Middle Power LED Series

 3030
LM302ACRI 90

LM302A leads lighting design trend with high performance and efficacy

Features \& Benefits

- 1 W class middle-high power LED
- EMC resin for high reliability
- Standard form factor for design flexibility
- High performance and efficacy

Table of Contents

1. Characteristics 3
2. Product Code Information 5
3. Typical Characteristics Graphs 14
4. Outline Drawing \& Dimension 18
5. Reliability Test Items \& Conditions 20
6. Soldering Conditions 21
7. Tape \& Reel 22
8. Label Structure 24
9. Packing Structure 25
10. Precautions in Handling \& Use 27
11. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Operating Temperature	Ta	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+100$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	Ti	125	${ }^{\circ} \mathrm{C}$	-
Forward Current	$I_{\text {F }}$	200	mA	-
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	${ }^{\circ} \mathrm{C}$	-
ESD (HBM)	-	5	kV	-

b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

Item	Nominal CCT (K)	Rank	Bin	Min.	Typ.	Max.	Unit
Forward Voltage (V_{F})		YB	BY	5.6	-	5.8	V
			BZ	5.8	-	6.0	
			B1	6.0	-	6.2	
			B2	6.2	-	6.4	
			B3	6.4	-	6.6	
Luminous Flux (Φ_{v})	2700	S0	S1	80.0	-	88.0	1 m
			S2	88.0	-	96.0	
	3000	S0	S1	85.0	-	93.0	
			S2	93.0	-	101.0	
	3500	S0	S1	86.8	-	94.8	
			S2	94.8	-	102.8	
	4000	S0	S1	88.6	-	96.6	
			S2	96.6	-	104.6	
	5000	S0	S1	86.8	-	94.8	
			S2	94.8	-	102.8	
	5700	S0	S1	85.0	-	93.0	
			S2	93.0	-	101.0	
	6500	S0	S1	83.2	-	91.2	
			S2	91.2	-	99.2	
Reverse Voltage (@ 5 mA)				0.7	-	1.2	V
Color Rendering Index (R_{a})				90	-	-	-
Special CRI (R9)				50	-	-	-
Thermal Resistance (junction to solder point)				-	12	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Beam Angle				-	120	-	-

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, C R I= \pm 3, R 9= \pm 6.5$

2. Product Code Information

a) Luminous Flux Bins ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

| Nominal CCT
 (K) | CRI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Min. | |

Note:

"ヶ" can be "0" (Whole bin) or "M" (Quarter bin) of the color binning
b) Color Bins ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

SIMSUNG
c) Voltage Bins ($\left.\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}\right)$

Nominal CCT (K)	CRI Min.	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
-				BY	$5.6 \sim 5.8$
				BZ	$5.8 \sim 6.0$
	-	-	YB	B1	$6.0 \sim 6.2$
				B2	$6.2 \sim 6.4$
				B3	$6.4 \sim 6.6$

d) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

d) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

Region	CIEx	CIEy	Region	CIE x	CIE y	Region	CIE X	CIEy	Region	CIE x	CIEy
		W rank	(2700 K)			V rank (3000 K)					
W1	0.4373	0.3893	W9	0.4465	0.4071	V1	0.4147	0.3814	V9	0.4221	0.3984
	0.4418	0.3981		0.4513	0.4164		0.4183	0.3898		0.4259	0.4073
	0.4475	0.3994		0.4573	0.4178		0.4242	0.3919		0.4322	0.4096
	0.4428	0.3906		0.4523	0.4085		0.4203	0.3833		0.4281	0.4006
W2	0.4428	0.3906	WA	0.4523	0.4085	V2	0.4203	0.3833	VA	0.4281	0.4006
	0.4475	0.3994		0.4573	0.4178		0.4242	0.3919		0.4322	0.4096
	0.4532	0.4008		0.4634	0.4193		0.4300	0.3939		0.4385	0.4119
	0.4483	0.3919		0.4582	0.4099		0.4259	0.3853		0.4342	0.4028
W3	0.4483	0.3919	WB	0.4582	0.4099	V3	0.4259	0.3853	VB	0.4342	0.4028
	0.4532	0.4008		0.4634	0.4193		0.4300	0.3939		0.4385	0.4119
	0.4589	0.4021		0.4695	0.4207		0.4359	0.3960		0.4449	0.4141
	0.4538	0.3931		0.4641	0.4112		0.4316	0.3873		0.4403	0.4049
W4	0.4538	0.3931	WC	0.4641	0.4112	V4	0.4316	0.3873	VC	0.4403	0.4049
	0.4589	0.4021		0.4695	0.4207		0.4359	0.3960		0.4449	0.4141
	0.4646	0.4034		0.4756	0.4221		0.4418	0.3981		0.4513	0.4164
	0.4593	0.3944		0.4700	0.4126		0.4373	0.3893		0.4465	0.4071
W5	0.4418	0.3981	WD	0.4513	0.4164	V5	0.4183	0.3898	VD	0.4259	0.4073
	0.4465	0.4071		0.4562	0.4260		0.4221	0.3984		0.4299	0.4165
	0.4523	0.4085		0.4624	0.4274		0.4281	0.4006		0.4364	0.4188
	0.4475	0.3994		0.4573	0.4178		0.4242	0.3919		0.4322	0.4096
W6	0.4475	0.3994	WE	0.4573	0.4178	V6	0.4242	0.3919	VE	0.4322	0.4096
	0.4523	0.4085		0.4624	0.4274		0.4281	0.4006		0.4364	0.4188
	0.4582	0.4099		0.4687	0.4289		0.4342	0.4028		0.4430	0.4212
	0.4532	0.4008		0.4634	0.4193		0.4300	0.3939		0.4385	0.4119
W7	0.4532	0.4008	WF	0.4634	0.4193	V7	0.4300	0.3939	VF	0.4385	0.4119
	0.4582	0.4099		0.4687	0.4289		0.4342	0.4028		0.4430	0.4212
	0.4641	0.4112		0.4750	0.4304		0.4403	0.4049		0.4496	0.4236
	0.4589	0.4021		0.4695	0.4207		0.4359	0.3960		0.4449	0.4141
W8	0.4589	0.4021	WG	0.4695	0.4207	V8	0.4359	0.3960	VG	0.4449	0.4141
	0.4641	0.4112		0.4750	0.4304		0.4403	0.4049		0.4496	0.4236
	0.4700	0.4126		0.4813	0.4319		0.4465	0.4071		0.4562	0.4260
	0.4646	0.4034		0.4756	0.4221		0.4418	0.3981		0.4513	0.4164

SIMSUNG
d) Chromaticity Region \& Coordinates

Region	CIEx	CIE y	Region	CIE x	CIE y	Region	CIE x	CIEy	Region	CIE x	CIEy
		U rank	(3500 K)			T rank (4000 K)					
U1	0.3889	0.3690	U9	0.3941	0.3848	T1	0.3670	0.3578	T9	0.3702	0.3722
	0.3915	0.3768		0.3968	0.3930		0.3726	0.3612		0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3744	0.3685		0.3782	0.3837
	0.3953	0.3720		0.4010	0.3882		0.3686	0.3649		0.3719	0.3797
U2	0.3953	0.3720	UA	0.4010	0.3882	T2	0.3726	0.3612	TA	0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3783	0.3646		0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3804	0.3721		0.3847	0.3877
	0.4017	0.3751		0.4080	0.3916		0.3744	0.3685		0.3782	0.3837
U3	0.4017	0.3751	UB	0.4080	0.3916	T3	0.3783	0.3646	TB	0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3840	0.3681		0.3887	0.3836
	0.4116	0.3865		0.4186	0.4037		0.3863	0.3758		0.3912	0.3917
	0.4082	0.3782		0.4150	0.3950		0.3804	0.3721		0.3847	0.3877
U4	0.4082	0.3782	UC	0.4150	0.3950	T4	0.3840	0.3681	TC	0.3887	0.3837
	0.4116	0.3865		0.4186	0.4037		0.3898	0.3716		0.3950	0.3875
	0.4183	0.3898		0.4259	0.4073		0.3924	0.3794		0.3978	0.3958
	0.4147	0.3814		0.4221	0.3984		0.3863	0.3758		0.3912	0.3917
U5	0.3915	0.3768	UD	0.3968	0.3930	T5	0.3686	0.3649	TD	0.3719	0.3797
	0.3941	0.3848		0.3996	0.4015		0.3744	0.3685		0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3763	0.3760		0.3802	0.3916
	0.3981	0.3800		0.4040	0.3966		0.3702	0.3722		0.3736	0.3874
U6	0.3981	0.3800	UE	0.4040	0.3966	T6	0.3744	0.3685	TE	0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3804	0.3721		0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3825	0.3798		0.3869	0.3958
	0.4048	0.3832		0.4113	0.4001		0.3763	0.376		0.3802	0.3916
U7	0.4048	0.3832	UF	0.4113	0.4001	T7	0.3804	0.3721	TF	0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3863	0.3758		0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3887	0.3836		0.3937	0.4001
	0.4116	0.3865		0.4186	0.4037		0.3825	0.3798		0.3869	0.3958
U8	0.4116	0.3865	UG	0.4186	0.4037	T8	0.3863	0.3758	TG	0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3924	0.3794		0.3978	0.3958
	0.4221	0.3984		0.4299	0.4165		0.3950	0.3875		0.4006	0.4044
	0.4183	0.3898		0.4259	0.4073		0.3887	0.3836		0.3937	0.4001

