

VOIDLESS HERMETICALLY SEALED ULTRAFAST RECOVERY GLASS RECTIFIERS

Qualified per MIL-PRF-19500/477

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This "Ultrafast Recovery" rectifier diode series is military qualified and is ideal for high-reliability applications where a failure cannot be tolerated. The industry-recognized 2.5 amp rated rectifiers with working peak reverse voltages from 50 to 150 volts are hermetically sealed with voidless glass construction using an internal "Category 1" metallurgical bond. These devices are available in both leaded and surface mount MELF package configurations. Microsemi also offers numerous other rectifier products to meet higher and lower current ratings with various recovery time requirements including standard, fast and ultrafast device types in both through-hole and surface mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 1N5802, 1N5804, 1N5806 series.
- Voidless hermetically sealed glass package.
- Quadruple-layer passivation.
- Extremely robust construction.
- Internal "Category 1" metallurgical bonds.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/477.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Ultrafast recovery 2.5 amp rectifier series from 50 to 150 V.
- Military, space and other high-reliability applications.
- Switching power supplies or other applications requiring extremely fast switching & low forward loss
- High forward surge current capability.
- · Low thermal resistance.
- Controlled avalanche with peak reverse power capability.
- Inherently radiation hard as described in Microsemi MicroNote 050.

MAXIMUM RATINGS @ T_A= 25°C unless otherwise specified

Parameters/Test Conditions	Symbol	Value	Unit	
Junction and Storage Temperature		T_J and T_{STG}	-65 to +175	°C
Thermal Resistance Junction-to-Lead (L = .3 see Figure 1	R _{OJL}	36	°C/W	
Working Peak Reverse Voltage:	1N5802 1N5804 1N5806	V _{RWM}	50 100 150	V
Forward Surge Current (3)		I _{FSM}	35	Α
Average Rectified Output Current @ T _L = +75 °C at 3/8 inch lead length ⁽¹⁾		I _{O1}	2.5	Α
Average Rectified Output-Current @ T _A = +55 °C at 3/8 inch lead length (2)		I _{O2}	1.0	Α
Capacitance $@V_R = 10 \text{ V}, f = 1 \text{ MHz}; \text{ Vsig} = 50 \text{ mV (p-p)}$		С	25	pF
Reverse Recovery Time (4)		t _{rr}	25	ns
Solder Temperature @ 10 s		T _{SP}	260	°C

Notes: 1. I_{O1} is rated at 2.5 A @ $T_L = 75$ °C at 3/8 inch lead length. Derate at 25 mA/°C for T_L above 75 °C.

- 2. I_{O2} is rated at 1.0 A @ T_A = 55 °C for PC boards where thermal resistance from mounting point to ambient is sufficiently controlled ($R_{\Theta JX}$ < 154 °C/W) where $T_{J(max)}$ 175 °C is not exceeded. Derate at 8.33 mA/°C for T_A above 55 °C.
- 3. $T_A = 25$ °C @ $I_O = 1.0$ A and V_{RWM} for ten 8.3 ms surges at 1 minute intervals.
- 4. $I_F = 0.5 \text{ A}$, $I_{RM} = 0.5 \text{ A}$, $I_{R(REC)} = .05 \text{ A}$.

Also available in:

"A" (D-5A) MELF Package

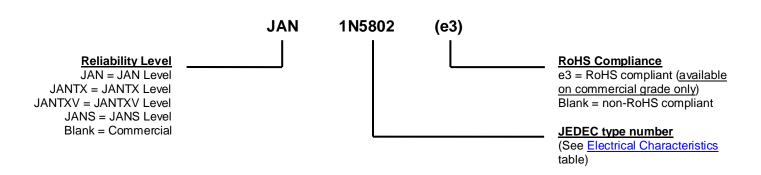
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed voidless hard glass with tungsten slugs.
- TERMINALS: Tin/lead (Sn/Pb) or RoHS compliant matte/tin (commercial grade only) over nickel plate over copper.
- MARKING: Body coated in blue with part number.
- · POLARITY: Cathode indicated by band.
- TAPE & REEL option: Standard per EIA-296. Consult factory for quantities.
- WEIGHT: 340 milligrams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
V_{BR}	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.				
V _{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature				
▼ RWM	range.				
l _o	Average Rectified Output Current: Output current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and				
I _O	a 180 degree conduction angle.				
V _F	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.				
I_R	Maximum Leakage Current: The maximum leakage current that will flow at the specified voltage and temperature.				
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.				
4	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from				
t _{rr}	the forward direction to the reverse direction and a specified recovery decay point after a peak reverse current occurs.				

ELECTRICAL CHARACTERISTICS

	BREAKDOWN VOLTAGE (MIN.)	VOL	MAXIMUM FORWARD VOLTAGE @ 8.3 ms pulse		RSE RENT XX.)	SURGE CURRENT (MAX)	REVERSE RECOVERY TIME (MAX)	THERMAL IMPEDANCE @ t _H = 10 ms
	@ 100 μA V _(BR)	V	FM	@ V	RWM R	I _{FSM} (Note 1)	t _{rr} (Note 2)	Z _{OJX} (Note 3)
TYPE	(=:-)	Vo	olts	μA		, ,	,	,
	Volts	I _F = 1.0 A	$I_F = 2.5 A$	25 °C	125 °C	Amps	ns	°C/W
1N5802	60	0.875	0.975	1	175	35	25	4.0
1N5804	110	0.875	0.975	1	175	35	25	4.0
1N5806	160	0.875	0.975	1	175	35	25	4.0

NOTES: 1. $T_A = 2.5$ °C @ $I_O = 1.0$ A and V_{RWM} for ten 8.3 ms surges at 1 minute intervals (I_{FSM} surge is also a maximum rating).

