PAC.. Series

Vishay Draloric

Cemented Leaded Wirewound Precision Resistors

www.vishay.com

FEATURES

- High power dissipation in small volume
- Ideal for pulse application
- TCR ± 100 ppm/K
- Maximum permissible hot spot temperature is 275 $^{\circ}\mathrm{C}$
- Lead (Pb)-free
- Tolerance 1 %
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

The resistor element is a resistive wire which is wound in a single layer on a ceramic rod. Metal caps are pressed over the ends of the rod. The ends of the resistance wire and the leads are connected to the caps by welding. Tinned copper-clad iron leads with poor heat conductivity are employed permitting the use of relatively short leads to obtain stable mounting without overheating the solder joint.

The resistor is coated with a green silicon cement which is not resistant to aggressive fluxes. The coating is non-inflammable, will not drip even at high overloads and is resistant to most commonly used cleaning solvents, in accordance with IEC 60068-2-45.

STANDARD ELECTRICAL SPECIFICATIONS					
MODEL	POWER RATING P _{25 °C} W	LIMITING VOLTAGE U _{max.}	RESISTANCE RANGE ⁽²⁾ Ω	TOLERANCE ± %	
PAC01	1	$\sqrt{P \times R}$	0.10 to 2.2K	1	
PAC02 ⁽¹⁾	2	$\sqrt{P \times R}$	0.10 to 3.6K	1	
PAC03	3	$\sqrt{P \times R}$	0.10 to 4.7K	1	
PAC04	4	√P x R	0.10 to 8.2K	1	
PAC05	5	$\sqrt{P \times R}$	0.10 to 12K	1	
PAC06	6	$\sqrt{P \times R}$	0.10 to 12K	1	

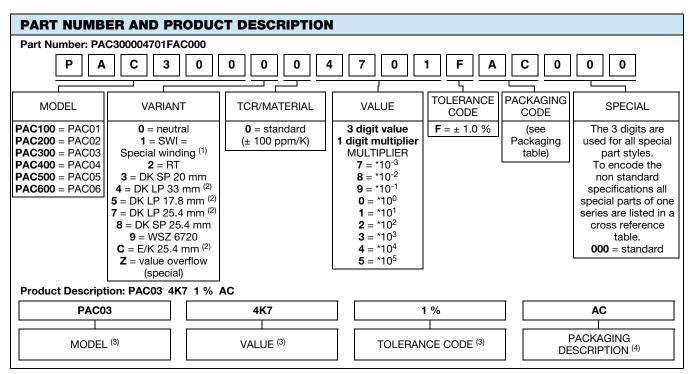
Notes

• For Pulse Diagrams see AC.. Series (www.vishay.com/doc?28730)

⁽¹⁾ PAC02 WSZ: $P_{25 \circ C} = 1.8 \text{ W}$

⁽²⁾ Resistance value to be selected for ± 1 % tolerance from E24 and E96

COMPLIANT


HALOGEN

GREEN

(5-2008)

Vishay Draloric

Notes

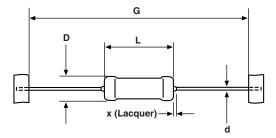
(1) Special winding on request

⁽²⁾ Other dimensions on request

⁽³⁾ See "Part Number and Product Description"

(4) See "Packaging Table"

PACKAGING	TABLE									
		АММО			LOOSE			BLISTER		
MODEL	PIECES	PACK CODE	PACK. DESC.	PIECES	PACK CODE	PACK. DESC.	PIECES	PACK CODE	PACK. DESC.	
PAC01	1000	A1	A1							
PAC01 DK/EK				500	LC	LC				
PAC01RT	2500	AE	AE							
PAC02	500	AC	AC							
PAC02 DK/EK				500	LC	LC				
PAC02 WSZ							1250	BM	BM	
PAC03	500	AC	AC							
PAC03 DK/EK				500	LC	LC				
PAC04	500	AC	AC							
PAC04 DK/EK				500	LC	LC				
PAC05	500	AC	AC							
PAC05 DK/EK			•	250	LB	LB				
PAC06	500	AC	AC							
PAC06 DK/EK			•	250	LB	LB				


Revision: 14-Mar-17

www.vishay.com

Vishay Draloric

DIMENSIONS in millimeters [inches]

MODEL	D _{max.}	L _{max.}	d	X _{max.}	G	WEIGHT g PER UNIT
PAC01	4.3 [0.169]	11 [0.433]		2	63 ± 1 [2.480 ± 0.039]	0.52
PAC02	4.8 [0.189]	13 [0.512]		2	63 ± 1 [2.480 ± 0.039]	0.75
PAC03	5.5 [0.217]	16.5 [0.650]	0.8 ± 0.03	3	63 ± 1 [2.480 ± 0.039]	1.10
PAC04	7.5 [0.295]	18 [0.709]	[0.031 ± 0.001]	3	73 ± 1 [2.874 ± 0.039]	1.90
PAC05	7.5 [0.295]	26 [1.024]		3	73 ± 1 [2.874 ± 0.039]	2.60
PAC06	7.5 [0.295]	26 [1.024]		3	73 ± 1 [2.874 ± 0.039]	2.60

