 3. 8-Lead MSOP (RM-8)

Table 5. Pin Function Descriptions

Pin No.			
$\mathbf{6 - L e a d ~ S O T - 2 3 ~}$	8-Lead MSOP	Mnemonic	Description
1	4	VD 2	Most Positive Power Supply Potential.
2	8	S	Source Terminal. Can be an input or output.
3	5	VSS	Most Negative Power Supply Potential.
4	7	GND	Ground (O V) Reference.
5	1	D	Drain Terminal. Can be an input or output.
6	6	IN	Logic Control Input.
N/A ${ }^{1}$	2,3	NC	No Connect.

${ }^{1} \mathrm{~N} / \mathrm{A}$ is not applicable.

Figure 4. Die $(820 \mu m \times 2255 \mu m)$

Table 6. Die Pad Coordinates ${ }^{1}$

Die Pad No.	Die Pad Coordinates		Mnemonic	Description
	X ($\mu \mathrm{m}$)	\mathbf{Y} ($\mu \mathrm{m}$)		
1	-265	+754	NC	No Connect.
2	-265	+525	D	Drain Terminal. Can be an input or output. ${ }^{2}$
3	-265	+241	D	Drain Terminal. Can be an input or output. ${ }^{2}$
4	-265	+141	D	Drain Terminal. Can be an input or output. ${ }^{2}$
5	-265	-191	NC	No Connect.
6	-265	-409	NC	No Connect.
7	-265	-549	NC	No Connect.
8	-265	-787	$V_{\text {DD }}$	Most Positive Power Supply Potential.
9	+265	-767	Vss	Most Negative Power Supply Potential.
10	+265	-429	IN	Logic Control Input.
11	+265	-289	GND	Ground (0V) Reference.
12	$+265$	+189	S	Source Terminal. Can be an input or output. ${ }^{3}$
13	$+265$	+521	S	Source Terminal. Can be an input or output. ${ }^{3}$
14	+265	+661	NC	Source Terminal. Can be an input or output.

[^2]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. V_{D}, V_{S} (Dual Supply)

Figure 6. On Resistance vs. V_{D}, V_{S} (Single Supply)

Figure 7. On Resistance vs. VD, Vs for Different Temperatures (Dual Supply)

Figure 8. On Resistance vs. V_{D}, V_{s} for Different Temperatures (Single Supply)

Figure 9. Leakage Currents vs. Temperature (Dual Supply)

Figure 10. Leakage Currents vs. Temperature (Single Supply)

ADG601/ADG602

Figure 11. Charge Injection vs. Source Voltage

Figure 12. ton/toff Times vs. Temperature

Figure 13. Off Isolation vs. Frequency

Figure 14. On Response vs. Frequency

TERMINOLOGY

$V_{\text {DD }}$
Most positive power supply potential.
Vss
Most negative power supply potential.
$I_{D D}$
Positive supply current.

Iss

Negative supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or an output.

D

Drain terminal. Can be an input or an output.

IN

Logic control input.

V_{D}, V_{s}

Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between Terminal D and Terminal S.
$\mathrm{R}_{\text {flat (} \mathrm{ON} \text {) }}$
Flatness is defined as the difference between the maximum and minimum values of on resistance as measured over the specified analog signal range.

I_{s} (Off)

Source leakage current with the switch off.
I_{D} (Off)
Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
Channel leakage current with the switch on.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
Vinh
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
Cs (Off)
Off switch source capacitance. Measured with reference to ground.
C_{D} (Off)
Off switch drain capacitance. Measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

On switch capacitance. Measured with reference to ground.
Cin
Digital input capacitance.

ton

Delay between applying the digital control input and the output switching on.
toff
Delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

On Response

Frequency response of the on switch.

Insertion Loss

Loss due to the on resistance of the switch.

ADG601/ADG602

TEST CIRCUITS

Figure 15. On Resistance

Figure 16. Off Leakage

Figure 17. On Leakage

Figure 18. Switching Times

Figure 19. Charge Injection

Figure 20. Off Isolation

OUTLINE DIMENSIONS

Figure 22. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-AB

Figure 23. 6-Lead Small Outline Transistor Package [SOT-23]
Dimensions shown in millimeters

ADG601/ADG602

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding 2
ADG601BRTZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 -Lead SOT-23	RJ-6	STB\#
ADG601BRTZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 -Lead SOT-23	RJ-6	STB\#
ADG601BRMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	S1G
ADG601BRMZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	S1G
ADG601C-PT7		Die		
ADG602BRTZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 -Lead SOT-23	RJ-6	S18
ADG602BRMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	S18
ADG602BRMZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	S18

${ }^{1} Z=$ RoHS Compliant Part, \# denotes RoHS compliant product, may be top or bottom marked.
${ }^{2}$ Branding on SOT- 23 and MSOP is limited to three characters due to space constraints.

[^0]: ${ }^{1}$ Temperature range for B version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

[^2]: ${ }^{1}$ Measured from the center of the die.
 ${ }^{2}$ Bond the D pads together to a single point to preserve the on resistance and current handling capability. The common point acts as the drain pin of the switch.
 ${ }^{3}$ Bond the S pads together to a single point to preserve the on resistance and current handling capability. The common point acts as the source pin of the switch.