SIMSUNG
d) Chromaticity Region \& Coordinates

Region	CIEx	CIEy	Region	CIE x	CIE y
R rank (5000 K)					
R1	0.3366	0.3369	R4	0.3449	0.3515
	0.3441	0.3428		0.3527	0.3578
	0.3449	0.3515		0.3539	0.3669
	0.3369	0.3451		0.3456	0.3601
R2	0.3441	0.3428	R7	0.3363	0.3287
	0.3515	0.3487		0.3433	0.3341
	0.3527	0.3578		0.3441	0.3428
	0.3449	0.3515		0.3366	0.3369
R3	0.3369	0.3451	R8	0.3433	0.3341
	0.3449	0.3515		0.3503	0.3396
	0.3456	0.3601		0.3515	0.3487
	0.3373	0.3534		0.3441	0.3428

Region	CIE x	CIE y	Region	CIE x	CIE y
		Q rank	(5700 K)		
Q1	0.3222	0.3243	Q4	0.3293	0.3384
	0.3294	0.3306		0.3369	0.3451
	0.3293	0.3384		0.3373	0.3534
	0.3217	0.3316		0.3292	0.3461
Q2	0.3294	0.3306	Q7	0.3227	0.3170
	0.3366	0.3369		0.3295	0.3228
	0.3369	0.3451		0.3294	0.3306
	0.3293	0.3384		0.3222	0.3243
Q3	0.3217	0.3316	Q8	0.3295	0.3228
	0.3293	0.3384		0.3363	0.3287
	0.3292	0.3461		0.3366	0.3369
	0.3212	0.3389		0.3294	0.3306

d) Chromaticity Region \& Coordinates

Region	CIEx	CIE y	Region	CIEx	CIE y
		P rank	(6500 K)		
P1	0.3068	0.3113	P4	0.3135	0.3256
	0.3145	0.3187		0.3216	0.3334
	0.3135	0.3256		0.3210	0.3408
	0.3055	0.3177		0.3126	0.3324
P2	0.3145	0.3187	P7	0.3081	0.3049
	0.3221	0.3261		0.3154	0.3119
	0.3216	0.3334		0.3145	0.3187
	0.3135	0.3256		0.3068	0.3113
P3	0.3055	0.3177	P8	0.3154	0.3119
	0.3135	0.3256		0.3226	0.3188
	0.3126	0.3324		0.3221	0.3261
	0.3041	0.3240		0.3145	0.3187

Note:

Samsung maintains measurement tolerance of: Cx, Cy = ± 0.005

3. Typical Characteristics Graphs

a) Spectrum Distribution ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

CCT: 2700 K

Relative Intensity vs. Wavelength

Wavelenath (nm)

