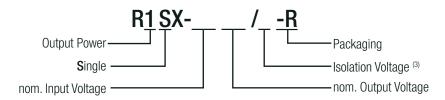
Features

Unregulated Converters

- 1W Power in SMD package
- Pin compatible with R1S series
- -40°C to +100°C operating temperature @ full load
- High 3kVDC/1 second or 1kVDC/1 second isolation
- IEC/EN/UL62368-1 certified, CB Report
- 5000m operation

Description


Low cost, low profile, open-frame 1W SMD isolated DC/DC single output converters. The R1SX is available with 3.3V or 5V inputs and offers a single unregulated 3.3V or 5V output. There is no minimum load requirement and the quiescent consumption is less than 150mW. Standard isolation is 1kVDC/1s and a /H version with 3kVDC/1s is available. The operating temperature is from -40°C up to +100°C without derating. The pin-out is industry standard and compatible with the R1S/R1D series, but at half the height. The converters are fully certified to IEC/EN/UL62368 and IEC/EN/UL60950 and are 10/10 R0HS-conform. Class A EMC conformity requires only an input capacitor and a simple low cost LC filter is all that is needed for Class B EMC. Standard packaging is tape and reel.

Selection Guide					
Part Number	nom. Input Voltage [VDC]	Output Voltage [VDC]	Output Current [mA]	Efficiency typ. ⁽¹⁾ [%]	max. Capacitive Load ⁽²⁾ [μ F]
R1SX-3.33.3	3.3	3.3	303	74	2200
R1SX-3.305	3.3	5	200	78	2200
R1SX-0505	5	5	200	78	2200
R1SX-1205	12	5	200	79	2200

Notes:

Note1: Efficiency is tested at nominal input and full load at +25°C ambient Note2: Max cap load is tested at nominal input and full resistive load

Model Numbering

Notes:

Note3: Without suffix, standard isolation voltage (1kVDC/1 second), with suffix "/H", high isolation voltage (3kVDC/1 second)

Ordering Examples:

R1SX-3.305-R 3.3Vin 5Vout 1kVDC/1 second isolation tape and reel packaging R1SX-0505/H-R 5Vin 5Vout 3kVDC/1 second isolation tape and reel packaging

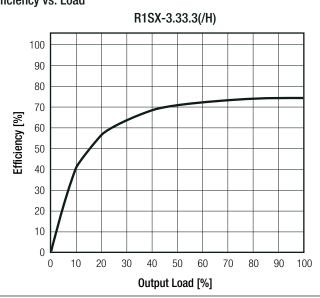
R1SX

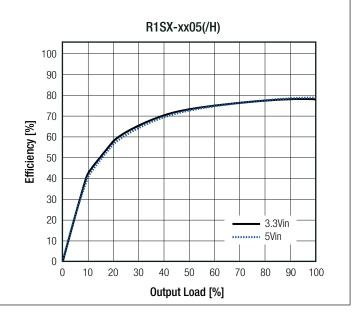
1 Watt SMD Single Output

IEC/EN62368-1 certified UL62368-1 certified IEC/EN60950-1 certified C22.2 No. 62368-1-14 certified CB Report EN55032 compliant EN55024 compliant

www.recom-power.com/eval-ref-boards

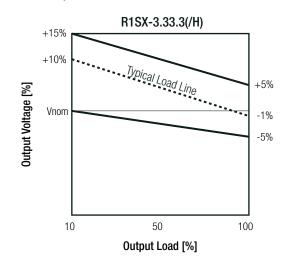
Series

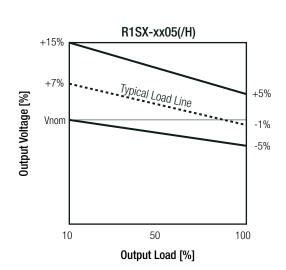

Specifications (measured @ Ta= 25°C, nominal input voltage, full load unless otherwise specified)


BASIC CHARACTERISTICS				
Parameter	Condition	Min.	Тур.	Max.
Internal Input Filter				capacitor
Input Voltage Range			±10.0%	
Quiescent Current				40mA
Minimum Load		0%		
Internal Operating Frequency		20kHz	60kHz	100kHz
Output Ripple and Noise (4)	20MHz BW			100mVp-p

Notes:

Note4: Measurements are made with a 0.1µF MLCC across output (low ESR)


Efficiency vs. Load

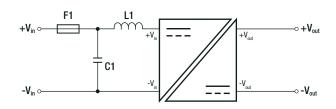


REGULATIONS				
Parameter	Condit	ion	Value	
Output Accuracy			±5.0% max.	
Line Regulation	low line to h	igh line	±1.2% typ. at 1.0% of Vin typ.	
Load Regulation	10% to 100% load	3.3Vout	10.0% typ. / 15.0% max.	