Note

• For packaging dimensions see: <u>www.vishay.com/doc?28721</u>

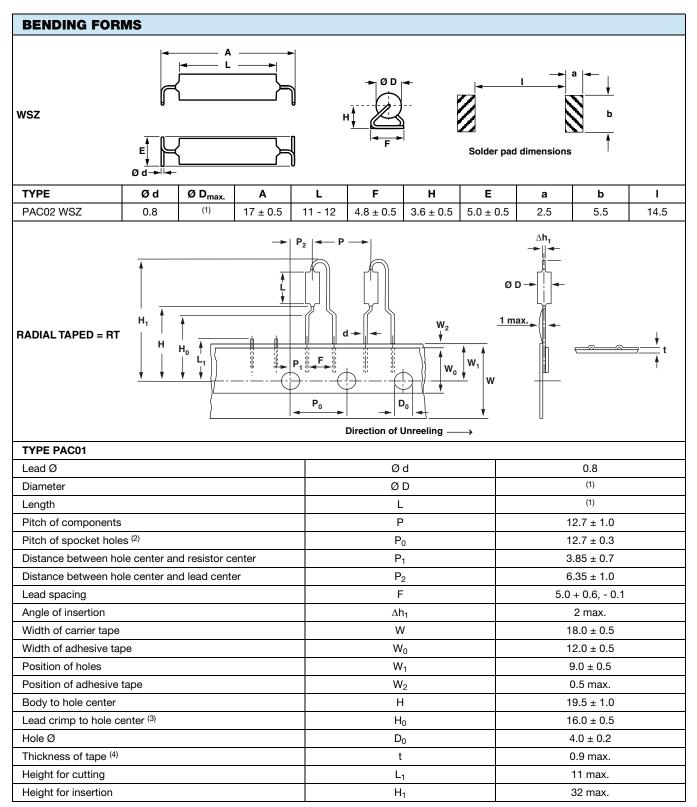
PAC.. Series

Vishay Draloric

BENDING FO	RMS								
KINK TYPE S = EK			ØD + S		← L 		 - Ø d		
ТҮРЕ	Ød	9	Ø D _{max.}	L		h ± 1	P±1		S _{max.}
PAC01							17.8		
PAC02 - PAC04	0.8		(1)	(1)		8	25.4		2
PAC05 - PAC06							33.0		
DOUBLE KINK SP	= DK SP		+ s -	-	→ h → → → → → → → → → → →		✓Ød) ↓ c 4		
ТҮРЕ	ØD	Ø D _{max.}	L	h ± 1	P ₁ ± 1	P ₂ ± 3	S _{max.}	ØВ	c
PAC01 PAC02 - PAC04 PAC05 - PAC06	0.8	(1)	(1)	8	19.8 22.0 27.4 35.0	17.8 20.0 25.4 33.0	2	1.0 ± 0.1	4.5 ± 1
DOUBLE KINK LP = DK LP \Rightarrow S \Rightarrow \Rightarrow B P_2 \Rightarrow $P_$									
ТҮРЕ	ØD	Ø D _{max.}	L	h ± 1	P ₁ ± 1	P ₂ ± 3	S _{max.}	ØВ	с
PAC01 - PAC02					17.8	17.8			
PAC02 - PAC04	0.8	(1)	(1)	8	25.4	25.4	2	1.0 ± 0.1	4.5 ± 1
PAC05 - PAC06					33.0	33.0			

Note

(1) See table DIMENSIONS


4

www.vishay.com

PAC.. Series

Vishay Draloric

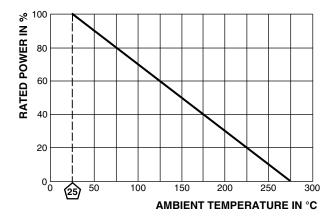
Notes

⁽¹⁾ See table DIMENSIONS

 $^{(2)}$ Test over 10 holes - 9 intervals P_0 12.7 x 9 = 114.3 \pm 0.5

⁽³⁾ Parallelism, < 0.5 mm

 $^{(4)}$ Thickness of carrier tape: 0.55 mm \pm 0.1


Revision: 14-Mar-17

5

Document Number: 28731

DERATING

Maximum dissipation ($P_{max.}$) as a function of the ambient temperature (T_{amb})

