

MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit User's Guide

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch Iogo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2926-5

MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT USER'S GUIDE

Table of Contents

Preface		5
	Introduction	5
	Document Layout	5
	Conventions Used in this Guide	6
	Recommended Reading	7
	The Microchip Website	7
	Customer Support	7
	Document Revision History	7
Quick Start (Guide	9
Chapter 1. P	roduct Overview	
	1.1 Introduction	1
	1.2 MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board Features 1	1
	1.3 MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board Overview 12	2
	1.4 SAR ADC Device Configuration14	
	1.5 Curiosity PIC32MZEF Development Board (DM320104) Overview	
	1.6 SAR ADC Utility Software Overview	
	1.7 What the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit Contains 18	
	1.8 MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit Requirements 18	8
	1.8 MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit Requirements 18 stallation and Operation	8
Chapter 2. In		9
Chapter 2. In	stallation and Operation 2.1 Configuration Requirements	9 9 9
Chapter 2. In	stallation and Operation 1 2.1 Configuration Requirements 1 2.1.1 Power Input Connection 1 2.2 Evaluation Kit Setup 1 2.2.1 Input Optimization 2	9 9 9
Chapter 2. In Chapter 3. Fi	stallation and Operation 1 2.1 Configuration Requirements 1 2.1.1 Power Input Connection 1 2.2 Evaluation Kit Setup 1 2.2.1 Input Optimization 2	9 9 9
Chapter 2. In Chapter 3. Fi	Installation and Operation 1 2.1 Configuration Requirements 1 2.1.1 Power Input Connection 1 2.2 Evaluation Kit Setup 1 2.2.1 Input Optimization 2 Immware 1	9 9 9 0
Chapter 2. In Chapter 3. Fi	stallation and Operation 1 2.1 Configuration Requirements 1 2.1.1 Power Input Connection 1 2.2 Evaluation Kit Setup 1 2.2.1 Input Optimization 2 irmware 3.1 PIC32MZ2048EFM100 Initialization 2	9 9 9 0
Chapter 2. In Chapter 3. Fi	stallation and Operation 19 2.1 Configuration Requirements 19 2.1.1 Power Input Connection 11 2.2 Evaluation Kit Setup 19 2.2.1 Input Optimization 20 immware 3.1 PIC32MZ2048EFM100 Initialization 2 3.2 Data Acquisition 2	9 9 0 1 3
Chapter 2. In Chapter 3. Fi	stallation and Operation 19 2.1 Configuration Requirements 19 2.1.1 Power Input Connection 11 2.2 Evaluation Kit Setup 19 2.2.1 Input Optimization 20 irmware 3.1 PIC32MZ2048EFM100 Initialization 20 3.2 Data Acquisition 20 3.3 USB Transfer 20	9 9 0 1 3
Chapter 2. In Chapter 3. Fi	stallation and Operation 19 2.1 Configuration Requirements 19 2.1.1 Power Input Connection 19 2.2 Evaluation Kit Setup 19 2.2.1 Input Optimization 20 irmware 3.1 PIC32MZ2048EFM100 Initialization 20 3.2 Data Acquisition 20 3.3 USB Transfer 20 3.4 ADC functions 20	9 9 0 1 3 4
Chapter 2. In Chapter 3. Fi	stallation and Operation 19 2.1 Configuration Requirements 19 2.1.1 Power Input Connection 11 2.2 Evaluation Kit Setup 19 2.2.1 Input Optimization 20 irmware 3.1 PIC32MZ2048EFM100 Initialization 20 3.2 Data Acquisition 20 3.3 USB Transfer 20 3.4 ADC functions 20 Schematic and Layouts 20	9990 1134 7
Chapter 2. In Chapter 3. Fi	stallation and Operation 19 2.1 Configuration Requirements 19 2.1.1 Power Input Connection 19 2.2 Evaluation Kit Setup 19 2.2.1 Input Optimization 20 irmware 20 3.1 PIC32MZ2048EFM100 Initialization 20 3.2 Data Acquisition 20 3.3 USB Transfer 20 3.4 ADC functions 20 Schematic and Layouts 20 A.1 Introduction 20 A.2 ADM00872 20 A.3 ADM00873 20	9990 1134 777
Chapter 2. In Chapter 3. Fi	stallation and Operation 11 2.1 Configuration Requirements 11 2.1.1 Power Input Connection 11 2.2 Evaluation Kit Setup 11 2.2.1 Input Optimization 11 2.2.1 Input Optimization 21 immware 23 3.1 PIC32MZ2048EFM100 Initialization 22 3.2 Data Acquisition 22 3.3 USB Transfer 22 3.4 ADC functions 24 Schematic and Layouts 24 A.1 Introduction 22 A.2 ADM00872 22 A.3 ADM00873 22 A.4 Board ADM00872 – Schematic 24	99 90 1134 778
Chapter 2. In Chapter 3. Fi	stallation and Operation 19 2.1 Configuration Requirements 19 2.1.1 Power Input Connection 19 2.2 Evaluation Kit Setup 19 2.2.1 Input Optimization 20 irmware 20 3.1 PIC32MZ2048EFM100 Initialization 20 3.2 Data Acquisition 20 3.3 USB Transfer 20 3.4 ADC functions 20 Schematic and Layouts 20 A.1 Introduction 20 A.2 ADM00872 20 A.3 ADM00873 20	9990 1134 77789

A.7 Board ADM00872 – Top Copper and Silk Layer	31
A.8 Board ADM00872 – Top Copper Layer	32
A.9 Board ADM00872 – Bottom Copper Layer	33
A.10 Board ADM00872 – Bottom Copper and Silk Layer	34
A.11 Board ADM00872 – Bottom Silk Layer	35
A.12 Board ADM00873 – Schematic	36
A.13 Board ADM00873 – Schematic Regulators	37
A.14 Board ADM00873 – Top Silk Layer	38
A.15 Board ADM00873 – Top Copper and Silk Layer	39
A.16 Board ADM00873 – Top Copper Layer	40
A.17 Board ADM00873 – Bottom Copper Layer	41
A.18 Board ADM00873 – Bottom Copper and Silk Layer	42
A.19 Board ADM00873 – Bottom Silk Layer	43
Appendix B. Bill of Materials (BOM)	
Worldwide Sales and Service	53

MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT USER'S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our website (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXXA", where "XXXXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE online help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- Recommended Reading
- The Microchip Website
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit to demonstrate the performance of the MCP331x1 device family. The manual layout is as follows:

- "Quick Start Guide" Provides quick, step-by-step information on setting up the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit.
- Chapter 1. "Product Overview" Important information about the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit.
- Chapter 2. "Installation and Operation" Includes instructions on how to get started with the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit.
- **Chapter 3. "Firmware"** Includes information about the firmware that is included with the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit.
- Appendix A. "Schematic and Layouts" Refer to the board's web page for the complete Schematics and Layouts.
- Appendix B. "Bill of Materials (BOM)" Refer to the board's web page for the complete Bill of Materials.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples		
Arial font:				
Italic characters	Referenced books	MPLAB [®] IDE User's Guide		
	Emphasized text	is the only compiler		
Initial caps	A window	the Output window		
	A dialog	the Settings dialog		
	A menu selection	select Enable Programmer		
Quotes	A field name in a window or dialog	"Save project before build"		
Underlined, Italic text with right angle bracket	A menu path	<u>File>Save</u>		
Bold characters	A dialog button	Click OK		
	A tab	Click the Power tab		
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1		
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>		
Courier New font:	·	•		
Plain Courier New	Sample source code	#define START		
	Filenames	autoexec.bat		
	File paths	c:\mcc18\h		
	Keywords	_asm, _endasm, static		
	Command-line options	-0pa+, -0pa-		
	Bit values	0, 1		
	Constants	0xFF, `A'		
Italic Courier New	A variable argument	<i>file</i> .o, where <i>file</i> can be any valid filename		
Square brackets []	Optional arguments	mcc18 [options] <i>file</i> [options]		
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}		
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>		
	Represents code supplied by user	<pre>void main (void) { }</pre>		

RECOMMENDED READING

This user's guide describes how to use the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit. Another useful document is listed below. The following Microchip document is available and recommended as a supplemental reference resource.

 MCP331x1 Data Sheet – "1 Msps 16/14/12-Bit Differential Input SAR ADC" (DS20005947)

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

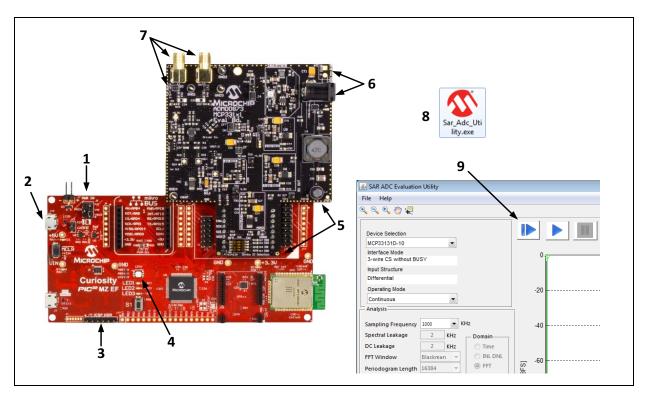
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (April 2018)

· Initial release of this document.


NOTES:

MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT USER'S GUIDE

Quick Start Guide

Steps 1-9 below provide a quick start for setting up the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit:

- 1. Move the PWR IN jumper to connect pins VIN and VBUS.
- 2. Connect micro USB cable from PC to J12 on the PIC32MZ Curiosity board. This USB is used for both power and data transfer for the Curiosity board.
- 3. Program the PIC32MZ with the latest MCP331x1_EVB.X firmware (available on Microchip.com) using an external programmer (ICD, PICKit, etc) connected to the ICSP HDR (J16).
- 4. Once the firmware is loaded, remove the programmer and wait for LED4 to illuminate with a solid red light. A solid red lit LED indicates that the firmware is loaded and the board is working as intended.
- 5. Connect the MCP331x1 EVB (ADM00872/ADM00873) to the top right mikroBUS header (J10).
- 6. Connect a 9V power supply to the barrel jack connection point using either the supplied 9V wall power supply, or alternatively connect 9V from an external power source to the H1 headers. D1 directly below the barrel jack will illuminate to confirm that 9V is being supplied to the EVB.
- 7. Connect a fully differential signal source to the SMA connectors at J1 (positive input) only, and place a jumper on J6 to connect the negative input to Vref/2.
- 8. Install and launch SAR_ADC_Utility.exe (available on Microchip.com). The software will automatically recognize the plugged in device and launch the GUI.
- 9. Once the GUI is open, use the blue 'play' buttons to run single or continuous acquisitions. The GUI will display all performance analysis data related to the acquired signal.

