# **Motion SPM<sup>®</sup> 5 Series**

## FSB50550BL, FSB50550BSL

### **General Description**

The FSB50550BL/FSB50550BSL is an advanced Motion SPM 5 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC and PMSM motors. These modules integrate optimized gate drive of the built-in MOSFETs (FRFET<sup>®</sup> technology) to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts and thermal monitoring. The built-in high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's internal MOSFETs. Separate open-source MOSFET terminals are available for each phase to support the widest variety of control algorithms.

### Features

- UL Certified No. E209204 (UL1557)
- Optimized for over 10 kHz Switching Frequency
- 500 V FRFET MOSFET 3–Phase Inverter with Gate Drivers and Protection
- Built-In Bootstrap Diodes Simplify PCB Layout
- Separate Open–Source Pins from Low–Side MOSFETs for Three–Phase Current–Sensing
- Active-HIGH Interface, Works with 3.3/5 V Logic, Schmitt-Trigger Input
- Optimized for Low Electromagnetic Interference
- HVIC Temperature-Sensing Built-In for Temperature Monitoring
- HVIC for Gate Driving and Under-Voltage Protection
- Isolation Rating: 1500 V<sub>rms</sub>/min.
- Moisture Sensitive Level (MSL) 3 for SMD PKG
- This Device is Pb-Free and is RoHS Compliant

### Applications

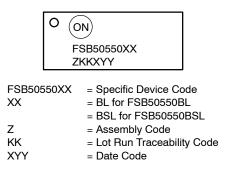
• 3-Phase Inverter Driver for Small Power AC Motor Drives

### **Related Source**

- <u>AN-9080 Motion SPM<sup>®</sup> 5 Series Version 2 User's Guide</u>
- <u>AN-9082 Motion SPM<sup>®</sup> 5 Series Thermal Performance by Contact</u> <u>Pressure</u>



www.onsemi.com




SPM5E-023/23LD CASE MODEJ



SPM5H-023/23LD CASE MODEM

### MARKING DIAGRAM



### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 2 of this data sheet.

### **ORDERING INFORMATION**

| Device      | Device Marking | Package   | Packing Type <sup>†</sup> | Reel Size | Quantity |
|-------------|----------------|-----------|---------------------------|-----------|----------|
| FSB50550BL  | FSB50550BL     | SPM5E-023 | Rail                      | NA        | 15       |
| FSB50550BSL | FSB50550BSL    | SPM5H-023 | Tape & Reel               | 330 mm    | 450      |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

### **ABSOLUTE MAXIMUM RATINGS**

| Symbol | Parameter | Conditions | Rating | Unit |
|--------|-----------|------------|--------|------|
| -      |           |            | -      |      |

**INVERTER PART** (Each MOSFET Unless Otherwise Specified)

|                    | 1                                     | ,                                               |     |                  |
|--------------------|---------------------------------------|-------------------------------------------------|-----|------------------|
| V <sub>DSS</sub>   | Drain-Source Voltage of Each MOSFET   |                                                 | 500 | V                |
| *I <sub>D 25</sub> | Each MOSFET Drain Current, Continuous | $T_{C} = 25^{\circ}C$                           | 3.0 | А                |
| *I <sub>D 80</sub> | Each MOSFET Drain Current, Continuous | $T_{\rm C} = 80^{\circ}{\rm C}$                 | 1.9 | А                |
| *I <sub>DP</sub>   | Each MOSFET Drain Current, Peak       | T <sub>C</sub> = 25°C, PW < 100 μs              | 7.0 | А                |
| *I <sub>DRMS</sub> | Each FRFET Drain Current, Rms         | $T_{C} = 80^{\circ}C, F_{PWM} < 20 \text{ kHz}$ | 1.3 | A <sub>rms</sub> |

CONTROL PART (Each HVIC Unless Otherwise Specified)

| V <sub>DD</sub> | Control Supply Voltage | Applied between $V_{\mbox{\scriptsize DD}}$ and COM | 20                         | V |
|-----------------|------------------------|-----------------------------------------------------|----------------------------|---|
| V <sub>BS</sub> | High-Side Bias Voltage | Applied between $V_B$ and $V_S$                     | 20                         | V |
| V <sub>IN</sub> | Input Signal Voltage   | Applied between $V_{IN}$ and COM                    | -0.3~V <sub>DD</sub> + 0.3 | V |