PERFORMANCE				
TEST	PERMISSIBLE CHANGE			
Climatic category (LCT/UCT/Days)	55/200/56			
Climatic Sequence IEC 60115-1 4.23	$\Delta R = \pm (0.5 \% R + 0.05 \Omega)$			
Damp Heat, Steady State, IEC 60115-1, 4.24 (40 ± 2) °C, 56 days, (93 ± 3) % RH	$\Delta R = \pm (1.0 \% R + 0.05 \Omega)$			
Endurance at room temperature (116 % <i>P</i> ₇₀), 1000 h, IEC 60115-1, 4.25.2	$\Delta R = \pm (0.5 \% R + 0.05 \Omega)$			
Storage, UCT, IEC 60115-1, 4.25.3 1000 h, 200 °C, no load	$\Delta R = \pm (1.0 \% R + 0.05 \Omega)$			
Resistance to Soldering Heat, IEC 60115-1, 4.18 (260 \pm 5) °C, (10 \pm 1) s	$\Delta R = \pm (0.2 \% R + 0.05 \Omega)$			
Robustness of Termination, IEC 60115-1, 4.16 10N	$\Delta R = \pm (0.1 \% R + 0.05 \Omega)$			
Short Time Overload, IEC 60115-1, 4.13 10 x Rated Power for 5 s	$\Delta R = \pm (0.2 \% R + 0.05 \Omega)$			

Vishay Draloric

HISTORICAL 12NC INFORMATION

- The resistors had a 12-digit ordering code staring with 2306 327
- The subsequent first digit indicated the resistor type and packaging.
- The remaining 4 digits indicated the resistance value:
 - The first 3 digits indicated the resistance value.
 - The last digit indicated the resistance decade in accordance with Resistance Decade table.

Resistance Decade

RESISTANCE DECADE	LAST DIGIT
0.10 to 0.976 Ω	7
1 to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	1
1 to 9.76 kΩ	2
10 to 12 kΩ	3

Ordering Example

The ordering code for an PAC02, resistor value 47 Ω with \pm 1 % tolerance, supplied in ammopack of 500 units was: 2306 327 04709.

HISTORICAL 12NC - Resistor type and packaging						
	2306 327					
ТҮРЕ	BANDOLIER IN AMMOPACK					
	RADIAL	IT LEADS				
	2500 units	500 units	1000 units			
PAC01	RT ⁽¹⁾	-	2306 327 5			
PAC02	-	2306 327 0	-			
PAC03	-	2306 327 1	-			
PAC04	-	2306 327 2	-			
PAC05	-	2306 327 3	-			
PAC06	-	2306 327 4	-			

Note

⁽¹⁾ Radial parts with tin plated copper leads

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

PAC01005009FA1000	PAC100001000FA1000	PAC100004709FA1000	PAC100005009FA1000
PAC500001007FAC000	PAC500001009FAC000	PAC100008209FA1000	PAC300008200FAC000
PAC100001001FA1000	PAC500001001FAC000	PAC100001007FA1000	PAC100001008FA1000
PAC100001101FA1000	PAC100001200FA1000	PAC100001201FA1000	PAC100001209FA1000
PAC100001307FA1000	PAC100001500FA1000	PAC100001501FA1000	PAC100001507FA1000
PAC100001508FA1000	PAC300002200FAC000	PAC300002501FAC000	PAC300002507FAC000
PAC300002509FAC000	PAC300002700FAC000	PAC300002709FAC000	PAC300003000FAC000
PAC300003001FAC000	PAC300003007FAC000	PAC300003008FAC000	PAC300003009FAC000
PAC300003300FAC000	PAC300003307FAC000	PAC300003309FAC000	PAC300003600FAC000
PAC300003601FAC000	PAC300003901FAC000	PAC300003908FAC000	PAC300003909FAC000
PAC300004700FAC000	PAC300004707FAC000	PAC300004708FAC000	PAC500004700FAC000
PAC500004709FAC000	PAC500005000FAC000	PAC500005001FAC000	PAC500005007FAC000
PAC500005008FAC000	PAC500005009FAC000	PAC500005601FAC000	PAC500005609FAC000
PAC500006201FAC000	PAC500001002FAC000	PAC500001008FAC000	PAC500001200FAC000
PAC500001209FAC000	PAC500001307FAC000	PAC500001500FAC000	PAC500001501FAC000
PAC500001507FAC000	PAC500001508FAC000	PAC500001509FAC000	PAC500001800FAC000
PAC500001809FAC000	PAC500002000FAC000	PAC500002001FAC000	PAC500002007FAC000
PAC500002008FAC000	PAC500002009FAC000	PAC500002200FAC000	PAC500002500FAC000
PAC500002509FAC000	PAC500002700FAC000	PAC500003000FAC000	PAC500003001FAC000
PAC500003008FAC000	PAC500003009FAC000	PAC500003307FAC000	PAC500003309FAC000
PAC500003609FAC000	PAC500003908FAC000	PAC500003909FAC000	PAC300007508FAC000
PAC500001000FAC000	PAC100001509FA1000	PAC100001800FA1000	PAC100001801FA1000
PAC100001809FA1000	PAC100002000FA1000	PAC100002001FA1000	PAC100002007FA1000
PAC100002009FA1000	PAC100002200FA1000	PAC100002201FA1000	PAC100002209FA1000
PAC100002500FA1000	PAC100002507FA1000	PAC100002509FA1000	PAC100002700FA1000