NOTES:

MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT USER'S GUIDE

Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board and covers the following topics:

- MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board Features
- MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board Overview
- SAR ADC Device Configuration
- Curiosity PIC32MZEF Development Board (DM320104) Overview
- SAR ADC Utility Software Overview
- What the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit Contains
- MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit Requirements

1.2 MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION BOARD FEATURES

This MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit is a fully-assembled, programmed and tested solution to evaluate and demonstrate the MCP331x1 operating performance.

The MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit features:

- Full-Scale Analog Input Range: –V_{REF} to +V_{REF}
 - ADM00872 with MCP33131D/21D/11D: -5 VPP to +5 VPP
 - ADM00873 with MCP33131D/21D/11D: –4 V_{PP} to +4 V_{PP}
- Dynamic Performance Monitoring
- Evaluation of Performance Metrics, such as: SNR, SFDR, INL, DNL, and so on
- · Ability to Save and Load Software Configurations
- · Ability to Save and Load Raw Data for User Post-Processing

For information about the device features, refer to the MCP331x1 data sheet.

1.3 MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION BOARD OVERVIEW

The MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board is intended to demonstrate the performance of the MCP331x1 device family. This evaluation board is used together with:

- Curiosity PIC32MZEF Development Board (DM320104)
- SAR ADC Utility Software

Figure 1-1 displays the system setup.

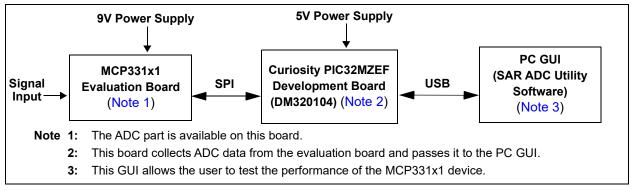


FIGURE 1-1: MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Kit System Setup.

This evaluation board supports the MCP331x1 device family, which is Microchip Technology Inc.'s baseline single-channel 12/14/16-bit 1 Msps SAR Analog-to-Digital Converter (ADC).

The MCP331x1 Evaluation Board comes with the MCP331x1 device on board. All conditions and features can be evaluated using this evaluation board. Refer to Figure 1-2 and Figure 1-3 for photos of the evaluation boards, and refer to Table 1-1 for our currently available device offerings.

Part Number	Resolution	Sample Rate	SNR ⁽²⁾	SFDR ⁽²⁾	Input Configuration
MCP33131D-10	16-bit	1 Msps	91.3 dBFS	103.5 dB	Differential
MCP33121D-10	14-bit	1 Msps	85.1 dBFS	103.5 dB	Differential
MCP33111D-10	12-bit	1 Msps	73.9 dBFS	99.3 dB	Differential

TABLE 1-1: DEVICE OFFERING ⁽¹⁾

Note 1: Contact Microchip Technology Inc. for availability.

2: SNR and SFDR are measured with f_{IN} = 10 kHz, V_{IN} = -1 dBFS, V_{REF} = 5V

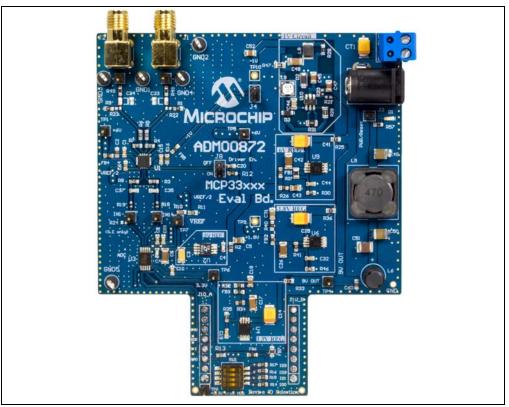


FIGURE 1-2: MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board, 5V Reference.

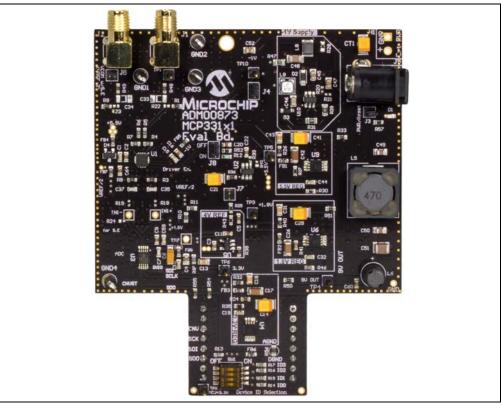


FIGURE 1-3: MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board, 4V Reference.

1.4 SAR ADC DEVICE CONFIGURATION

Each evaluation board features a 4-way SPST DIP switch (schematic designator: SW1) that allows the user to manually configure the board for a variety of available devices, as well as configure the input, resolution and speed for each device. Table 1-2 lists each available switch setting. Refer to Figure 2-1 from Chapter 2. "Installation and Operation" to view the location of SW1.

Part Number	Resolution	Speed	Input Configuration	SW1 Setting: (ID3:ID2:ID1:ID0)	Notes
MCP33111-05	12	500 ksps	Single-Ended	0-0-0-0	
MCP33111D-05	12	500 ksps	Differential	0-0-0-1	
MCP33121-05	14	500 ksps	Single-Ended	0-0-1-0	
MCP33121D-05	14	500 ksps	Differential	0-0-1-1	
MCP33131-05	16	500 ksps	Single-Ended	0-1-0-0	
MCP33131D-05	16	500 ksps	Differential	0-1-0-1	
MCP33141-05	18	500 ksps	Single-Ended	0-1-1-0	Future Use
MCP33141D-05	18	500 ksps	Differential	0-1-1-0	Future Use
MCP33141-10	18	1 Msps	Single-Ended	1-0-0-0	Future Use
MCP33141D-05	18	1 Msps	Differential	1-0-0-1	Future Use
MCP33111-10	12	1 Msps	Single-Ended	1-0-1-0	
MCP33111D-10	12	1 Msps	Differential	1-0-1-1	
MCP33121-10	14	1 Msps	Single-Ended	1-1-0-0	
MCP33121D-10	14	1 Msps	Differential	1-1-0-1	
MCP33131-10	16	1 Msps	Single-Ended	1-1-1-0	
MCP33131D-10	16	1 Msps	Differential	1-1-1-1	Default

TABLE 1-2: SW1 DEVICE CONFIGURATION SETTINGS

1.5 CURIOSITY PIC32MZEF DEVELOPMENT BOARD (DM320104) OVERVIEW

The Curiosity PIC32MZEF Development Board (DM320104) is a fully-integrated 32-bit development platform featuring the high-performance PIC32MZ EF Series PIC[®] Microcontroller (PIC32MZ2048EFM100), which is utilized for capturing the digital data received from the MCP331x1 Analog-to-Digital Converter (ADC) evaluation board. Figure 1-1 shows the connection of the Curiosity Development Board (DM320104) directly between the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board and the SAR ADC Utility Software.

The Curiosity Development Board (DM320104) connects to the PC through a USB cable, providing the user with two functionalities:

- The ability to send user commands directly to the device from the SAR ADC Utility Software.
- The ability to collect data from the evaluation board and send it to the SAR ADC Utility Software.

Refer to Figure 1-4 for close-up photos of the Curiosity PIC32MZEF Development Board (DM320104). More information, including user guides and other resources for the Curiosity Development Board, can be found by visiting www.microchip.com.

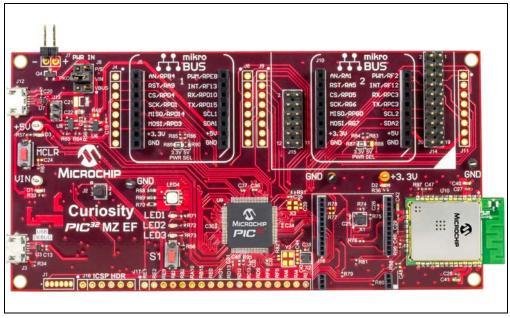
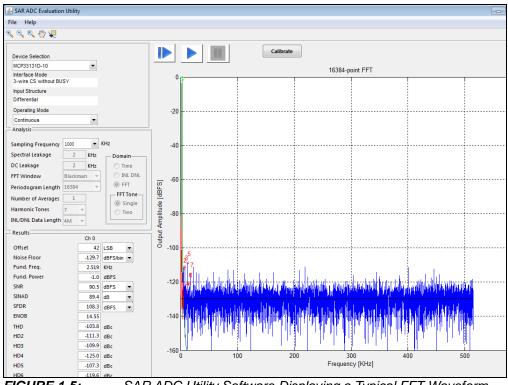
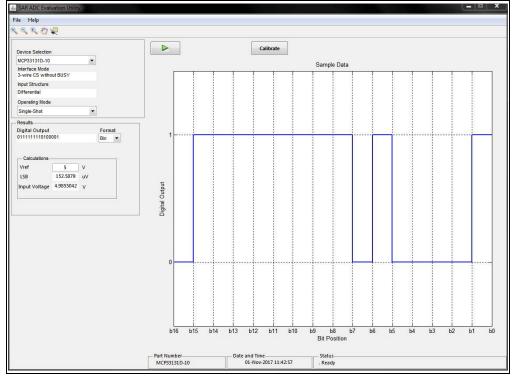



FIGURE 1-4: Curiosity PIC32MZEF Development Board (DM320104).


1.6 SAR ADC UTILITY SOFTWARE OVERVIEW

The SAR ADC Utility Software is the graphical user interface (GUI) used to communicate with the device and to configure its operating parameters. The software communicates with the part through the Curiosity PIC32MZEF Development Board and a USB cable, allowing the user to program the internal ADC registers. When the user interacts with the software (for example, by updating the registers), the user's commands are passed to the MCP331x1 device through the Curiosity PIC32MZEF Development Board. Once the commands are executed by the MCP331x1 Evaluation Board, the software receives the requested data from the Curiosity PIC32MZEF Development Board. The software will then analyze the data, perform a FFT or other analysis, and display the results. Refer to Figure 1-1 for a diagram of the system setup. Figure 1-5 shows a screen shot of the GUI with FFT display while running in Continuous operating mode. Figure 1-6 shows a screen shot of the GUI while running in Single-Shot mode 16-bit digital output display.