### BOOTSTRAP DIODE PART (Each Bootstrap Diode Unless Otherwise Specified)

| V <sub>RRMB</sub>  | Maximum Repetitive Reverse Voltage |                                              | 500 | V |
|--------------------|------------------------------------|----------------------------------------------|-----|---|
| * I <sub>FB</sub>  | Forward Current                    | $T_{C} = 25^{\circ}C$                        | 0.5 | А |
| * I <sub>FPB</sub> | Forward Current (Peak)             | $T_C = 25^{\circ}C$ , Under 1 ms Pulse Width | 2.0 | А |

#### THERMAL RESISTANCE

| R <sub>th(j-c)Q</sub> | Junction to Case Thermal Resistance (Note 1) | Inverter MOSFET Part (Per Module) | 2.2 | °C/W |
|-----------------------|----------------------------------------------|-----------------------------------|-----|------|
|-----------------------|----------------------------------------------|-----------------------------------|-----|------|

### TOTAL SYSTEM

| TJ               | Operating Junction Temperature |                                                                 | -40~150 | °C               |
|------------------|--------------------------------|-----------------------------------------------------------------|---------|------------------|
| T <sub>STG</sub> | Storage Temperature            |                                                                 | -40~125 | °C               |
| V <sub>ISO</sub> | Isolation Voltage              | 60 Hz, Sinusoidal, 1 minute,<br>Connect Pins to Heat Sink Plate | 1500    | V <sub>rms</sub> |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

NOTES:

1. For the measurement point of case temperature  $T_C$ , Please refer to Figure 4. 2. Marking "\*" is calculation value or design factor.

### **PIN DESCRIPTIONS**

| Pin No. | Pin Name             | Pin Description                                                       |
|---------|----------------------|-----------------------------------------------------------------------|
| 1       | COM                  | IC Common Supply Ground                                               |
| 2       | V <sub>B(U)</sub>    | Bias Voltage for U-Phase High-Side MOSFET Driving                     |
| 3       | V <sub>DD(U)</sub>   | Bias Voltage for U-Phase IC and Low-Side MOSFET Driving               |
| 4       | IN <sub>(UH)</sub>   | Signal Input for U-Phase High-Side                                    |
| 5       | IN <sub>(UL)</sub>   | Signal Input for U-Phase Low-Side                                     |
| 6       | N.C                  | No Connection                                                         |
| 7       | V <sub>B(V)</sub>    | Bias Voltage for V-Phase High Side MOSFET Driving                     |
| 8       | V <sub>DD(V)</sub>   | Bias Voltage for V-Phase IC and Low Side MOSFET Driving               |
| 9       | IN <sub>(VH)</sub>   | Signal Input for V-Phase High-Side                                    |
| 10      | IN <sub>(VL)</sub>   | Signal Input for V-Phase Low-Side                                     |
| 11      | V <sub>TS</sub>      | Output for HVIC Temperature Sensing                                   |
| 12      | V <sub>B(W)</sub>    | Bias Voltage for W-Phase High-Side MOSFET Driving                     |
| 13      | V <sub>DD(W)</sub>   | Bias Voltage for W-Phase IC and Low-Side MOSFET Driving               |
| 14      | IN <sub>(WH)</sub>   | Signal Input for W-Phase High-Side                                    |
| 15      | IN <sub>(WL)</sub>   | Signal Input for W-Phase Low-Side                                     |
| 16      | N.C                  | No Connection                                                         |
| 17      | Р                    | Positive DC-Link Input                                                |
| 18      | U, V <sub>S(U)</sub> | Output for U-Phase & Bias Voltage Ground for High-Side MOSFET Driving |
| 19      | NU                   | Negative DC-Link Input for U-Phase                                    |
| 20      | N <sub>V</sub>       | Negative DC-Link Input for V-Phase                                    |
| 21      | V, V <sub>S(V)</sub> | Output for V-Phase & Bias Voltage Ground for High-Side MOSFET Driving |
| 22      | N <sub>W</sub>       | Negative DC-Link Input for W-Phase                                    |
| 23      | W, V <sub>S(W)</sub> | Output for W Phase & Bias Voltage Ground for High-Side MOSFET Driving |