Tolerance Envelope

Series

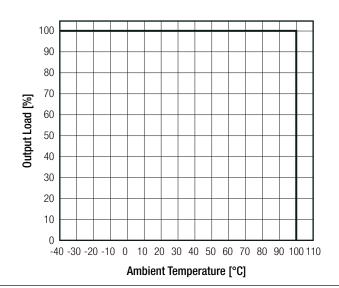
Specifications (measured @ Ta= 25°C, nominal input voltage, full load unless otherwise specified)


PROTECTIONS				
Parameter		Туре		Value
		standard	tested for 1 second	1kVDC
loclation Voltage	I/P to O/P	Stariuaru	rated for 1 minute (5)	500VAC
Isolation Voltage	1/F t0 0/F	with ouffix "/Ll"	tested for 1 second	3kVDC
		with suffix "/H"	rated for 1 minute (5)	1.5kVAC
Isolation Resistance				10GΩ min.
Isolation Capacitance				70pF max.
Leakage Current		standard		1μA max.
		with suffix "/H"		ЗµА max.
Insulation Grade				functional

Notes:

Note5: For repeat Hi-Pot testing, reduce the time and/or the test voltage

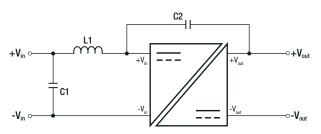
Note6: Refer to local safety regulations if input over-current protection is also required. Recommended fuse: slow blow type


Protection Circuit

ENVIRONMENTAL			
Parameter	Condition		Value
Operating Temperature Range	@ natural convection and full load (re	efer to derating graph)	-40°C to +100°C
Operating Altitude			5000m
Operating Humidity	non-condensing]	5% - 95% RH max.
Pollution Degree			PD2
Vibration			according to MIL-STD-202G
MTBF	according to MIL-HDBK-217F, G.B.	+25°C	21400 x 10 ³ hours
INITE	according to Mile-HDBK-217F, d.B.	+100°C	7800 x 10 ³ hours

Derating Graph

(@ Chamber and natural convection 0.1m/s)



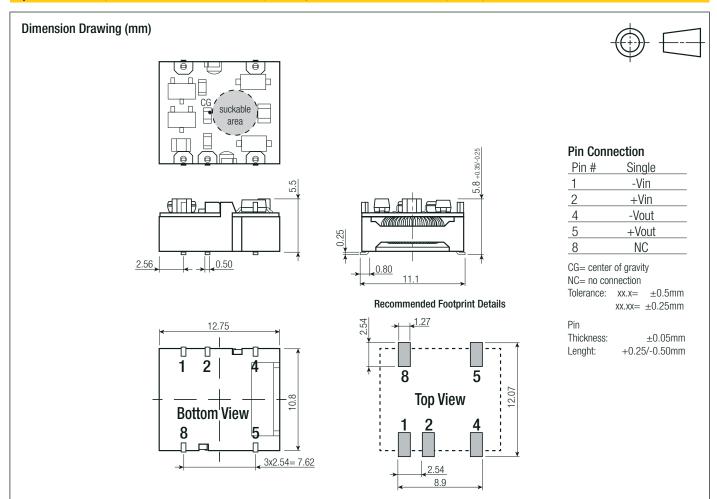
Series

Specifications (measured @ Ta= 25°C, nominal input voltage, full load unless otherwise specified)