SAR ADC Utility Software Displaying a Typical FFT Waveform.

FIGURE 1-6: SAR ADC Utility Software Displaying a Single Acquisition Bit Position Digital Output.

The SAR ADC Utility Software is available for download at www.microchip.com. For instructions on using the GUI, refer to the software's supporting documentation included with the installation file, as well as within the application Help menu.

1.7 WHAT THE MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT CONTAINS

The MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board includes the following items:

- MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board in two options:
 - 4V_{REF}, (ADM00873), or
 - 5V_{REF}, (ADM00872)
- 9V wall plug-in power supply
- Important Information Sheet

1.8 MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT REQUIREMENTS

MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board requires:

- Curiosity PIC32MZEF Development Board (DM320104)
 - Sold separately
- Type A male-to-micro-B USB cable
 - Not provided with the kit
- External signal input
 - Supplied by the user
- SAR ADC Utility Software
 - Available on the Microchip website

MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT USER'S GUIDE

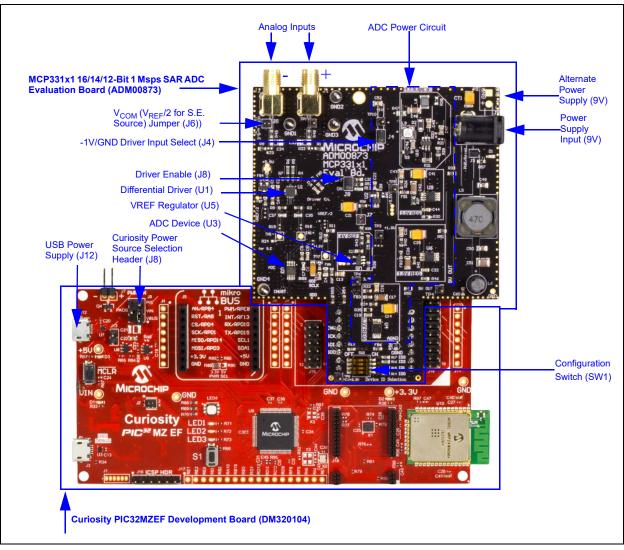
Chapter 2. Installation and Operation

2.1 CONFIGURATION REQUIREMENTS

To power-up and run the evaluation kit, the following are required:

- SAR ADC Utility Software
- MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board
- Curiosity PIC32MZEF Development Board (DM320104)
- Type A Male-to-Micro-B USB cable
- External Signal Source, differential or single-ended output (see Section 2.2.1 "Input Optimization")

2.1.1 Power Input Connection


This MCP331x1 Evaluation Board comes with a 9V wall plug-in switching power supply (Trident: WSU090-2000-13). This power supply is able to provide a 9V, 2A maximum output. It can be connected to an AC wall outlet rated between 100V AC and 240V AC, at a frequency of 50 Hz to 60 Hz. The other end of the power supply is a 2.1 mm barrel plug that connects to the MCP331x1 Evaluation Board (see Figure 2-1). If the user chooses to connect a different external power supply, a minimum output of *500 mA is required*, with a voltage output between 6V-12V. There is no on-board 9V regulator, so the 9V OUT pin (TP4) will read a voltage equal to the voltage input value selected by the user.

WARNING

Avoid connecting a power supply with a voltage greater than what is recommended in this user guide. Doing so can damage the voltage regulators, requiring them to be replaced.

2.2 EVALUATION KIT SETUP

- 1. Connect the MCP331x1 Evaluation Board and the Curiosity PIC32MZEF Development Board as shown in Figure 2-1.
- 2. Connect the Curiosity PIC32MZEF Development Board to a computer using a type A male-to-micro-B USB cable. In order to power the Curiosity Board through USB, the USB cable must be plugged-in to the USB connection located at J12. In addition to this, the headers located at J8 need to have the jumper connecting the V_{BUS} pin to V_{IN}. Figure 2-1 shows the component locations.
- 3. Power-up the MCP331x1 Evaluation Board using the provided 9V power supply.
- 4. Connect a differential or single-ended analog input signal to the MCP331x1 Evaluation Board SMA terminals. For single-ended operation, populate jumper J6 (see Figure 2-1 for jumper location). By populating this jumper, the negative signal input will be tied to $V_{REF/2}$ (V_{COM}). Another option is to terminate the negative signal input using a 50 Ω termination.
- 5. Run the SAR ADC Utility Software. See Section 1.6 "SAR ADC Utility Software Overview".

FIGURE 2-1: The MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board (ADM00873), connected to the Curiosity PIC32MZEF Development Board (DM320104).

2.2.1 Input Optimization

The best way to evaluate the MCP331x1 device is to use a clean analog input signal with as little noise as possible, and no harmonic contents. The AP2722, for example, can be used to generate a clean analog signal for evaluation purposes. If using a less pure signal source, a filter can be added between the signal source and EVB to remove any noise outside of the desired frequency.

MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT USER'S GUIDE

Chapter 3. Firmware

3.1 PIC32MZ2048EFM100 INITIALIZATION

MPLAB[®] X IDE and MPLAB[®] Harmony were used to develop the firmware for the PIC32MZ2048EFM100 on the Curiosity Development Board (DM320104).

The frequency of the PIC32MZ2048EFM100 was decreased under its maximum capabilities in order to achieve maximum SPI clock. The MCU runs at 130 MHz, and the SPI prescaler is set to perform a division by 2 in order to obtain an SPI clock frequency of 65 Mhz. This is the minimum SPI speed required to successfully read 16-bits of data out of the ADC at 1 Msps.

In the firmware for this demo, a USB stack was used to achieve communication with the GUI. Direct Memory Access (DMA) was used together with SPI and Output Compare in order to acquire data and to gate the clock during acquisition.

3.2 DATA ACQUISITION

In this demonstration, the ADC acquisition is triggered by the CONV pulse (RPD5), which is generated by the OC2. The OC2 is generated by Timer3 (OCTSEL = 1). Timer 3 is also used to generate OC1 which triggers the DMA SPI transfer. Because both the SPI transfer and CONV pulse are generated by the same timer, they are synchronous. Figure 3-1 displays the timing diagram between CONV pulse and SPI transfer.

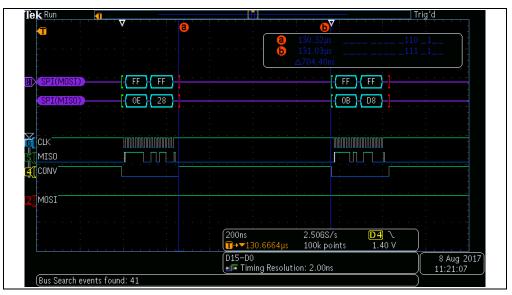
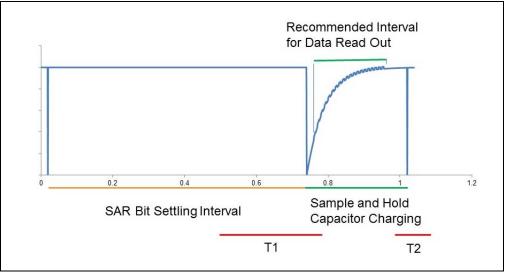



FIGURE 3-1: SPI Transfer and CONV Pulse.

The reason for using OC2 and not SS is related to Electromagnetic Interference (EMI). By using OC2, the user can control the timing between falling edge of the CONV pulse and SPI transfer, and also the timing between the transfer and CONV rising edge-ADC conversion start. For best EMI performance, it is recommended to keep a few nanoseconds between SPI transfer and ADC start. There are moments during the ADC operation where SPI transfer can affect the output results. There are two main periods during ADC operation: SAR register settling and sample and hold capacitor charging. Time intervals T1 and T2 from Figure 3-2 are the least recommended time intervals for SPI transfer. During T1, the SAR ADC is settling its lower bits and is most easily affected by noise. During T2, the sample and hold capacitor voltage needs to be as clean as possible for accurate conversion. By performing data read out in the recommended time interval, the maximum value of SNR can be achieved.

FIGURE 3-2: Recommended Period for Data Read Out.

Once the data is transfered from the ADC to SPI, the DMA will place it in a 8192 word buffer (ADC_BUFFER[]). Since the sampling speed is 1 Msps, this buffer will be updated every 8.1 ms, making timing less critical for other tasks.

The GUI requires a larger amount of data to be processed in order to indicate accurate performance characteristics: FFT, THD, SINAD, etc. Because of this, a larger data buffer is created in RAM (storage[]), with a length of 262144bytes. 32 DMA transfers are required to fill this buffer. The flow chart in Figure 3-3 provides a simple overview of the sample acquisition process, and an overview of the entire firmware process.

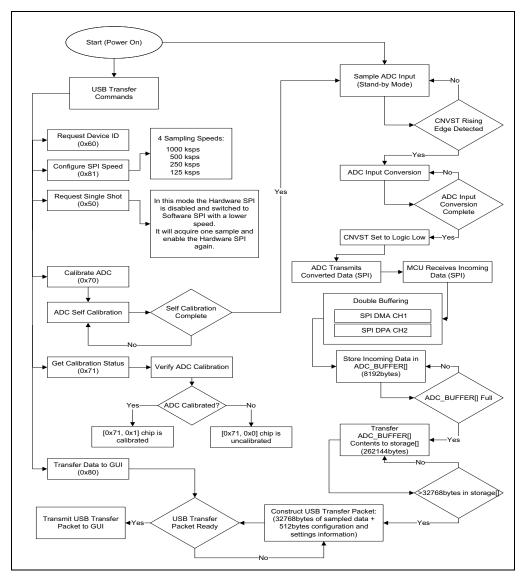


FIGURE 3-3:

Firmware and ADC Samples Acquisition Flowchart.

3.3 USB TRANSFER

The MCU firmware implements a WinUSB device to handle the data transfer between the USB host (a PC for example) and the USB device (evaluation board).

Each USB transfer has a length of 33280 bytes out of which first 512 bytes are configuration and setting bytes. The remaining 32768 bytes will contain samples. This will require 8 logical transfers to be executed (Figure 3-4). The physical USB layer will split the 33280 byte packets into 512 byte chunks before transmitting on the USB bus.

512 bytes for configuration	32768 bytes – samples
conniguration	
_	33280 bytes USB transfer packet
-	

3.4 ADC FUNCTIONS

In addition to the actual sample transfer from MCU to PC, there are other ADC functions available: Calibration, Read Device ID, and Sampling Speed Change.