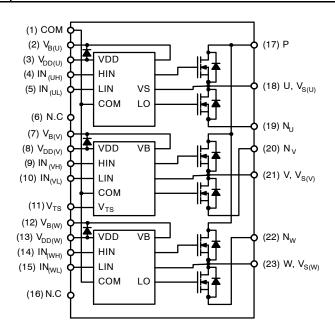



Figure 1. Pin Configuration and Internal Block Diagram (Bottom View)

NOTE:

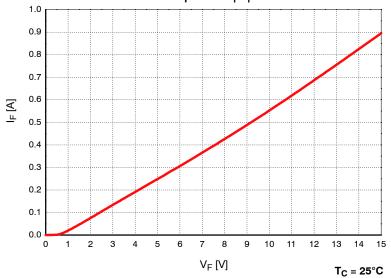
3. Source terminal of each low-side MOSFET is not connected to supply ground or bias voltage ground inside Motion SPM 5 product. External connections should be made as indicated in Figure 3.

### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C, V<sub>DD</sub> = V<sub>BS</sub> = 15 V Unless Otherwise Specified.)

| Symbol              | Parameter                                 | Test Conditions                                                                                                                                                                                                | Min.        | Тур. | Max. | Unit |
|---------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|------|------|
| INVERTE             | R PART (Each MOSFET Unless Otherwise      | Specified)                                                                                                                                                                                                     | -           | -    | -    |      |
| $BV_{DSS}$          | Drain-Source Breakdown Voltage            | V <sub>IN</sub> = 0 V, I <sub>D</sub> = 1 mA (Note 4)                                                                                                                                                          | 500         | -    | -    | V    |
| I <sub>DSS</sub>    | Zero Gate Voltage Drain Current           | V <sub>IN</sub> = 0 V, V <sub>DS</sub> = 500 V                                                                                                                                                                 | -           | -    | 1    | mA   |
| R <sub>DS(on)</sub> | Static Drain–Source Turn–On<br>Resistance | $V_{DD} = V_{BS} = 15$ V, $V_{IN} = 5$ V, $I_D = 1.0$ A                                                                                                                                                        | -           | 2.3  | 3.0  | Ω    |
| $V_{SD}$            | Drain-Source Diode Forward Voltage        | $V_{DD} = V_{BS} = 15 \text{ V}, \text{ V}_{IN} = 0 \text{ V}, \text{ I}_{D} = -1.0 \text{ A}$                                                                                                                 | -           | -    | 1.3  | V    |
| t <sub>ON</sub>     | Switching Times                           | $V_{PN}$ = 300 V, $V_{DD}$ = $V_{BS}$ = 15 V, $I_D$ = 1.0 A $V_{IN}$ = 0 V $\leftrightarrow$ 5 V, Inductive Load L = 3 mH High– and Low–Side MOSFET Switching (Note 5)                                         | -           | 650  | -    | ns   |
| t <sub>OFF</sub>    | 1                                         |                                                                                                                                                                                                                | -           | 950  | -    | ns   |
| t <sub>rr</sub>     | 1                                         |                                                                                                                                                                                                                | -           | 150  | -    | ns   |
| E <sub>ON</sub>     | 1                                         |                                                                                                                                                                                                                | -           | 40   | -    | μJ   |
| E <sub>OFF</sub>    |                                           |                                                                                                                                                                                                                | -           | 5    | -    | μJ   |
| RBSOA               | Reverse Bias Safe Operating Area          | $ \begin{array}{l} V_{PN} = 400 \; V, \; V_{DD} = V_{BS} = 15 \; V, \; I_D = (TBD), \\ V_{DS} = BV_{DSS}, \; T_J = 150^\circ C \\ High- \; and \; Low-Side \; MOSFET \; Switching \; (Note \; 6) \end{array} $ | Full Square |      |      |      |