- 2. I_F = 0.5 A, I_{RM} = 0.5 A, I_{R(REC)} = .05 A (t_{rr} reverse recovery time is also a maximum rating).
- 3. For the complete thermal impedance curve over a broad range of heating times, see Figure 1.

GRAPHS

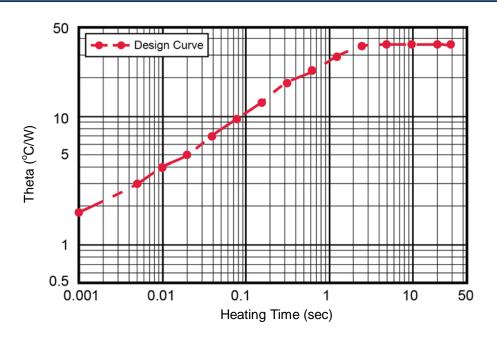


FIGURE 1

Maximum Thermal Impedance

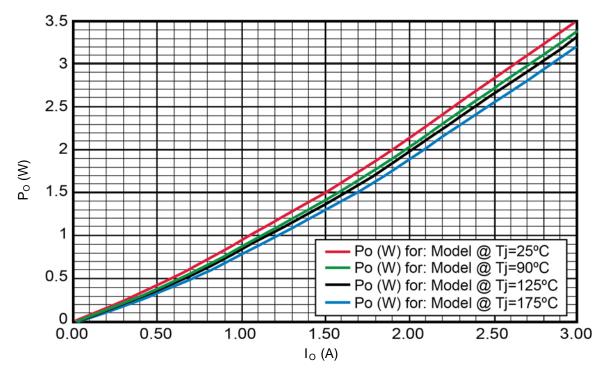


FIGURE 2
Rectifier Power vs I_O (Average Forward Current)

GRAPHS (continued)

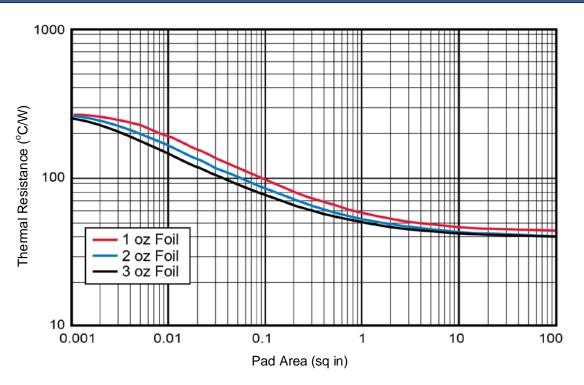


FIGURE 3

Thermal Resistance vs FR4 Pad Area At Ambient
PCB horizontal (for each pad) with 1, 2, and 3 oz copper

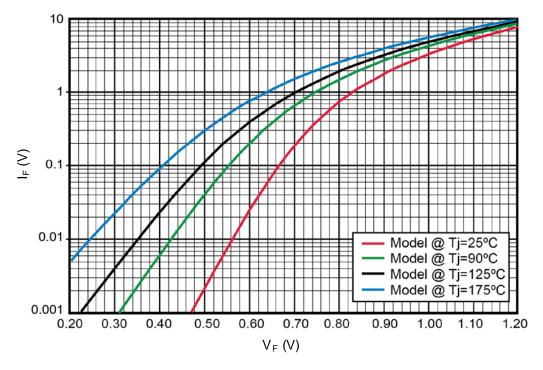
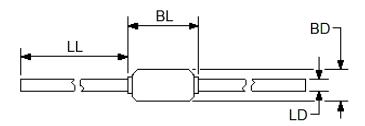



FIGURE 4
Forward Voltage vs Forward Current

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- Dimension BL shall include the entire body including slugs and sections of the lead over which the diameter is uncontrolled. This uncontrolled area is defined as the zone between the edge of the diode body and extending .050 inch (1.27 mm) onto the leads.
- 4. Dimension BD shall be measured at the largest diameter.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Ltr	Ltr INCH		MILLIM	Notes	
	Min	Max	Min	Max	
BD	.065	.085	1.65	2.16	4
BL	.125	.250	3.18	6.35	3
LD	.027	.032	0.69	0.81	3
LL	.700	1.30	17.78	33.02	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

JAN1N5802 1N5804 JANS1N5806 1N5803 JANTX1N5802 JAN1N5806 1N5806 JANS1N5804 1N5805

JANTXV1N5806 JANTXV1N5804 JANTXV1N5802 JANTX1N5804 JANS1N5802 JAN1N5804 JANTX1N5806

1N5802 1N5806/TR 1N5806e3/TR JANS1N5804/TR JANTX1N5802/TR JANTX1N5804/TR JANTX1N5806/TR

JAN1N5804/TR JANS1N5806US/TR JANS1N5802US/TR JAN1N5802/TR JAN1N5806/TR JANTXV1N5804/TR

JANTXV1N5806/TR JANS1N5806/TR 1N5804USe3/TR 1N5804e3 1N5806e3 1N5802US/TR 1N5804USe3

1N5802/TR 1N5804/TR 1N5804/TR JANTXV1N5802/TR