The PC not only receives data from the EVB, but it also sends 512 bits of data back to the MCU. The 512 length size is required because of the USB high-speed endpoint size. Out of these, only the first 5 are meaningful.

The first element: receivedDataBuffer[0] is indicating to the MCU the desired function. For 0x80, the MCU will send samples. For 0x81, the transfer is stopped and MCU RAM is filled with samples from the ADC. The code will not perform transfers in the same time as the acquisition of ADC samples.

The Calibration function is executed when value 0x70 is received. Calibration status function has code 0x71. Table 3-1 provides the command structure byte values sent to and the responses from the PIC32MZ2048EFM100 on the Curiosity Development Board (DM320104). Figure 3-5 displays the timing diagram of the calibration process.

Command	receiv	vedDataE	Buffer[x]	tra	nsmitDa	ataBuffe	r[x]	Description	
	Byte[0]	Byte[1] Byte[2]	Byte[3]	Byte[0]	Byte[1]	Byte[2]	Byte [3] Byte [4] Byte [5]		
Send Samples	0x80	_	[0 to 7] Package Index	0x80	0x00	_	_	33280 Byte reply [0-511] – Irrelevant [512 – 33279] – Data samples Combine the read data into a 16b signed value as follows: dataH: dataL = read[odd index]: read[even index]	
Change Sampling Speed	0x81	_	1-4 Sampling speed	0x81 0x80	0x01 0x01	_		Select sampling speed from Byte[3] and change transmitDataBuffer[1] = 0x80 to start send data	
Calibrate ADC	0x70	—	_	0x70	0x01	—	—	[0x70, 0x01] – Command received successfully [0x70, 0x00]– Error	
Calibration Status	0x71	—	—	0x71	0x01	_	—	[0x71, 0x01] – Calibration successful [0x71, 0x00] – Calibration failed	
Acquire Single Sample	0x50	—	_	0x50	MSb	LSb	—	[0x50, ADCHighByte, ADCLowByte]	
Read Device ID	0x60	—		0x60	_	_	_	[0x60, chip ID]	

TABLE 3-1: COMMAND STRUCTURE BYTE VALUES

Tek Stop			T T			
				a (3.586ms 6.659ms ∆3.072ms	01 01	~
SPI(MOSI) =						
CLK MISO						
4 (CONV						
2(MOSI			2.00ms 1 →▼1.678906ms	500MS/s 10M points	D4 ∖ 1.40 V	
Bus Search eve	nts found: 2	· · ·	D15-D0 Timing Resolu	tion: 2.00ns		8 Aug 2017 12:00:05
Mode Sample	Record Length 10M	FastAcq <mark>Off</mark>	Delay On Off	Horizontal Position	Waveform Display	XY Display Off

FIGURE 3-5: ADC Calibration.

Read Device ID code is 0x60. In order to retrieve the chip ID, more read registers are required. Figure 3-6 describes the read register command format.

To retrieve the samples, the GUI will send to the MCU information on the packet required to be received as an index, which is a number from 0 to 7. This index is sent to the MCU in receivedDataBuffer[4].

Another function controlled by the GUI is the sampling speed change. There are four available sampling speeds. These are selected in accordance with the value received in receivedDataBuffer[3]. The sampling speed is controlled by changing the prescaler of the reference system clock.

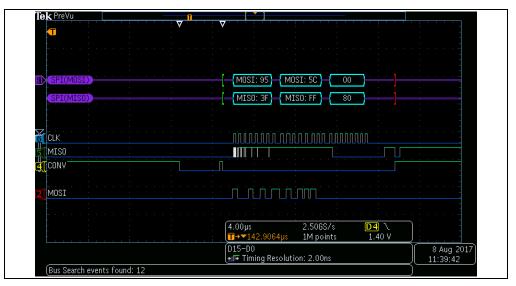


FIGURE 3-6: Read Register from ADC.

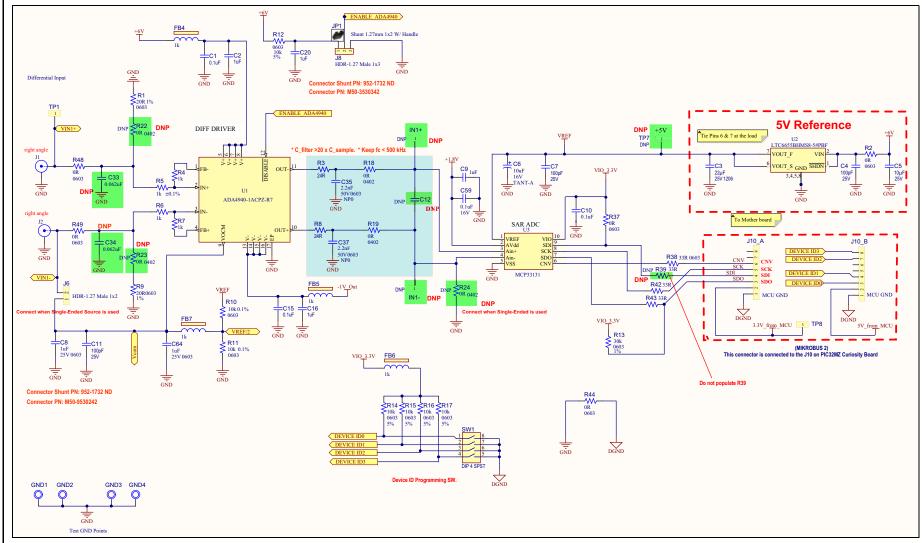
NOTES:

MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT USER'S GUIDE

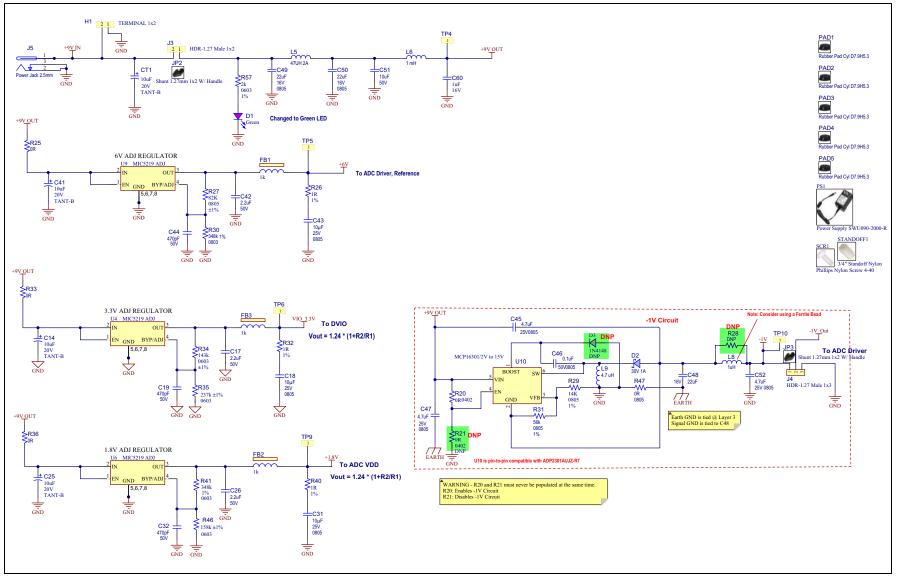
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board ($4V_{REF}$, ADM00873 and $5V_{REF}$, ADM00872).

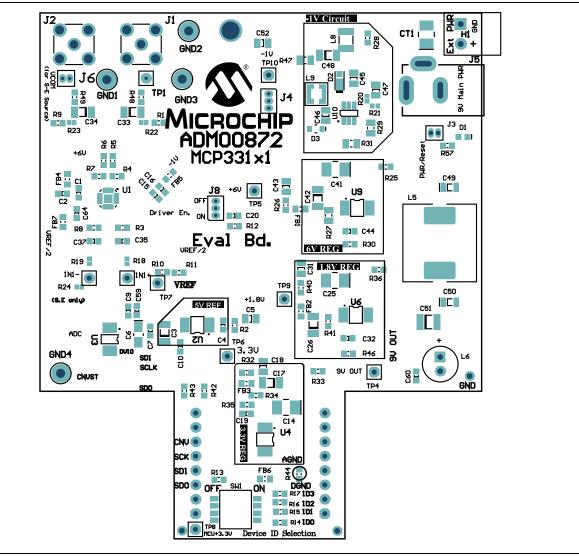

A.2 ADM00872

- Board ADM00872 Schematic
- Board ADM00872 Schematic Regulators
- Board ADM00872 Top Silk Layer
- Board ADM00872 Top Copper and Silk Layer
- Board ADM00873 Top Copper Layer
- Board ADM00873 Bottom Copper Layer
- Board ADM00873 Bottom Copper and Silk Layer
- Board ADM00872 Bottom Silk Layer

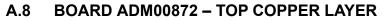

A.3 ADM00873

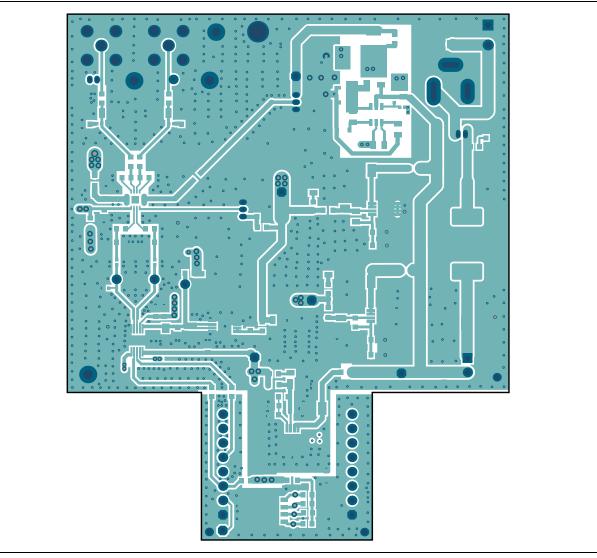
- Board ADM00873 Schematic
- Board ADM00873 Schematic Regulators
- Board ADM00873 Top Silk Layer
- Board ADM00873 Top Copper and Silk Layer
- Board ADM00873 Top Copper Layer
- Board ADM00873 Bottom Copper Layer
- Board ADM00873 Bottom Copper and Silk Layer
- Board ADM00873 Bottom Silk Layer