CONTROL PART (Each HVIC Unless Otherwise Specified)

| I <sub>QDD</sub>  | Quiescent V <sub>DD</sub> Current          | $V_{DD} = 15 \text{ V}, \text{ V}_{IN} = 0 \text{ V}$                                                                | Applied between $V_{DD}$ and $COM$                                                                                                                                                                         | -   | -   | 200 | μA |
|-------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|----|
| I <sub>QBS</sub>  | Quiescent V <sub>BS</sub> Current          | V <sub>BS</sub> = 15 V, V <sub>IN</sub> = 0 V                                                                        | $\begin{array}{l} \text{Applied between } V_{B(U)} - U, \\ V_{B(V)} - V,  V_{B(W)} - W \end{array}$                                                                                                        | -   | -   | 100 | μA |
| I <sub>PDD</sub>  | Operating V <sub>DD</sub> Supply Current   | V <sub>DD</sub> – COM                                                                                                | V <sub>DD</sub> = 15 V, f <sub>PWM</sub> = 20 kHz,<br>duty = 50%, Applied to One<br>PWM Signal Input for<br>Low–Side                                                                                       | -   | -   | 900 | μΑ |
| I <sub>PBS</sub>  | Operating V <sub>BS</sub> Supply Current   | $\label{eq:states} \begin{array}{l} V_{B(U)} - V_{S(U)}, \\ V_{B(V)} - V_{S(V)}, \\ V_{B(W)} - V_{S(W)} \end{array}$ | $\label{eq:VD} \begin{split} V_{DD} &= V_{BS} = 15 \text{ V}, \\ f_{PWM} &= 20 \text{ kHz}, \\ \text{Duty} &= 50\%, \text{ Applied to} \\ \text{One PWM Signal Input} \\ \text{for High-Side} \end{split}$ | -   | -   | 800 | μΑ |
| UV <sub>DDD</sub> | Low-Side Under-Voltage Protection          | V <sub>DD</sub> Under-Voltage Protection Detection Level                                                             |                                                                                                                                                                                                            | 7.4 | 8.0 | 9.4 | V  |
| UV <sub>DDR</sub> | (Figure 8)                                 | V <sub>DD</sub> Under-Voltage Protection Reset Level                                                                 |                                                                                                                                                                                                            | 8.0 | 8.9 | 9.8 | V  |
| UV <sub>BSD</sub> | High-Side Under-Voltage Protection         | V <sub>BS</sub> Under-Voltage Protection Detection Level                                                             |                                                                                                                                                                                                            | 7.4 | 8.0 | 9.4 | V  |
| UV <sub>BSR</sub> | (Figure 9)                                 | V <sub>BS</sub> Under-Voltage Pr                                                                                     | V <sub>BS</sub> Under-Voltage Protection Reset Level                                                                                                                                                       |     | 8.9 | 9.8 | V  |
| $V_{TS}$          | HVIC Temperature Sensing Voltage<br>Output | V <sub>DD</sub> = 15 V, T <sub>HVIC</sub> = 25°C (Note 7)                                                            |                                                                                                                                                                                                            | 600 | 790 | 980 | mV |
| $V_{\text{IH}}$   | ON Threshold Voltage                       | Logic HIGH Level                                                                                                     | Applied between V <sub>IN</sub> and                                                                                                                                                                        | -   | -   | 2.9 | V  |
| V <sub>IL</sub>   | OFF Threshold Voltage                      | Logic LOW Level                                                                                                      | COM                                                                                                                                                                                                        | 0.8 | -   | -   | V  |


| $V_{\text{FB}}$  | Forward Voltage       | $I_F = 0.1 \text{ A}, T_C = 25^{\circ}C \text{ (Note 8)}$ | - | 2.5 | - | V  |
|------------------|-----------------------|-----------------------------------------------------------|---|-----|---|----|
| t <sub>rrB</sub> | Reverse Recovery Time | I <sub>F</sub> = 0.1 A, T <sub>C</sub> = 25°C             | - | 80  | - | ns |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

