

MCR8DCM, MCR8DCN

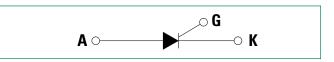
Description

Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control.

Features

- Small Size
- Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Available in Two Package Styles Surface Mount Lead Form – Case 369C
- Epoxy Meets UL 94 V–0 @ 0.125 in
- ESD Ratings: Human

Body Model, 3B > 8000 V Machine Model, C > 400 V


Po

 Pb–Free Packages are Available

Pin Out

Functional Diagram

Additional Information

Datasheet

Samples

© 2019 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 07/25/19

Maximum Ratings (T = 25°C unless otherwise noted)

C v j				
Rating		Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (– 40 to 1125°C, Sine Wave, 50 to 60 Hz, Gate Open)	MCR8DCM MCR8DCN	V _{drm} , V _{rrm}	600 800	V
On-State RMS Current (180°Conduction Angles; $T_c = 105$ °C)		I _{T (RMS)}	8.0	A
Average On–State Current (180° Conduction Angles; T _c = 105°C)		I _{T(AV)}	5.1	A
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, TJ = 110°C)		I _{TSM}	80	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	26	A ² sec
Forward Peak Gate Power (Pulse Width \leq 10 µsec, T _c = 105°C)		P _{GM}	5.0	W
Forward Average Gate Power (t = 8.3 msec, $T_c = 105^{\circ}C$)		P _{GM (AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 1.0 $\mu sec, T_c =$ 105°C)		I _{GM}	2.0	A
Operating Junction Temperature Range		TJ	-40 to 125	°C
Storage Temperature Range		T _{stg}	-40 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DBM} and V_{RBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

Rating	Symbol	Value	Unit	
Thermal Resistance, Junction-to-Case	R _{eJC}	2.2		
Thermal Resistance, Junction-to-Ambient	R _{eja}	88	°C/W	
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{eja}	80		
Maximum Device Temperature for Soldering Purposes (Note 3)	TL	260	°C	

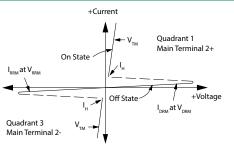
Electrical Characteristics \cdot **OFF** (T₁ = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current (Note 3)	$T_J = 25^{\circ}C$	I _{DRM} ,	-	-	0.01	~^
(V _{AK} = Rated V _{DRM} or V _{RRM} , R _{GK} = 1.0 kΩ	$T_{J} = 125^{\circ}C$	I _{RRM}	-	-	5.0	mA

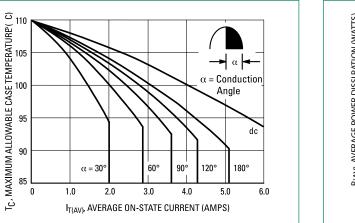
Electrical Characteristics • **ON** (T = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak On–State Voltage (Note 4) ($I_{TM} = 16 \text{ A}$)		V _{TM}	-	1.4	1.8	V
Gate Trigger Current (Continuous dc) (Note 5) ($V_{AK} = 12$ Vdc, $R_{L} = 100 \Omega$)	$(T_{J} = 25^{\circ}C)$ $(T_{J} = -40^{\circ}C)$	I _{GT}	2.0	7.0 —	15 30	μΑ
Gate Trigger Voltage (Continuous dc) ($V_D = 12 V$, $R_L = 100 \Omega$) ($V_D = 12 V$, $R_L = 100 \Omega$) (Note 5)	$(T_{J} = 25^{\circ}C)$ $(T_{J} = -40^{\circ}C)$ $(T_{J} = 125^{\circ}C)$	V _{gt}	0.5 	0.65 - -	1.0 2.0 -	V
Holding Current (V _D = 12 V, Initiating Current = 200 mA, R _{GK} = 1 kΩ)	$(T_{J} = 25^{\circ}C)$ $(T_{J} = -40^{\circ}C)$	I _H	4.0	22	30 60	mA
Latching Current (V _D = 12 V, IG = 2.0 mA, R _{GK} = 1 kΩ)	$(T_{J} = 25^{\circ}C)$ $(T_{J} = -40^{\circ}C)$	IL	4.0	22	30 60	mA

Dynamic Characteristics Characteristic Symbol Min Тур Max Unit Critical Rate of Rise of Off-State Voltage 50 V/µs dv/dt 200 _ (V_{AK} = Rated V_{DRM}, Exponential Waveform, Gate Open, T_J = 125°C) Critical Rate of Rise of On-State Current di/dt 50 A/ms _ _ (IPK = 50 A, Pw = 40 sec, diG/dt = 1 A/sec, Igt = 50 mA

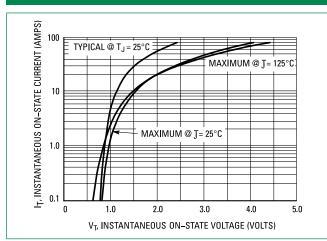

2. Surface mounted on minimum recommended pad size.

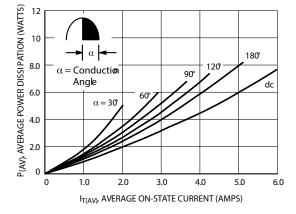
3 1/8" from case for 10 seconds.