CCT: 3000 K

Relative Intensity vs. Wavelength

сст: 3500 K

Relative Intensity vs. Wavelength

CCT: 4000 K

ССТ: 5000 K

CCT: 6500 K

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

Forward Current vs. Forward Voltage

c) Temperature Characteristics $\quad\left(\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}\right)$

Relative Forward Voltage vs. Temperature

e) Derating Curve

f) Beam Angle Characteristics ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

Bottom View

1. Measurement unit: mm
2. Tolerance: $\pm 0.10 \mathrm{~mm}$
3. Do not place pressure on the encapsulation resin (a)

Recommended Land Pattern

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) T_{s} point and measurement method:
(1) Measure one point at the cathode pad. If necessary, remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.
5. Reliability Test Items and Conditions
a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample Size
Room Temperature Life Test	$25^{\circ} \mathrm{C}, \mathrm{DC} 200 \mathrm{~mA}$	1000 h	22
High Temperature Life Test	$85^{\circ} \mathrm{C}, \mathrm{DC} 200 \mathrm{~mA}$	1000 h	22
High Temperature Humidity Life Test	$85^{\circ} \mathrm{C}, 85$ \% RH, DC 200 mA	1000 h	22
Low Temperature Life Test	$-40^{\circ} \mathrm{C}, \mathrm{DC} 200 \mathrm{~mA}$	1000 h	22
Powered Temperature Cycle Test	$-45^{\circ} \mathrm{C} / 20 \mathrm{~min} \leftrightarrow 85^{\circ} \mathrm{C} / 20 \mathrm{~min}$, sweep 100 min cycle on/off: each $5 \mathrm{~min}, \mathrm{DC} 200 \mathrm{~mA}$	100 cycles	22
Thermal Cycle	$\begin{gathered} -45^{\circ} \mathrm{C} / 15 \min \leftrightarrow 125^{\circ} \mathrm{C} / 15 \mathrm{~min} \\ \rightarrow \text { Hot plate } 180^{\circ} \mathrm{C} \end{gathered}$	500 cycles	100
High Temperature Storage	$120^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storage	$-40^{\circ} \mathrm{C}$	1000 h	11
ESD (HBM)	R_{1} : $10 \mathrm{M} \Omega$ $\mathrm{R}_{2}: 1.5 \mathrm{k} \Omega$ C: 100 pF V : $\pm 5 \mathrm{kV}$	5 times	30
ESD (MM)	R_{1} : $10 M \Omega$ $\mathrm{R}_{2}: 0$ C: 200 pF V: $\pm 0.5 \mathrm{kV}$	5 times	30
Vibration Test	$20 \sim 2000 \sim 20 \mathrm{~Hz}, 200 \mathrm{~m} / \mathrm{s}^{2}$, sweep 4 min $\mathrm{X}, \mathrm{Y}, \mathrm{Z} 3$ direction, each 1 cycle	4 cycles	11
Mechanical Shock Test	$1500 \mathrm{~g}, 0.5 \mathrm{~ms}$ 3 shocks each $X-Y-Z$ axis	5 cycles	11

b) Criteria for Judging the Damage

Item	Symbol	Test Condition $\left(T_{s}=25^{\circ} \mathrm{C}\right)$	Min.	Manit

6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension
(unit: mm)

(6) $0.87 \pm 0.10(0)$

Taping Direction

b) Reel Dimension

Tolerance ± 0.2, Unit:mm

Notes:

1) Quantity: The quantity/reel is $4,000 \mathrm{pcs}$
2) Cumulative tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion strength of cover tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example
' ' ' means all kind of Chromaticity Coordinate Ranks

Bin Code:
(a) (b): Forward Voltage bin (refer to page 7)
(c)(d): Chromaticity bin (refer to page 9~12)
(e) \dagger : Luminous Flux bin (refer to page 4-5)
b) Lot Number

The lot number is composed of the following characters:

B1*1S1

SPMWHT327FD7YB $\star 0$ S0 B1 $\star 1$ S1 01

(1)(2)(3)(5)(6)(7)8(9/1 ©(b)/4,000 pcs
||
-mancy
(1)(2)(3)(4)(5)(6)(7)(8)(9)/1(a)(b)(c) $/ 4,000 \mathrm{pcs}$
(1) : Production site (S: Giheung, Korea, G: Tianjin, China)
(2) : L (LED)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (Y: 2014, Z: 2015, A: 2016, ...)
(5) : Month (1~9, A, B, C)
(6) : Day (1~9, A, B~V)
(7)(8) : P Product serial number (001~999)
(a)(b) : Reel number (001~999)