### **RECOMMENDED OPERATING CONDITION**

| Symbol               | Parameter                              | Conditions                                                                     | Min. | Тур. | Max.     | Unit |
|----------------------|----------------------------------------|--------------------------------------------------------------------------------|------|------|----------|------|
| V <sub>PN</sub>      | Supply Voltage                         | Applied between P and N                                                        | -    | 300  | 400      | V    |
| $V_{DD}$             | Control Supply Voltage                 | Applied between $V_{DD}$ and COM                                               | 13.5 | 15.0 | 16.5     | V    |
| $V_{BS}$             | High-Side Bias Voltage                 | Applied between $V_{B}$ and $V_{S}$                                            | 13.5 | 15.0 | 16.5     | V    |
| V <sub>IN(ON)</sub>  | Input ON Threshold Voltage             | Applied between VIN and COM                                                    | 3.0  | -    | $V_{DD}$ | V    |
| V <sub>IN(OFF)</sub> | Input OFF Threshold Voltage            |                                                                                | 0    | -    | 0.6      | V    |
| t <sub>dead</sub>    | Blanking Time for Preventing Arm-Short | $V_{DD} = V_{BS} = 13.5 16.5 \text{ V}, \text{ T}_{J} \le 150^{\circ}\text{C}$ | 1.0  | -    | -        | μs   |
| f <sub>PWM</sub>     | PWM Switching Frequency                | $T_J \le 150^{\circ}C$                                                         | -    | 15   | -        | kHz  |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.



#### Built in Bootstrap Diode V<sub>F</sub>-I<sub>F</sub> Characteristic

Figure 2. Built-in Bootstrap Diode Characteristics (Typical)

### NOTES:

- 4. BV<sub>DSS</sub> is the absolute maximum voltage rating between drain and source terminal of each MOSFET inside Motion SPM 5 product. V<sub>PN</sub> should be sufficiently less than this value considering the effect of the stray inductance so that V<sub>PN</sub> should not exceed BV<sub>DSS</sub> in any case.
- 5. t<sub>ON</sub> and t<sub>OFF</sub> include the propagation delay of the internal drive IC. Listed values are measured at the laboratory test condition, and they can be different according to the field applications due to the effect of different printed circuit boards and wirings. Please see Figure 6 for the switching time definition with the switching test circuit of Figure 7.
- 6. The peak current and voltage of each MOŠFET during the switching operation should be included in the Safe Operating Area (SOA). Please see Figure 7 for the RBSOA test circuit that is same as the switching test circuit.
- 7. Vts is only for sensing-temperature of module and cannot shutdown MOSFETs automatically.
- 8. Built in bootstrap diode includes around 15 Ω resistance characteristic. Please refer to Figure 2.

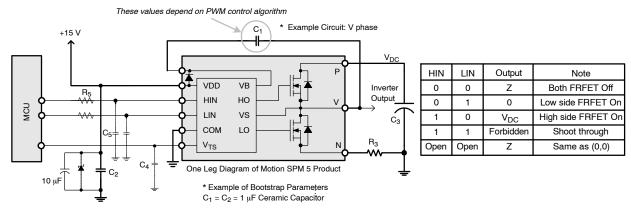



Figure 3. Recommended MCU Interface and Bootstrap Circuit with Parameters

#### NOTES:

- 9. Parameters for bootstrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching frequency, typical example of parameters is shown above.
- 10. RC-coupling (R<sub>5</sub> and C<sub>5</sub>) and C<sub>4</sub> at each input of Motion SPM 5 products and MCU (Indicated as Dotted Lines) may be used to prevent improper signal due to surge-noise.
- 11. Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge-voltage. Bypass capacitors such as C<sub>1</sub>, C<sub>2</sub> and C<sub>3</sub> should have good high-frequency characteristics to absorb high-frequency ripple-current.