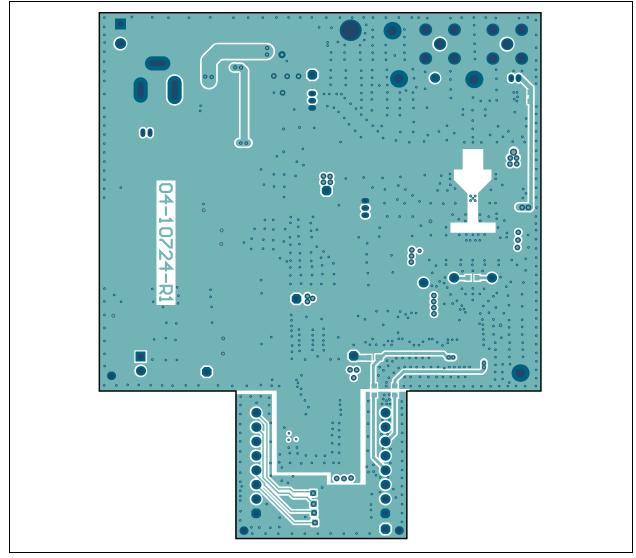
A.4 BOARD ADM00872 – SCHEMATIC

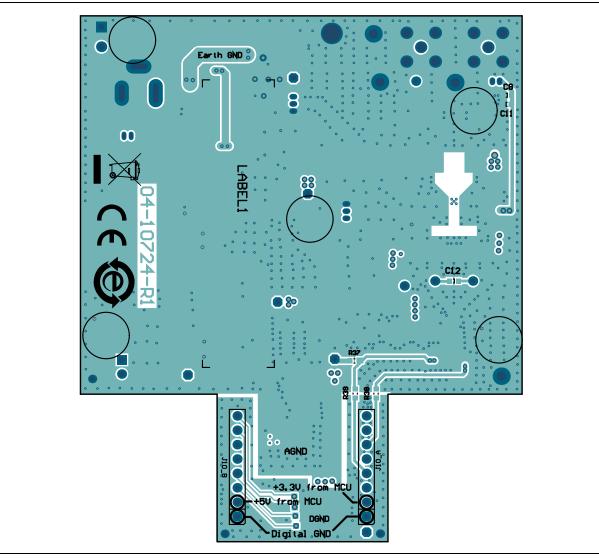


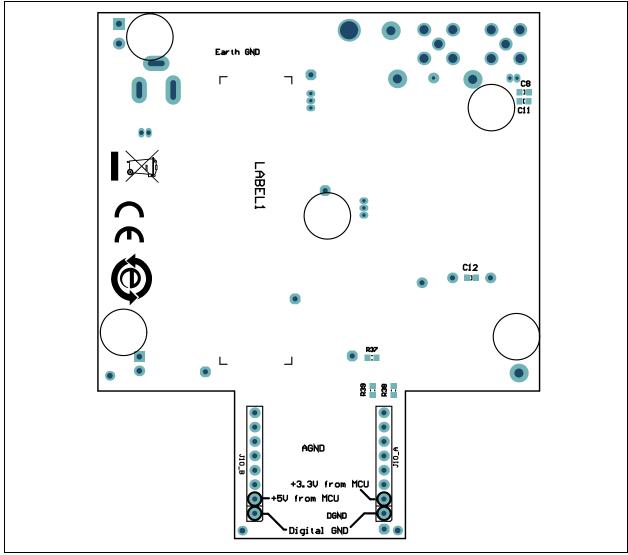
A.5 BOARD ADM00872 – SCHEMATIC REGULATORS


Schematic and Layouts

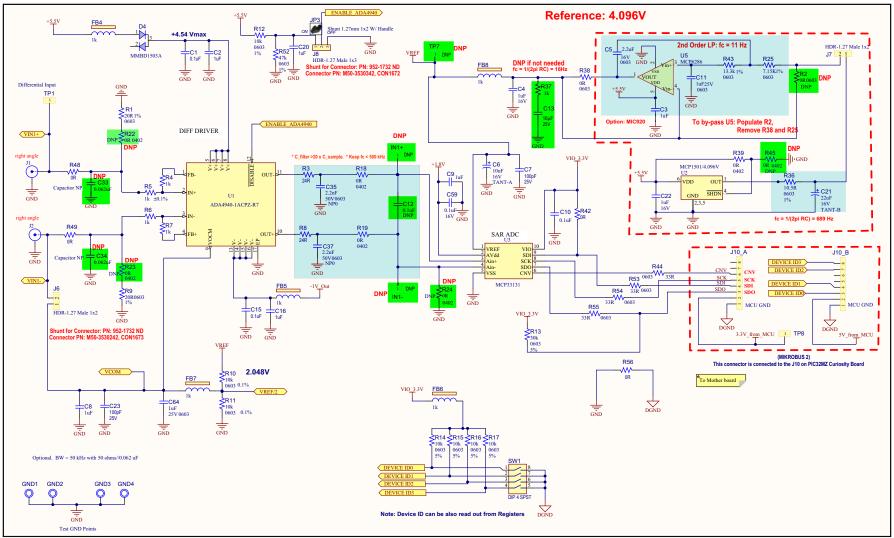

A.6 BOARD ADM00872 – TOP SILK LAYER



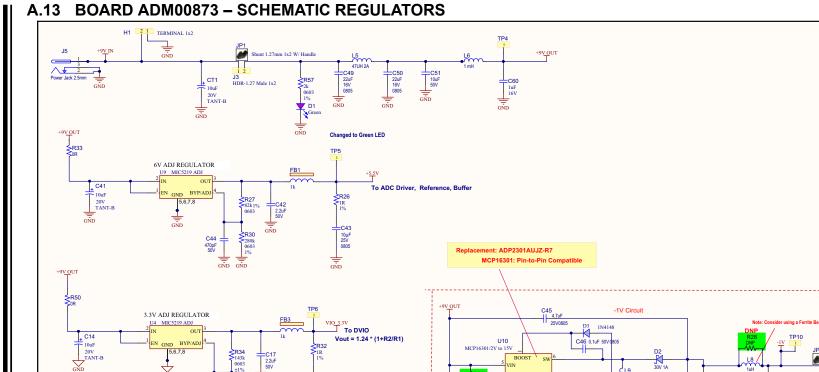

A.7 BOARD ADM00872 - TOP COPPER AND SILK LAYER



A.9 BOARD ADM00872 – BOTTOM COPPER LAYER



A.10 BOARD ADM00872 - BOTTOM COPPER AND SILK LAYER



A.11 BOARD ADM00872 - BOTTOM SILK LAYER

A.12 BOARD ADM00873 - SCHEMATIC

Schematic and Layouts

C47

EART

te: Adding Ferrite Bead (FB4, FB5) Improves SNR (~3dB) and SFDR (~10dB

GND

4.7uF 25V 0805

C17 2.2uF 50V GND

FB2

C26 2.2uF 50V

GND

=C18 10μF 25V 0805

TP9

R40

C31 10µF 25V 0805

+<u>1.8</u>V

To ADC VDD

R34 143k 0603 ±1%

2R35

R41 348k 1% 0603

R46

158k ±1% 0603

237k ±1% 0603

5,6,7,8

1.8V ADJ REGULATOR

5.6.7.8

OU

C32 470pF 50V

GND

BYP/AD.