4. Pulse Test; Pulse Width \leq 2.0 msec, Duty Cycle \leq 2%.

Voltage Current Characteristic of SCR

Symbol	Parameter		
V _{DRM}	Peak Repetitive Forward Off State Voltage		
I _{DRM}	Peak Forward Blocking Current		
V _{RRM}	Peak Repetitive Reverse Off State Voltage		
I _{RRM}	Peak Reverse Blocking Current		
V _{TM}	Maximum On State Voltage		
l _H	Holding Current		




Figure 2. On–State Power Dissipation

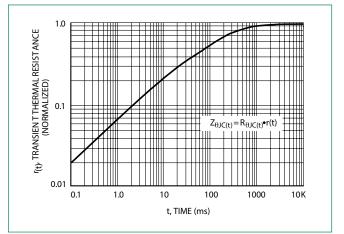

Figure 3. On–State Characteristics

Figure 1. Average Current Derating

Figure 4. Transient Thermal Response

Figure 5. Typical Gate Trigger Current vs Junction Temperature

Figure 7. Typical Holding Current vs Junction Temperature

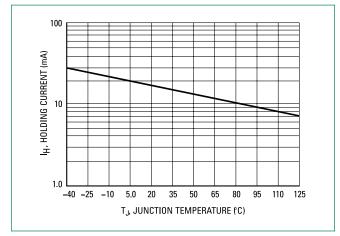


Figure 9. Exponential Static dv/dt vs Gate-Cathode Resistance

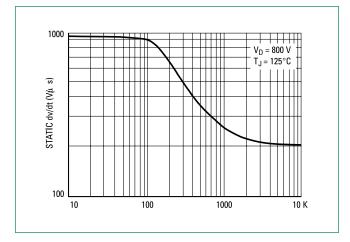
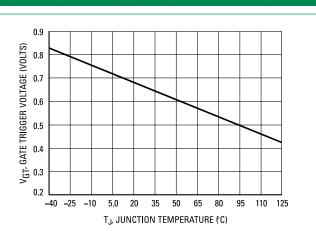
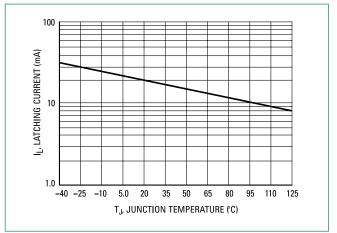




Figure 6. Typical Gate Trigger Voltage vs Junction Temperature

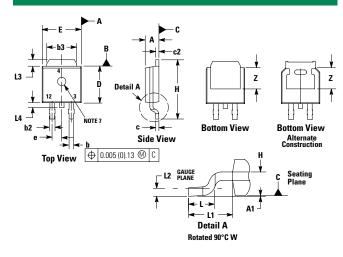
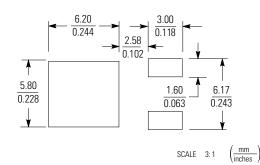
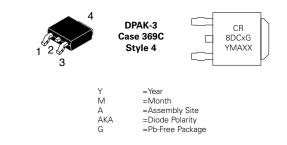


Figure 8. Typical Latching Current vs Junction Temperature

Dimensions



5.	Inc	hes	Millimeters		
Dim	Min	Мах	Min	Мах	
Α	0.087	0.094	2.20	2.40	
A1	0.000	0.005	0.00	0.12	
b	0.022	0.030	0.55	0.75	
b2	0.026	0.033	0.65	0.85	
b3	0.209	0.217	5.30	5.50	
C	0.019	0.023	0.49	0.59	
c2	0.019	0.023	0.49	0.59	
D	0.213	0.224	5.40	5.70	
E	0.252	0.260	6.40	6.60	
е	0.0	91	2.30		
н	0.374	0.406	9.50	10.30	
L	0.058	0.070	1.47	1.78	
L1	0.114		2.90		
L2	0.019	0.023	0.49	0.59	
L3	0.053	0.065	1.35	1.65	
L4	0.028	0.039	0.70	1.00	
Z	0.154	-	3.90	-	


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

Soldering Footprint

Part Marking System

Pin Assignment		
1	Cathode	
2	Anode	
3	Gate	
4	Anode	

Ordering Information				
Device	Package	Shipping		
MCR8DSMT4	DPAK			
MCR8DCMT4G	DPAK (Pb-Free)	2500 /		
MCR8DCNT4	DPAK	Tape & Reel		
MCR8DCNT4G	DPAK (Pb-Free)			

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littlefuse.com/disclaimer-electronics

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse: MCR8DCNT4G MCR8DCMT4G