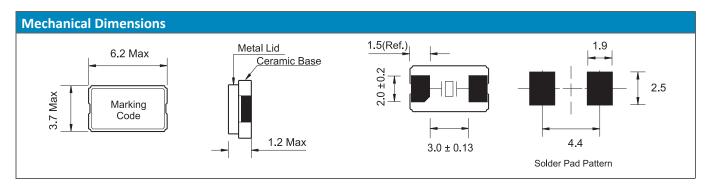


Features

- Low in height, suitable for thin equipment
- Ceramic package and metal lid assures high reliability
- Tight tolerance and stability available

Applications

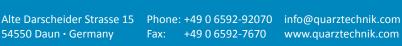

- High density applications
- Modem, communication and test equipment
- PMCIA, wireless applications
- Automotive applications

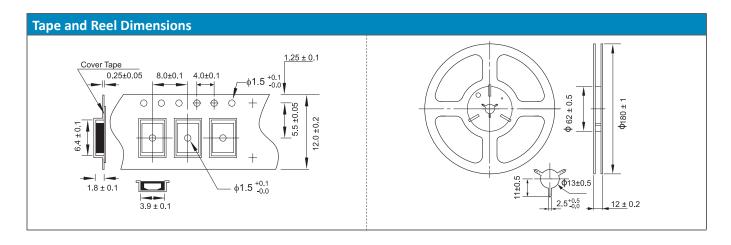
General Specifications					
Frequency Range		8.000 to 160.000MHz			
Mode of Oscillation	Fundamental	8.000 to 40.000MHz			
	Third Overtone	40.100 to 160.000MHz			
Frenquency Tolerance at 25°C		±10ppm to ±30ppm (±30ppm standard)			
Frequency Stability over Temperature Range		See Stability vs. Temperature Table			
Storage Temperature		-55°C to +125°C			
Aging per Year		±3PPM max.			
Load Capacitance C _L		10pF to 32pF and Series Resonance			
Shunt Capacitance C ₁		7.0pF max.			
Equivalent Series Resistance (ESR)		See ESR Table			
Drive Level		500 μW max.			
Insulation Resistance (M Ohm)		500 at 100Vdc ±15Vdc			

Equivalent Series Resistance (ESR)					
Frequency Range - MHz	Ohms max.	Mode of Operation			
8.000 to 12.000	80	Fundamental			
12.100 to 16.000	60				
16.100 to 40.000	40				
40.100 to 160.000	70	Third Overtone			

custom values available upon request

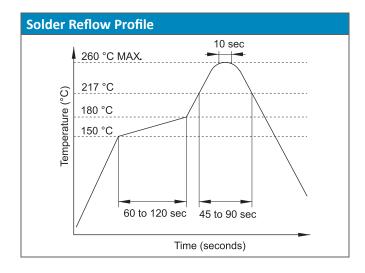
Frequency Stability vs. Temperature					
Operating Temperature	±10ppm	±20ppm	±30ppm	±50ppm	±100ppm
-20°C - +70°C	0	0	0	0	0
-40°C - +85°C	0	0	•	0	0
-40°C - +105°C	-	-	-	0	0
-40°C - +125°C	-	-	-	-	0
				• :	standard O available


Part N	Part Numbering Guide								
Quarz- technik Code	Package	Nominal Frequency (in MHz)	Vibration Mode	Load Capa- citance	Frequency Tolerance	Operating Temperature Range	Frequency Stability	Automotive Indicator	Packaging
QT = Quarz- technik	C6B = 3.5x6 2-Pad SMD	7 digits including the decimal point (f.ie. 12.0000)	F = AT-Fund	S = Series A = 8pF B = 12pF C = 16pF D = 18pF E = 20 pF	T1 = ±10ppm T2 = ±20ppm T3 = ±30ppm T5 = ±50ppm T0 = ±100ppm	C = -20 - +70°C I = -40 - +85°C E = -20 - +105°C A = -40 - +125°C	10 = ±10ppm 15 = ±15ppm 20 = ±20ppm 30 = ±30ppm 50 = ±50ppm 00 = ±100ppm	A = AEC-Q200	M = 250pcs Tape&Reel R = 1000pcs Tape&Reel B = Bulk


54550 Daun • Germany

Quartz Crystals • Oscillators • Sensor Technology

Marking Code Guide


Contains frequency, Quarztechnik manufacturing Code, production code (month and year) and load capicitance.

Month Codes					
January	Α	July	G		
February	В	August	Н		
March	С	September	I		
April	D	October	J		
May	Е	November	K		
June	F	December	L		

Year Codes						
2010	0	2011	1	2012	2	
2013	3	2014	4	2015	5	
2016	6	2017	7	2018	8	

Load Capacitance Code in pF						
pF	PN Code pF PN Code					
12	Α	16	F			
18	В	20	G			
6	С	22	Н			
8	D	30	I			
10	E	S	S			

Example: First Line: 12.000 (Frequency) Second Line: QA1A (Quarztechnik - January - 2011 - 12 pF)

Environmental Specifications				
Mechanical Shock	MIL-STD-202, Method 213, C			
Vibration	MIL-STD-202, Method 201 & 204			
Thermal Cycle	MIL-STD, Method 1010, B			
Gross Leak	MIL-STD-202, Method 112			
Fine Leak	MIL-STD-202, Method 112			