U6 MIC5219 AI

C19 470pF 50V

+9V OUT

R51 0R

> C25 C25 10uF 20V TANT-B

PAD1 Rubber Pad Cyl D7.9H5.3

PAD2 Rubber Pad Cyl D7.9H5.3

PAD3 Rubber Pad Cyl D7.9H5.3

PAD4 Rubber Pad Cyl D7.9H5.3

PAD5 Rubber Pad Cyl D7.9H5.3

apply SWU090-2000-1

/4" Standoff Nylor lon Screw 4-40

To ADC Driver

nt 1.27mm 1x2 W/Handle

GND

-1V_Out

🗂 J4

HDR-1.27 Male 1x3

C52 4.7uF 25V 0805

D2 30V 1A

R47

OR 0805

C48 16V 22uF

Earth GND is tied @ Layer Signal GND is tied to C48

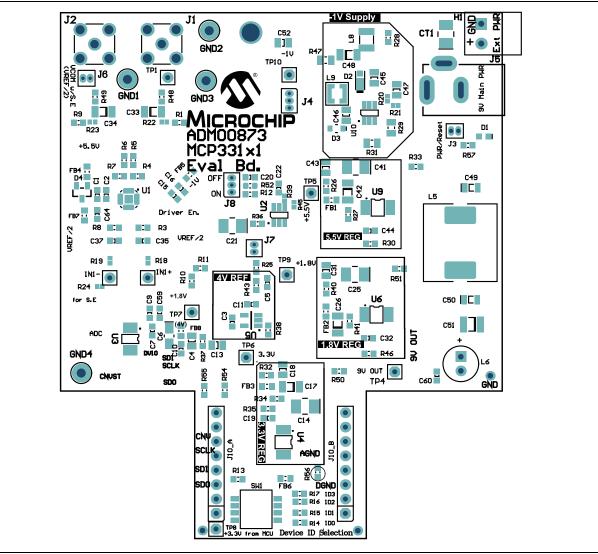
EARTH

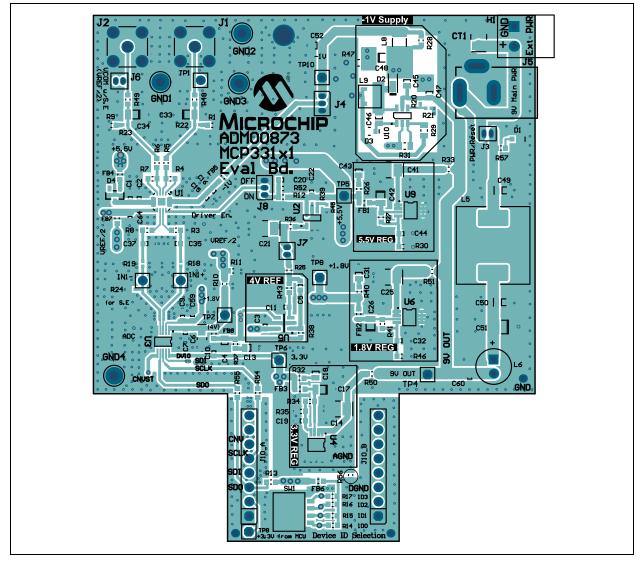
C 4 7 UH

R29

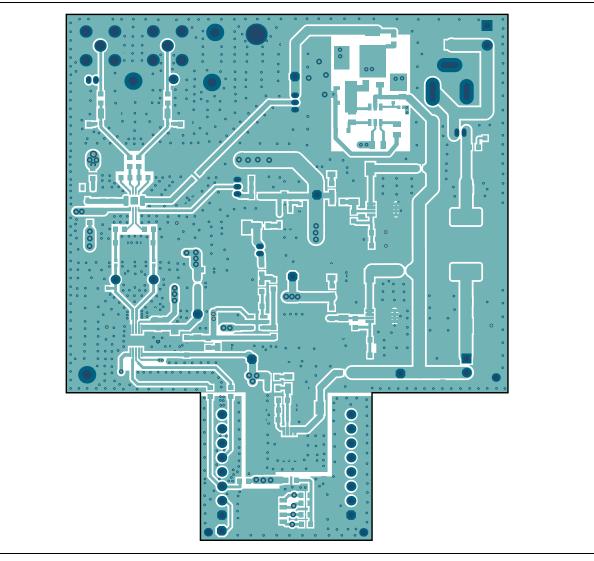
14k 0805 ±1%

BOOST

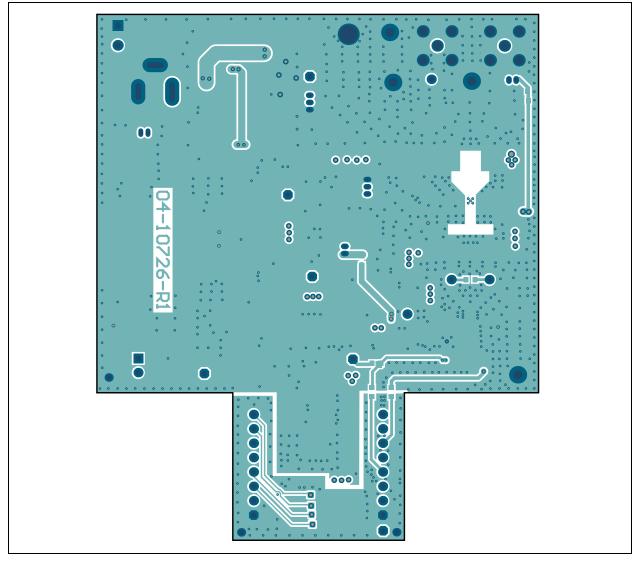

WARNING - R20 and R21 must never be populated at the same time. R20: Enables -1V Circuit R21: Disables -1V Circuit

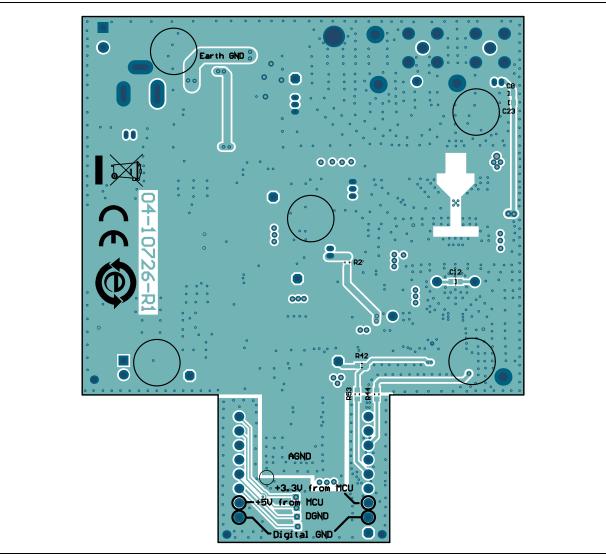

R31

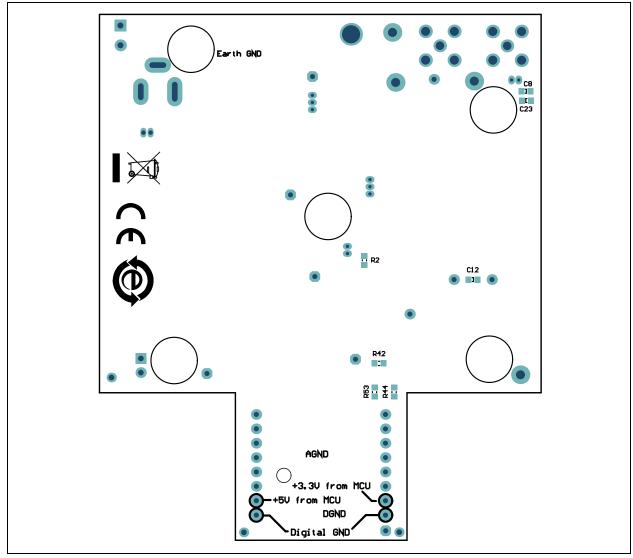
-56k 0805 1%


STANDOFFI

A.14 BOARD ADM00873 - TOP SILK LAYER




A.15 BOARD ADM00873 - TOP COPPER AND SILK LAYER


A.16 BOARD ADM00873 – TOP COPPER LAYER

A.17 BOARD ADM00873 – BOTTOM COPPER LAYER

A.18 BOARD ADM00873 - BOTTOM COPPER AND SILK LAYER

A.19 BOARD ADM00873 - BOTTOM SILK LAYER

NOTES:

MCP331X1 16/14/12-BIT 1 MSPS SAR ADC EVALUATION KIT USER'S GUIDE

Appendix B. Bill of Materials (BOM)

Qty.	Reference	BILL OF MATERIALS (BOM) FOR ADM00 Description	Manufacturer	Part Number
		•		
4	C1, C10, C15, C59	Capacitor ceramic 0.1 µF, 16V, 10%, X7R, SMD, 0603	AVX Corporation	0603YC104KAT2A
1	C12	Capacitor ceramic, 0.1 μF, 16V, 10%, X7R, SMD, 0603 DO NOT POPULATE	AVX Corporation	0603YC104KAT2A
4	C14, C25, C41, CT1	Capacitor tantalum 10 μF, 20V, 10%, 2.1Ω, SMD, 1210	AVX Corporation	TAJB106K020RNJ
3	C17, C26, C42	Capacitor ceramic 2.2 μF, 50V, 10%, X7R, SMD, 1206	TDK Corporation	CGA5L3X7R1H225K160 AB
3	C19, C32, C44	Capacitor ceramic 470 pF, 50V, 10%, X7R, SMD, 0603	Johanson Dielectrics	500R14W471KV4T
6	C2, C8, C9, C16, C20, C64	Capacitor ceramic 1 µF, 16V, 10%, X7R, SMD, 0603	Samsung Electro-Mechanics America, Inc.	CL10B105KA8NNNC
1	C3	Capacitor ceramic 22 μF, ±10%, 25V, X5R, 1206	Murata Electronics North America, Inc.	GRM31CR61E226KE15L
2	C33, C34	Capacitor ceramic, 0.062 μF, 1206, CER, 50V, 5%, COG DO NOT POPULATE	Murata Electronics North America, Inc.	GRM31C5C1H623JA01L
2	C35, C37	Capacitor ceramic 2200 pF, 50V, C0G, NP0, 0603 (1608 Metric) 0.063" L x 0.031	Murata Electronics North America, Inc.	GRM1885C1H222FA01D
3	C4, C7, C11	Capacitor ceramic, 100 pF, 25V, 10%, NP0, SMD, 0603	AVX Corporation	06033A101KAT2A
3	C45, C47, C52	Capacitor ceramic 4.7 μF, 25V, 10%, X7R, SMD, 0805	TDK Corporation	C2012X7R1E475K125AB
1	C46	Capacitor ceramic 0.1 μF, 50V, 10%, X7R, SMD, 0805	Yageo Corporation	CC0805KRX7R9BB104
1	C48	Capacitor ceramic 22 μF, 16V, 20%, X5R, SMD, 1206	Samsung Electro-Mechanics America, Inc.	CL31A226KOCLFNC
2	C49, C50	Capacitor ceramic 22 µF, 16V, X5R, 0805	TDK Corporation	C2012X5R1C226K125AC
4	C5, C18, C31, C43	Capacitor ceramic 10 μF, ±10%, 25V, X5R, MLCC, 0805	Murata Electronics North America, Inc	GRM219R61E106KA12D
1	C51	Capacitor ceramic 10 µF, 50V, 20%, X7S, SMD, 1210	TDK Corporation	C3225X7S1H106M
1	C6	Capacitor tantalum 10 μF, 16V, 20%, 8Ω, SMD, A	KEMET	T491A106M016AT
1	C60	Capacitor ceramic 1 µF, 16V, 10%, X7R, SMD, 0603	Yageo Corporation	CC0603KRX7R7BB105
1	D1	Diode LED Red, 2V, 30 mA, 2 mcd, clear, SMD, 0603	Lite-On [®] , Inc.	LTST-C190EKT

