MC74HC4040A

12-Stage Binary Ripple Counter

High-Performance Silicon-Gate CMOS

The MC74C4040A is identical in pinout to the standard CMOS MC14040. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of 12 master-slave flip-flops. The output of each flip-flop feeds the next and the frequency at each output is half of that of the preceding one. The state counter advances on the negative-going edge of the Clock input. Reset is asynchronous and active-high.

State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and may have to be gated with the Clock of the HC4040A for some designs.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance With JEDEC Standard No. 7A Requirements
- Chip Complexity: 398 FETs or 99.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free and are RoHS Compliant

Figure 1. Logic Diagram

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$V_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$V_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{l}_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, V_{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, SOIC Package \dagger TSSOP Package \dagger	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package	260	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating: SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0
	(Figure 2)	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	1000
		$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	ns
		$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	500
		0	400	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
DC CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Condition		$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit	
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$			
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left.\right\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.10 \\ & 3.15 \\ & 4.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.10 \\ & 3.15 \\ & 4.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.10 \\ & 3.15 \\ & 4.20 \end{aligned}$	V
V_{IL}	Maximum Low-Level Input Voltage	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ \left.\right\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{array} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.90 \\ & 1.35 \\ & 1.80 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.90 \\ & 1.35 \\ & 1.80 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.90 \\ & 1.35 \\ & 1.80 \end{aligned}$	V	
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{I}_{\text {outt }} \leq 20 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$	$\mid{ }_{\text {out }} \leq 2.4 \mathrm{~mA}$ $\mid{ }_{\text {out }} \leq 4.0 \mathrm{~mA}$ $\mid{ }_{\text {out }} \leq 5.2 \mathrm{~mA}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.70 \\ & 5.20 \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\left.\right\|_{\text {out }}\right\| 20 \mu \mathrm{l} \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mid l_{\text {out }} \leq 2.4 \mathrm{~mA}$ $\mid{ }_{\text {out }} \leq 4.0 \mathrm{~mA}$ $\left\|{ }_{\text {out }}\right\| \leq 5.2 \mathrm{~mA}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & \hline 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$		
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$V_{\text {in }}=V_{\text {CC }}$ or GN		6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GN} \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$		6.0	4	40	160	$\mu \mathrm{A}$	

AC CHARACTERISTICS $\left(C_{L}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Guaranteed Limit			Unit
			-55 to $25^{\circ} \mathrm{C}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 2 and 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 30 \\ & 50 \end{aligned}$	$\begin{gathered} 9.0 \\ 14 \\ 28 \\ 45 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 12 \\ & 25 \\ & 40 \end{aligned}$	MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, Clock to Q1* (Figures 2 and 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 96 \\ & 63 \\ & 31 \\ & 25 \end{aligned}$	$\begin{aligned} & 106 \\ & 71 \\ & 36 \\ & 30 \end{aligned}$	$\begin{aligned} & 115 \\ & 88 \\ & 40 \\ & 35 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Reset to Any Q (Figures 3 and 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 30 \\ & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 72 \\ & 36 \\ & 35 \\ & 32 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 40 \\ & 35 \end{aligned}$	ns
tplh, $\mathrm{t}_{\mathrm{PHL}}$	Maximum Propagation Delay, Qn to Qn+1 (Figures 4 and 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 69 \\ & 40 \\ & 17 \\ & 14 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 21 \\ & 15 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 28 \\ & 22 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 2 and 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & 110 \\ & 36 \\ & 22 \\ & 19 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance		10	10	10	pF

* For $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, typical propagation delay from Clock to other Q outputs may be calculated with the following equations:
$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}: \mathrm{t}_{\mathrm{p}}=[93.7+59.3(\mathrm{n}-1)] \mathrm{ns} \quad \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}: \mathrm{t}_{\mathrm{p}}=[30.25+14.6(\mathrm{n}-1)] \mathrm{ns}$
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}: \mathrm{t}_{\mathrm{p}}=[61.5+34.4(\mathrm{n}-1)] \mathrm{ns} \quad \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}: \mathrm{t}_{\mathrm{p}}=[24.4+12(\mathrm{n}-1)] \mathrm{ns}$

CPD		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	pF
	Power Dissipation Capacitance (Per Package)*	31	

* Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

Symbol	Parameter	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Clock (Figure 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 30 \\ 20 \\ 5 \\ 4 \end{gathered}$	$\begin{gathered} 40 \\ 25 \\ 8 \\ 6 \end{gathered}$	$\begin{gathered} 50 \\ 30 \\ 12 \\ 9 \end{gathered}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Clock (Figure 2)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 24 \\ & 20 \end{aligned}$	ns
$t_{\text {w }}$	Minimum Pulse Width, Reset (Figure 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 24 \\ & 20 \end{aligned}$	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 2)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

MC74HC4040A

PIN DESCRIPTIONS

INPUTS

Clock (Pin 10)

Negative-edge triggering clock input. A high-to-low transition on this input advances the state of the counter.

Reset (Pin 11)

Active-high reset. A high level applied to this input asynchronously resets the counter to its zero state, thus forcing all Q outputs low.

OUTPUTS
Q1 thru Q12 (Pins 9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1)
Active-high outputs. Each Qn output divides the Clock input frequency by 2^{N}.

SWITCHING WAVEFORMS

Figure 2.

Figure 4.

Figure 3.

*Includes all probe and jig capacitance
Figure 5. Test Circuit

Figure 6. Expanded Logic Diagram

Figure 7. Timing Diagram

APPLICATIONS INFORMATION

Time-Base Generator

A 60 Hz sinewave obtained through a 100 K resistor connected to a 120 Vac power line through a step down transformer is applied to the input of the MC54/74HC14A, Schmitt-trigger inverter. The HC14A squares-up the input
waveform and feeds the HC4040A. Selecting outputs Q5, Q10, Q11, and Q12 causes a reset every 3600 clocks. The HC20 decodes the counter outputs, produces a single (narrow) output pulse, and resets the binary counter. The resulting output frequency is 1.0 pulse/minute.

Figure 8. Time-Base Generator

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC4040ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC4040ADR2G	SOIC-16 (Pb-Free)	2500 Units / Reel
NLV74HC4040ADR2G*	SOIC-16 (Pb-Free)	2500 Units / Reel
MC74HC4040ADTR2G	TSSOP-16 (Pb-Free)	2500 Units / Reel

[^0]SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
MC74HC4040AD MC74HC4040ADG MC74HC4040ADR2 MC74HC4040ADR2G MC74HC4040ADTR2
MC74HC4040ADTR2G MC74HC4040AF MC74HC4040AFEL MC74HC4040AFELG MC74HC4040AFG
MC74HC4040AN MC74HC4040ANG NLV74HC4040ADR2G

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