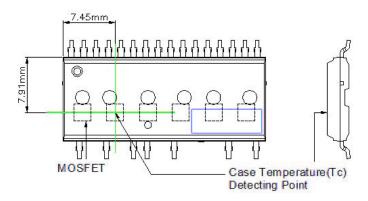



Figure 4. Case Temperature Measurement

#### NOTE:

12. Attach the thermocouple on top of the heat-sink of SPM 5 package (between SPM 5 package and heatsink if applied) to get the correct temperature measurement.

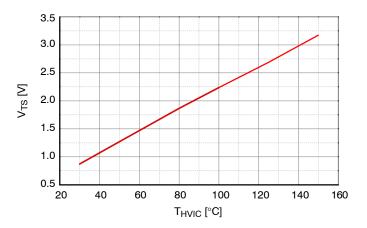



Figure 5. Temperature Profile of V<sub>TS</sub> (Typical)

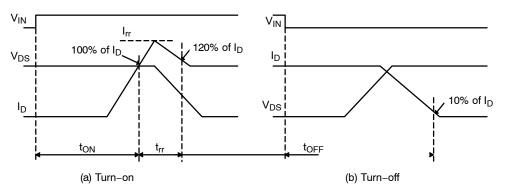
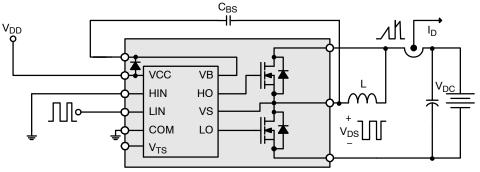




Figure 6. Switching Time Definitions



One Leg Diagram of Motion SPM 5 Product

Figure 7. Switching and RBSOA (Single-Pulse) Test Circuit (Low-Side)

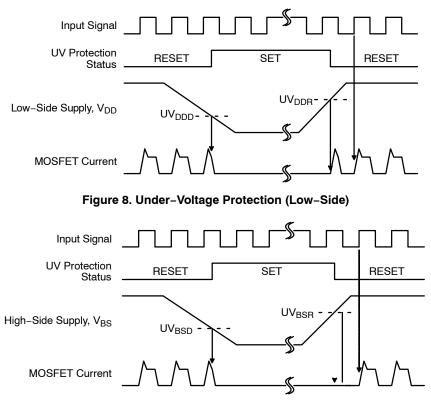



Figure 9. Under-Voltage Protection (High-Side)

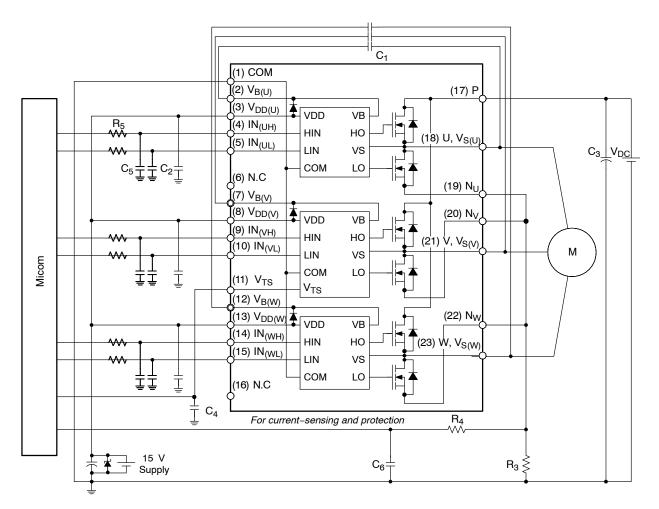


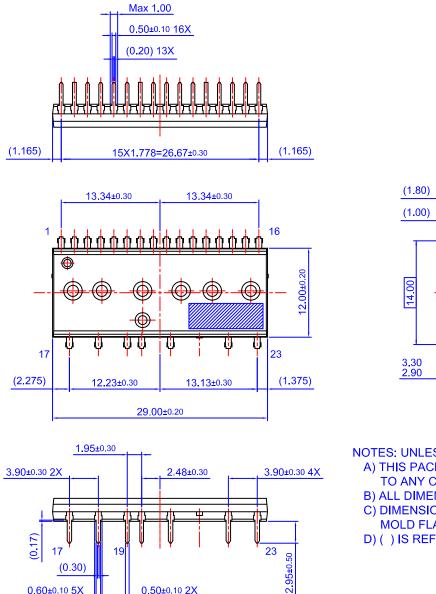

Figure 10. Example of Application Circuit

NOTES:

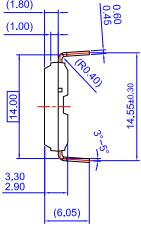
13. About pin position, refer to Figure 1.