TABLE B-1: BILL OF MATERIALS (BOM) FOR ADM00872⁽¹⁾

Qty.	Reference	Description	Manufacturer	Part Number
1	D2	Diode schottky, 30V, 1A, POWERDI323	Diodes Incorporated [®]	PD3S130L-7
1	D3	Diode rectifier, 1N4148, 855 mV, 300 mA, 75V, SOD-323 DO NOT POPULATE	Diodes Incorporated	1N4148WS-7-F
7	FB1, FB2, FB3, FB4, FB5, FB6, FB7	Ferrite bead, 1 kΩ, 0603, 1LN	Wurth Elektronik	742792662
4	GND1, GND2, GND3, GND4	Connector TP, Loop, Black, TH	Keystone Electronics Corp.	5011
1	H1	Connector terminal, 3.5 mm, 6A Female, 1 x 2 TH, R/A	Keystone Electronics Corp.	8722
3	IN1+, IN1-, TP7	Connector header-2.54, Male, 1x1, Gold, 5.97MH, TH, Vertical DO NOT POPULATE	Samtec, Inc.	TSW-101-07-L-S
2	J1, J2	Connector radio frequency, Coaxial, SMA Female, TH, R/A	TE Connectivity, Ltd.	5-1814400-1
2	J10_A, J10_B	Connector header-2.54 Male, 1x8, Gold, 5.84MH, TH	FCI	68001-108HLF
2	J3, J6	Connector header, 1.27 mm, T/H, Gold, 2 POS	Harwin Plc.	M50-3530242
2	J4, J8	Connector header, 1.27 mm, T/H, AU, 3 POS	Harwin Plc.	M50-3530342
1	J5	Connector power, Jack Male, 2.5 mm, CLSD	CUI Inc.	PJ-002B
1	L5	Fixed inductor, 47 μH, 2A, 135 mΩ, SMD	Bourns [®] , Inc.	SRR1240-470M
1	L6	Fixed inductor, 1 mH, 250 mA 6Ω, TH	Wurth Elektronik	7447462102
1	L8	Fixed inductor, 1 μ H, 1A, 60 m Ω , SMD	Murata Electronics North America, Inc	QH32CN1R0M33L
1	L9	Fixed Shielded Power Inductor, 4.7 µH	Coilcraft	LPS3015-472MRB
1	PCB1	MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board Printed Circuit Board	Microchip Technology Inc.	04-10724-R1
2	R1, R9	Resistor TF, 20R, 1%, 1/16W, SMD, 0603	Stackpole Electronics, Inc.	RNCP0603FTD20R0
2	R10, R11	Resistor TF, 10k, 0.1%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERA-3AEB103V
5	R12, R14, R15, R16, R17	Resistor TKF, 10k, 5%, 1/10W, SMD, 0603	Panasonic - ECG	ERJ-3GEYJ103V
1	R13	Resistor TKF, 30k, 1%, 1/10W, SMD, 0603	Stackpole Electronics, Inc.	RMCF0603FT30K0
2	R18, R19	Resistor TKF, 0R, SMD, 0402	Panasonic - ECG	ERJ-2GE0R00X
8	R2, R25, R33, R36, R37, R44, R48, R49	Resistor TKF, 0R, 1/10W, SMD, 0603	Panasonic - ECG	ERJ-3GSY0R00V
1	R20	Resistor TKF, 0R, 1/16W, SMD, 0402	Yageo Corporation	RC0402JR-070RL

TABLE B-1: BILL OF MATERIALS (BOM) (CONTINUED)FOR ADM00872 ⁽¹⁾

Qty.	Reference	Description	Manufacturer	Part Number
1	R21	Resistor TKF, 0R, 1/16W, SMD, 0402 DO NOT POPULATE	Yageo Corporation	RC0402JR-070RL
3	R22, R23, R24	Resistor TKF, 0R, SMD, 0402 DO NOT POPULATE	Panasonic - ECG	ERJ-2GE0R00X
3	R26, R32, R40	Resistor TKF, 1R, 1%, 1/10W, SMD, 0603	ROHM Semiconductor	KTR03EZPF1R00
1	R27	Thick Film Resistors, SMD, 0805, 82 k Ω , 1%, Anti-Surge, AEC-Q200	Panasonic - ECG	ERJ-P6WF8202V
1	R28	Resistor, TFK, 35.7 kΩ, 1%, 1/10W, SMD, 0603 DO NOT POPULATE	Vishay/Dale	CRCW060335K7FKEA
1	R29	Resistor, SMD, 14 kΩ, 1%, 1/8W, 0805	Panasonic - ECG	ERJ-6ENF1402V
2	R3, R8	Resistor TKF, 24R, 1%, 1/10W, SMD, 0603	Yageo Corporation	RC0603FR-0724RL
2	R30, R41	Resistor, TKF, 348k, 1/10W, 1%, SMD, 0603	Stackpole Electronics, Inc.	RMCF0603FT348K
1	R31	Resistor TKF, 56k, 1%, 1/8W, SMD, 0805	Vishay/Dale	CRCW080556K0FKEA
1	R34	Resistor, SMD, 143 kΩ, 1%, 1/10W, 0603	Bourns, Inc.	CR0603-FX-1433ELF
1	R35	Resistor, SMD, 237 kΩ, 1%, 1/10W, 0603	Stackpole Electronics, Inc.	RMCF0603FT237K
3	R38, R42, R43	Resistor TKF, 33R, 5%, 1/10W, SMD, 0603	Panasonic - ECG	ERJ-3GEYJ330V
1	R39	Resistor, TKF, 33R, 5%, 1/10W, SMD, 0603 DO NOT POPULATE	Panasonic - ECG	ERJ-3GEYJ330V
4	R4, R5, R6, R7	Resistor TF, 1k, 0.1%, 1/10W, SMD, 0603	Panasonic - ECG	ERA-3AEB102V
1	R46	Resistor TKF, 158k, 1%, 1/10W, SMD, 0603	Yageo Corporation	RC0603FR-07158KL
1	R47	Resistor TKF, 0R, 1/8W, SMD, 0805	Panasonic - ECG	ERJ-6GEY0R00V
1	R57	Resistor TKF, 2k, 1%, 1/10W, SMD, 0603	Panasonic - ECG	ERJ-3EKF2001V
1	SW1	Switch DIP, 4-POS, SLIDE, SMD, 6V	Nidec Copal Electronics, Inc.	CHS-04TB
7	TP1, TP4, TP5, TP6, TP8, TP9, TP10	Connector header-2.54 Male, 1x1, Gold, 5.97MH, TH, Vertical	Samtec, Inc.	TSW-101-07-L-S
1	U1	IC OP-AMP, Differential, RRO LFCSP-16	Analog Devices Inc.	ADA4940-1ACPZ-R7
1	U2	IC POWER, VREF, MSOP-8	Linear Technology Corporation	LTC6655BHMS8-5#PBF
1	U3	MCP33131D-10-I/MS	Microchip Technology Inc.	MCP33131D-10-I/MS
3	U4, U6, U9	Microchip Analog LDO, 2.5V-5V, MSOP-8	Microchip Technology Inc.	MIC5219YMM
1	U10	Microchip Analog Switcher, Buck 2V to 15V, SOT-23-6	Microchip Technology Inc.	MCP16301T-E/CH

 TABLE B-1:
 BILL OF MATERIALS (BOM) (CONTINUED)FOR ADM00872⁽¹⁾

Qty.	Reference	Description	Manufacturer	Part Number
3	JP1, JP2, JP3	1.27 mm Jumper at Pins 1 and 2 of J8 1.27 mm Jumper at Pins 1 and 2 of J3 1.27 mm Jumper at Pins 1 and2 of J4	Harwin Plc.	M50-2000005
1	LABEL1	Microchip Technology Product Label		
5	PAD1, PAD2, PAD3, PAD4, PAD5	Mechanical Hardware Rubber Pad, Cylindrical, D7.9, H5.3, Black	3M	SJ61A11
1	PS1	100-240V, Wall Plug-in, Power Supply	Triad Magnetics	WSU090-2000-13
1	SCR1	Mechanical Hardware Machine Screw, PAN Phillips, 4-40, Nylon	Digi-Key [®] Electronics	H544-ND
	STANDOFF1	Mechanical HW Standoff, #4-40 x 3/4", F/F, HEX, Nylon	Keystone Electronics Corp.	1902D

TABLE B-2:	BILL OF MATERIALS ((BOM) - MECHANICAL	_ PARTS FOR ADM00872 ⁽¹⁾
------------	---------------------	--------------------	-------------------------------------

TABLE B-3: BILL OF MATERIALS (BOM) FOR ADM00873 ⁽¹⁾
--

Qty.	Reference	Description	Manufacturer	Part Number
4	C1, C10, C15, C59	Capacitor ceramic 0.1 µF, 16V, 10%, X7R, SMD, 0603	AVX Corporation	0603YC104KAT2A
1	C12	Capacitor ceramic, 0.1 µF, 16V, 10%, X7R, SMD, 0603 DO NOT POPULATE	AVX Corporation	0603YC104KAT2A
4	C13, C18, C31, C43	Capacitor ceramic 10 µF, ±10%, 25V, X5R, MLCC, 0805	Murata Electronics North America, Inc.	GRM219R61E106- KA12D
4	C14, C25, C41, CT1	Capacitor tantalum 10 μF, 20V, 10%, 2.1Ω, SMD, B	AVX Corporation	TAJB106K020RNJ
3	C17, C26, C42	Capacitor ceramic 2.2 µF, 50V, 10%, X7R, SMD, 1206	TDK Corporation	CGA5L3X7R1H225K1 60AB
3	C19, C32, C44	Capacitor ceramic 470 pF, 50V, 10%, X7R, SMD, 0603	Johanson Dielectrics	500R14W471KV4T
11	C2, C3, C4, C8, C9, C11, C16, C20 C22, C60, C64	Capacitor ceramic 1 µF, 25V, X7R, 0603	Samsung Electro-Mechanics America, Inc.	CL10B105KA8NNNC
1	C21	Capacitor tantalum 22 μF, 16V, 10%, 2.3Ω, SMD, B	AVX Corporation	TAJB22226K016R
2	C33, C34	Capacitor ceramic, 0.062 µF, 1206, CER, 50V, 5%, COG DO NOT POPULATE	Murata Electronics North America, Inc.	GRM31C5C1H623- JA01L
2	C35, C37	Capacitor ceramic 2200 pF, 50V, C0G, NP0, 0603 (1608 Metric) 0.063" L x 0.031	Murata Electronics North America, Inc.	GRM1885C1H222- FA01D
3	C45, C47, C52	Capacitor ceramic 4.7 uF, 25V, 10%, X7R, SMD, 0805	TDK Corporation	C2012X7R1E475K125 AB
1	C46	Capacitor ceramic 0.1 uF, 50V, 10%, X7R, SMD, 0805	Yageo Corporation	CC0805KRX- 7R9BB104
1	C48	Capacitor ceramic 22 uF, 16V, 20%, X5R, SMD, 1206	Samsung Electro-Mechanics America, Inc.	CL31A226KOCLFNC
2	C49, C50	Capacitor tantalum 100 uF, 20V, 10%, 140 m Ω , SMD, R	Vishay/Dale	595D107X9020R2T