9. Packing Structure

a-1) Packing Process

$$
\begin{aligned}
& \text { Reel } \\
& \qquad \begin{array}{r}
\underline{\mathbf{B 1} \star \mathbf{S 1}} \\
\text { SPMWHT327FD7YB } \star 0 \text { S0 B1 } \star 1 S 1 \\
01
\end{array}
\end{aligned}
$$ ||IIII||| GLAV94001 / 1001 / 4,000 pcs ||| - maver

Aluminum Vinyl Packing Bag

B1*1S1

SPMWHT327FD7YB \star OS0 B1 $\star 1$ S1 01 ||| GLAV94001 / 1001 / 4,000 pcs III cantuys

Outer Box

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels
7 inch S	245 ± 5	220 ± 5	86 ± 5	Up to 5 reels

SAMSUNA

CAUTION

This bag contains MOISTURE SENSITIVE DEVICES

LEVEI
 2a

B1 *1S1

SPMWHT327FD7YB $\star 0$ S1 B1 $\star 1$ S1 01 || GLAV94001 / 1001 / 4,000 pcs ||

1. Shell life in seabed bag: 12 months at < 40 C and $<90 \%$
relative humidity (RH)
2. Peak pockage body temperature: 240 t
3. Ater this bag is opened, devices that will be subjected to reflow soldor or cher high tempenture processes must be:
a. Mounted within 672 hours at factory conditions of equal to or less than $30 \mathrm{C} / 60 \%$ RH, or
b. Stored at < 10\% RH
4. Devioes require bake, before mounting, if-
a. Humidity Indicator Card is $>/ 60 \%$ when read at 23 ± 5 ' , or
b. 2 a is not met.
5. It baking is required, devioss must be baked for $10 \sim 24$ hours at $60 \pm 5^{\circ} \mathrm{C}$

Note: I device containers cannot be subjected to high temperature or shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure,
Bag seal due date: \qquad
(I blank, see code label)
Note: Level and body temperature by IPC/JEDEC J-STD-020

ATTENTION
 necrastap भimais

주의 사향

이 알루미눔 지퍼 백은 合기 및 정전기로부터 제풍을 보호하 기 위하여 제작되었슴니다. 개봉 후에는 족시 술더 작업을 실 시하는 것을 권장합니다.
슉기 및 정진기로푸터 제품을 보호 하기 위혜서 개옹 후 사용 하지 않는 자재는 븐 젹엔 넣어 노란 하시기 바랍니다. 사용하 지 않는 자재률 본 팩에 넣을 매는 반드시 동붕된 드라이 빼 마 합께 넣고 지퍼부분을 완전하게 밀홍하여 주시기 바랍니다.

- Important

This Al Zlpper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
c) Silica Gel \& Humidity Indicator Card inside Aluminum Vinyl Bag

30%

Warning if Green Change Desiccant

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature 0~40 $\left.{ }^{\circ} \mathrm{C}, 0 \sim 90 \% \mathrm{RH}\right)$.
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30{ }^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at <10 \% RH
6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5^{\circ} \mathrm{C}$.
8) Devices must be baked for $10 \sim 24$ hours at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected
11) Risk of sulfurization (or tarnishing)

The LED from Samsung uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (Cl) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd.
Samsung Electronics Co., Ltd. is a global leader in technology,
opening new possibilities for people everywhere. Through relentless
innovation and discovery, we are transforming the worlds of
TVs, smartphones, tablets, PCs, cameras, home appliances, printers,
LTE systems, medical devices, semiconductors and LED solutions.
We employ 286,000 people across 80 countries with annual sales of US\$216.7 billion. To discover more, please visit www.samsungled.com.

Copyright © 2015 Samsung Electronics Co., Ltd. All rights reserved
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric
weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
95, Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA
www.samsungled.com