14. RC-coupling (R<sub>5</sub> and C<sub>5</sub>, R<sub>4</sub> and C<sub>6</sub>) and C<sub>4</sub> at each input of Motion SPM 5 product and MCU are useful to prevent improper input signal caused by surge-noise.

The voltage-drop across R<sub>3</sub> affects the low-side switching performance and the bootstrap characteristics since it is placed between COM and the source terminal of the low-side MOSFET. For this reason, the voltage drop across R<sub>3</sub> should be less than 1 V in the steady-state.
Ground-wires and output terminals, should be thick and short in order to avoid surge-voltage and malfunction of HVIC.


17.All the filter capacitors should be connected close to Motion SPM 5 product, and they should have good characteristics for rejecting high-frequency ripple current.

SPM and FRFET are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.




#### SPM5E-023 / 23LD, PDD STD, FULL PACK, DIP TYPE CASE MODEJ ISSUE O

DATE 31 JAN 2017



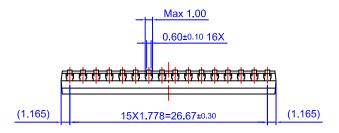
0.50±0.10 2X PIN19,20

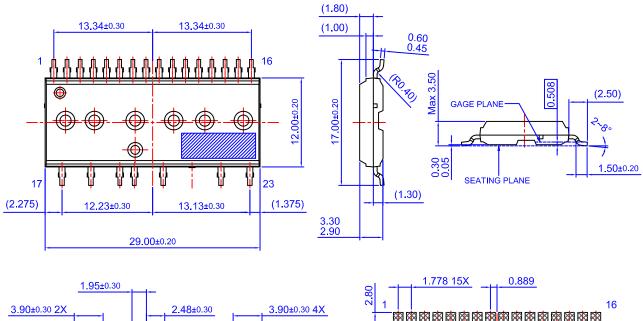


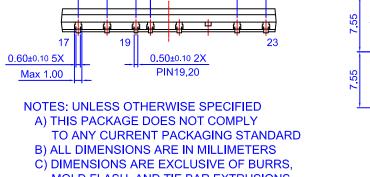
NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD **B) ALL DIMENSIONS ARE IN MILLIMETERS** C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D) () IS REFERENCE

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98AON13543G                                                | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPM5E-023 / 23LD, PDD STD, FULL PACK, DIP TYPE PAGE 1 OF 1 |                                                                                                                                                                                     | PAGE 1 OF 1 |  |
| ON Semiconductor and use are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others. |                                                            |                                                                                                                                                                                     |             |  |

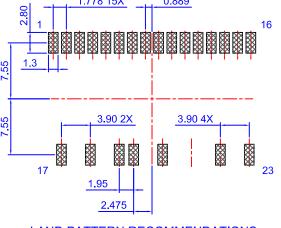
0,60±0.10 5X


Max 1.00





### SPM5H-023 / 23LD, PDD STD, SPM23-BD (Ver1.5) SMD TYPE CASE MODEM

ISSUE O


DATE 31 JAN 2017







MOLD FLASH, AND TIE BAR EXTRUSIONS D) ( ) IS REFERENCE



LAND PATTERN RECOMMENDATIONS

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98AON13546G                                                | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPM5H-023 / 23LD, PDD STD, SPM23-BD (Ver1.5) SMD TYPE PAGE |                                                                                                                                                                                     | PAGE 1 OF 1 |  |
| ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding<br>the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically<br>disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the<br>rights of others. |                                                            |                                                                                                                                                                                     |             |  |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

## **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FSB50550BL FSB50550BSL