Qty.	Reference	Description	Manufacturer	Part Number
1	C5	Capacitor ceramic 2.2 uF, 16V, 10%, X5R, SMD, 0603	TDK Corporation	C1608X5R1C225K
1	C51	Capacitor ceramic 10 µF, 50V, 20%, X7S, SMD, 1210	TDK Corporation	C3225X7S1H106M
1	C6	Capacitor tantalum 10 μF, 16V, 20%, 8Ω, SMD, A	KEMET	T491A106M016AT
2	C7, C23	Capacitor ceramic 100 pF, 25V, 10%, NP0, SMD, 0603	AVX Corporation	06033A101KAT2A
1	D1	Diode LED Red, 2V, 30 mA, 2 mcd, clear, SMD, 0603	Lite-On [®] , Inc.	LTST-C190EKT
1	D2	Diode schottky, 30V, 1A, POWERDI323	Diodes Incorporated [®]	PD3S130L-7
1	D3	Diode rectifier, 1N4148, 855 mV, 300 mA, 75V, SOD-323	Diodes Incorporated [®]	1N4148WS-7-F
1	D4	Diode array, 1.1V, 200 mA, 200V, SMD, SOT-23-3	Fairchild Semiconductor [®]	MMBD1503A
8	FB1, FB2, FB3, FB4, FB5, FB6, FB7, FB8	Ferrite bead, 1 kΩ, 0603, 1LN	Wurth Elektronik	742792662
4	GND1, GND2, GND3, GND4	Connector TP, Loop, Black, TH	Keystone Electronics Corp.	5011
1	H1	Connector terminal, 3.5 mm, 6A Female, 1 x 2 TH, R/A	Keystone Electronics Corp.	8722
3	IN1+, IN1-, TP7	Connector header-2.54, Male, 1x1, Gold, 5.97MH, TH, Vertical DO NOT POPULATE	Samtec, Inc.	TSW-101-07-L-S
2	J1, J2	Connector radio frequency, Coaxial, SMA, Female, TH, R/A	TE Connectivity, Ltd.	5-1814400-1
2	J10_A, J10_B	Connector header-2.54 Male, 1x8, Gold, 5.84MH, TH	FCI	68001-108HLF
3	J3, J6, J7	Connector header-1.27 Male, 1x2, Gold, TH, Vertical	Harwin Pl	M50-3530242
2	J4, J8	Connector header, 1.27 mm, T/H, AU, 3 POS	Harwin Plc.	M50-3530342
1	J5	Connector Power, Jack Male, 2.5 mm, CLSD	CUI Inc.	PJ-002B
1	L5	Fixed inductor, 47 μH , 2A, 135 m $\Omega,$ SMD	Bourns [®] , Inc.	SRR1240-470M
1	L6	Fixed inductor, 1 mH, 250 mA 6Ω , TH	Wurth Elektronik	7447462102
1	L8	Fixed inductor, 1 μ H, 1A, 60 m Ω , SMD	Murata Electronics North America, Inc	LQH32CN1R0M33L
1	L9	Fixed Shielded Power Inductor, 4.7 µH	Coilcraft	LPS3015-472MRB
1	PCB1	MCP331x1 16/14/12-Bit 1 Msps SAR ADC Evaluation Board Printed Circuit Board	Microchip Technology Inc.	04-10726-R1
2	R1, R9	Resistor TF, 20R, 1%, 1/16W, SMD, 0603	Stackpole Electronics, Inc.	RNCP0603FTD20R0
2	R10, R11	Resistor TF, 10k, 0.1%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERA-3AEB103V

 TABLE B-3:
 BILL OF MATERIALS (BOM) FOR ADM00873⁽¹⁾ (CONTINUED)

Qty.	Reference	Description	Manufacturer	Part Number
1	R12	Resistor TF, 10k, 1%, 1/16W, SMD, 0603	TE Connectivity, Ltd.	5-1879337-9
1	R13	Resistor TKF, 30k, 5%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERJ-3GEYJ303V
4	R14, R15, R16, R17	Resistor TKF, 10k, 5%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERJ-3GEYJ103V
2	R18, R19	Resistor TKF, 0R, SMD, 0402	Panasonic [®] - ECG	ERJ-2GE0R00X
1	R2	Resistor TKF, 0R, 1/10W, SMD, 0603 DO NOT POPULATE	Panasonic [®] - ECG	ERJ-3GSY0R00V
1	R20, R39	Resistor TKF, 0R, 1/16W, SMD, 0402	Yageo Corporation	RC0402JR-070RL
2	R21, R45	Resistor TKF, 0R, 1/16W, SMD, 0402 DO NOT POPULATE	Yageo Corporation	RC0402JR-070RL
1	R25	Resistor TKF, 7.15K, 1%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERJ-3EKF7151V
3	R22, R23, R24	Resistor TKF, 0R, SMD, 0402 DO NOT POPULATE	Panasonic [®] - ECG	ERJ-2GE0R00X
3	R26, R32, R40	Resistor TKF, 1R, 1%, 1/10W, SMD, 0603	ROHM Semiconductor	KTR03EZPF1R00
1	R27	Resistor TKF, 82K, 1%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERJ-3EKF8202V
1	R28	Resistor, TFK, 35.7 kΩ, 1%, 1/10W, SMD, 0603 DO NOT POPULATE	Vishay/Dale	CRCW060335K7FKEA
1	R29	Resistor TKF, 14k, 1%, 1/8W, SMD, 0805	Panasonic [®] - ECG	ERJ-6ENF1402V
2	R3, R8	Resistor TKF, 24R, 1%, 1/10W, SMD, 0603	Yageo Corporation	RC0603FR-0724RL
1	R30	Resistor TKF, 280k, 1%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERJ-3EKF2803V
1	R31	Resistor TKF, 56k, 1%, 1/8W, SMD, 0805	Vishay/Dale	CRCW080556K0FKEA
8	R33, R38, R42, R48, R49, R50, R51, R56	Resistor TKF, 0R, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERJ-3GSY0R00V
1	R34	Resistor, SMD, 143 kΩ, 1%, 1/10W, 0603	Bourns [®] , Inc.	CR0603-FX-1433ELF
1	R35	Resistor, SMD, 237 kΩ, 1%, 1/10W, 0603	Stackpole Electronics, Inc.	RMCF0603FT237K
1	R36	Resistor TKF, 10.5R, 1%, 1/10W, SMD, 0603	Vishay/Dale	CRCW060310R5FKE A
1	R39	Resistor, TKF, 33R, 5%, 1/10W, SMD, 0603 DO NOT POPULATE	Panasonic [®] - ECG	ERJ-3GEYJ330V
5	R4, R5, R6, R7, R37	Resistor TF, 1k, 0.1%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERA-3AEB102V
1	R41	Resistor TKF, 348k, 1/10W, 1%, SMD, 0603	Stackpole Electronics, Inc.	RMCF0603FT348K
1	R43	Resistor TKF, 13.3k, 1%, 1/10W, SMD,	Stackpole	RMCF0603FT13K3

TABLE B-3:	BILL OF MATERIALS (BOM) FOR ADM00873 ⁽¹⁾ (CONTINUED)
------------	---------------------	------------------------------------	------------

Qty.	Reference	Description	Manufacturer	Part Number
4	R44, R53, R54, R55	Resistor TKF, 33R, 1%, 1/10W, SMD, 0603	ROHM Semiconductor	MCR03EZPFX33R0
1	R46	Resistor TKF, 158k, 1%, 1/10W, SMD, 0603	Yageo Corporation	RC0603FR-07158KL
1	R47	Resistor TKF, 0R, 1/8W, SMD, 0805	Panasonic [®] - ECG	ERJ-6GEY0R00V
1	R52	Resistor TKF, 47k, 1%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERJ-3EKF4702V
1	R57	Resistor TKF, 2k, 1%, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERJ-3EKF2001V
1	SW1	Switch DIP, 4-POS, SLIDE, SMD, 6V	Copal Electronics Inc.	CHS-04TB
7	TP1, TP4, TP5, TP6, TP8, TP9, TP10	Connector header-2.54 Male, 1x1, Gold, 5.97MH, TH, Vertical	Samtec, Inc.	TSW-101-07-L-S
1	U1	IC OP-AMP, Differential, RRO LFCSP-16	Analog Devices Inc.	ADA4940-1ACPZ-R7
1	U2	Microchip Analog, VREF, 4.096V, SOT-23-6	Linear Technology Corporation	MCP1501T-40E/CHY
1	U3	MCP33131D-10-I/MS	Microchip Technology Inc.	MCP33131D-10-I/MS
3	U4, U6, U9	Microchip Analog LDO, 2.5V-5V, MSOP-8	Microchip Technology Inc.	MIC5219YMM
1	U5	IC Op Amp GP, 3.5 MHz, RRO, SOT23-5	Microchip Technology Inc.	MCP6286T-E/OT
1	U10	Microchip Analog Switcher, Buck 2V to 15V, SOT-23-6	Microchip Technology Inc.	MCP16301T-I/CHY

 TABLE B-3:
 BILL OF MATERIALS (BOM) FOR ADM00873⁽¹⁾ (CONTINUED)

TABLE B-4:	BILL OF MATERIALS (BOM) - MECHANICAL PARTS FOR ADMO)0873 ⁽¹⁾

Qty.	Reference	Description	Manufacturer	Part Number
3	JP1, JP2, JP3	1.27 mm Jumper at Pins 1 and 2 of J8 1.27 mm Jumper at Pins 1 and 2 of J3 1.27 mm Jumper at Pins 1 and 2 of J4	Harwin Plc.	M50-2000005
1	LABEL1	Microchip Technology Product Label		
5	PAD1, PAD2, PAD3, PAD4, PAD5	Mechanical Hardware Rubber Pad, Cylindrical, D7.9, H5.3, Black	3M	SJ61A11
1	PS1	100-240V, Wall Plug-in Power Supply	Triad Magnetics	WSU090-2000-13
1	SCR1	Mechanical Hardware Machine Screw, PAN Phillips, 4-40, Nylon	Digi-Key [®] Electronics	H544-ND
	STANDOFF1	Mechanical HW Standoff, #4-40 x 3/4", F/F, HEX, Nylon	Keystone Electronics Corp.	1902D

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 **Technical Support:** http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Tel: 60-4-227-8870

Tel: 63-2-634-9065

Tel: 65-6334-8870

Taiwan - Hsin Chu

Taiwan - Kaohsiung

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Malaysia - Penang Philippines - Manila

Singapore

Tel: 886-3-577-8366

Tel: 886-7-213-7830

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

 MCP33141D-05T-E/MS
 MCP33141D-10T-E/MN
 MCP33141D-10T-E/MS
 MCP33151D-10T-E/MS
 ADM00873

 MCP33141D-05T-E/MN
 MCP33151-10T-E/MN
 MCP33151-10T-E/MS
 MCP33151D-05T-E/MN
 MCP33151D-05T-E/MN
 MCP33151D-05T-E/MN
 MCP33151D-05T-E/MN
 MCP33151D-05T-E/MN
 MCP33141-05T-E/MN
 MCP33141