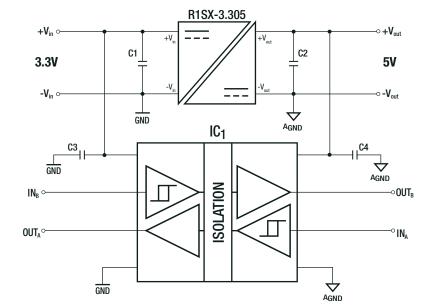
SAFETY AND CERTIFICATIONS		
Certificate Type (Safety)	Report / File Number	Standard
Information Technology Equipment, General Requirements for Safety	E224736	UL60950-1, 2nd Edition 2014 CAN/CSA C22.2 No. 60950-1-07, 2nd Edition 2014
Information Technology Equipment, General Requirements for Safety (CB Scheme)	F00470C 47000770C0 0	IEC60950-1:2005 2nd Edition + A2:2013
Information Technology Equipment, General Requirements for Safety	E224736-4788277362-2	EN60950-1:2006 + A2:2013
Audio/video, information and communication technology equipment - Safety requirements (LVD)	E224736	UL62368, 2nd Edition, 2014 CAN/CSA -C22.2 No. 62368-1-14, 2nd Edition, 2014
Audio/video, information and communication technology equipment - Safety requirements		EN62368-1:2014 + A11:2017
Audio/video, information and communication technology equipment - Safety requirements (CB Scheme)	E224736-4788277362-1	IEC62368-1:2014 2nd Edition
RoHS2+		RoHS 2011/65/EU + AM2015/863
EMC Compliance	Condition	Standard / Criterion
Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement	with external filter (see filter suggestion)	EN55032:2015, Class A and B
Information technology equipment - Immunity characteristics Limits and methods of measurement		EN55024:2010 +A1:2015
ESD Electrostatic discharge immunity test	Air: ±2, 4, 6, 8kV Contact: ±2, 4kV	IEC61000-4-2:2008, Criteria B
Radiated, radio-frequency, electromagnetic field immunity test	3 V/m	IEC61000-4-3:2006 + A2:2010, Criteria A
Fast Transient and Burst Immunity	±0.5kV	IEC61000-4-4:2012, Criteria A
Surge Immunity	±0.5kV	IEC61000-4-5:2014, Criteria A
Immunity to conducted disturbances, induced by radio-frequency fields	3V r.m.s.	IEC61000-4-6:2013, Criteria A
Power Magnetic Field Immunity	50Hz / 1A/m	IEC61000-4-8:2009, Criteria A

EMC Filtering Suggestions for EN55032

Component List Class A				
Model	C1	C2	L1	
R1SX-3.3xxS	OOUE MLCC	470°E/414/DC	N/A	
R1SX-05xxS	ZZµF WILGG	470pF/4kVDC	IV/A	


Component List Class B				
Model	C1	C2	L1	
R1SX-3.3xxS	22µF MLCC		3.3µH SMD Inductor	
R1SX-05xxS	10µF MLCC	470pF/4kVDC	4.7µH SMD Inductor	
R1SX-12xxS	4.7μF MLCC		22µH SMD Inductor	

DIMENSION and PHYSICAL CHARACTERISTICS			
Parameter	Туре	Value	
Material	case PCB	black plastic (UL94V-0) FR4 (UL94V-0)	
Dimension (LxWxH)		12.75 x 11.10 x 5.80mm	
Weight		1.0g typ.	


Series

Specifications (measured @ Ta= 25°C, nominal input voltage, full load unless otherwise specified)

INSTALLATION and APPLICATION

Isolated Bus

Block diagram of an isolated data interface with 3.3V to 5V logic level shifting. Typical Applications include microcontroller interfacing, logic level translation and multi-channel test and measurement systems.

Series

Specifications (measured @ Ta= 25°C, nominal input voltage, full load unless otherwise specified)

PACKAGING INFORMATION			
Dackaging Dimension (LyMM)	tape and reel (carton)	355.0 x 340.0 x 35.0mm	
Packaging Dimension (LxWxH)	reel	330.2 x 330.2 x 30.0mm	
Packaging Quantity	tape and reel	450pcs	
Tape Width		24.0mm	
Storage Temperature Range		-55°C to +125°C	
Storage Humidity		5% - 95% RH max.	

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

www.recom-power.com REV.: 6/2020 EC0-6

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

RECOM:

 $\frac{\text{R1SX-3.305-R}}{\text{R1SX-1205-R}} \ \frac{\text{R1SX-0505/H-R}}{\text{R1SX-1205-R}} \ \frac{\text{R1SX-3.33.3/H-R}}{\text{R1SX-3.33.3/H-R}} \ \frac{\text{R1SX-3.305/H-R}}{\text{R1SX-3.305/H-R}} \ \frac{\text{R1SX-3.33.3-R}}{\text{R1SX-3.305/H-R}} \ \frac{\text{R1SX-3.33.3-R}}{\text{R1SX-3.305/H-R}} \ \frac{\text{R1SX-3.305/H-R}}{\text{R1SX-3.305/H-R}} \ \frac{\text{R1SX-3.305/H-R}}{\text{R1SX-3.505/H-R}} \ \frac{\text{R1SX-3.505/H-R}}{\text{R1SX-3.505/H-R}} \ \frac{\text{R1SX-3.505/H-R}}{\text{R1SX-3.505/H-R$