

SOT23-3L

Features

٠

٠

٠

•

•

SOT323-6L

Adjustable output voltage: 1.24 V to 18 V

0.25%, 0.5%, 1% and 1.5% voltage precision

100 ppm/°C maximum temperature coefficient

Low operating current: 100 µA at 25 °C

Available in SOT23-3L, SOT23-5L and

Sink current capability up to 60 mA

-40 to +125 °C temperature range

SOT323-6L packages

Applications

Computers

TLVH431

Adjustable shunt voltage reference

Datasheet - production data

- Battery chargers
- Switch mode power supplies
- Battery operated equipment
- Data acquisition systems
- Energy management

Description

SOT23-5L

The TLVH431 is a low power adjustable shunt voltage reference, with guaranteed temperature stability over the entire operating temperature range.

The output voltage may be set to any value between 1.24 V and 18 V by means of an external resistor divider.

The TLVH431 operates with a wide current range from 100 μ A to 60 mA with a typical dynamic impedance of 0.22 Ω .

Available in SOT23-3L, SOT23-5L and SOT323-6L surface mounted packages, it can be designed in applications where space saving is a critical issue.

The low operating current is a key advantage for power restricted designs.

Table 1. Device summary				
Part number	Precision	Marking	Package	Temperature range
TLVH431AIL3T	0.5%	H43A		
TLVH431BIL3T	0.25%	H43B	SOT23-3L	
TLVH431MIL3T	1%	43L	- 50123-3L	
TLVH431LIL3T	1.5%	43L		
TLVH431AIL5T	0.5%	H43A		-40 to +125°C
TLVH431BIL5T	0.25%	H43B	SOT23-5L	-40 10 +125 0
TLVH431LIL5T	1.5%	43L		
TLVH431AICT	0.5%	H43		
TLVH431BICT	0.25%	H43	SOT323-6L	
TLVH431LICT	1.5%	43L		

Table 1 Device aummany

September 2020

DocID023303 Rev 8

This is information on a product in full production.

www.st.com

Contents

1	Pin configuration
2	Maximum ratings 4
3	Electrical characteristics
4	Typical performance characteristics
5	Package information
	5.1 SOT23-3L package information
	5.2 SOT23-5L package information 10
	5.3 SOT323-6L package information 12
6	Revision History

Pin configuration 1

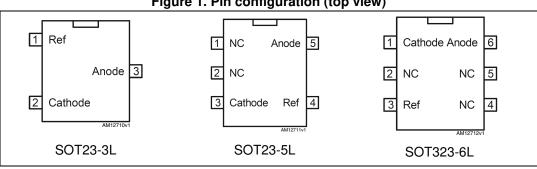


Figure 1. Pin configuration (top view)

2 Maximum ratings

Symbol	Parameter	Value	Unit
V _{KA}	Cathode to anode voltage	22	V
۱ _K	Continuous cathode current range	- 100 to +100	mA
I _{REF}	Reference input current range	- 0.05 to +3	mA
T _{STG}	Storage temperature	- 65 to +150	°C
	Human body model (HBM)	2	kV
ESD	Machine model (MM)	200	V
	Charged device model	1500	V
T _{LEAD}	Lead temperature (soldering) 10 260		°C
TJ	Max. junction temperature +150		°C

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 3. Thermal data

Symbol	Parameter	SOT323-6L	SOT23-3L	SOT23-5L	Unit
R _{thJA}	Thermal resistance junction-ambient	221	248	157	°C/W
R _{thJC}	R _{thJC} Thermal resistance junction-case		136	67	°C/W

Table 4. Operating conditions

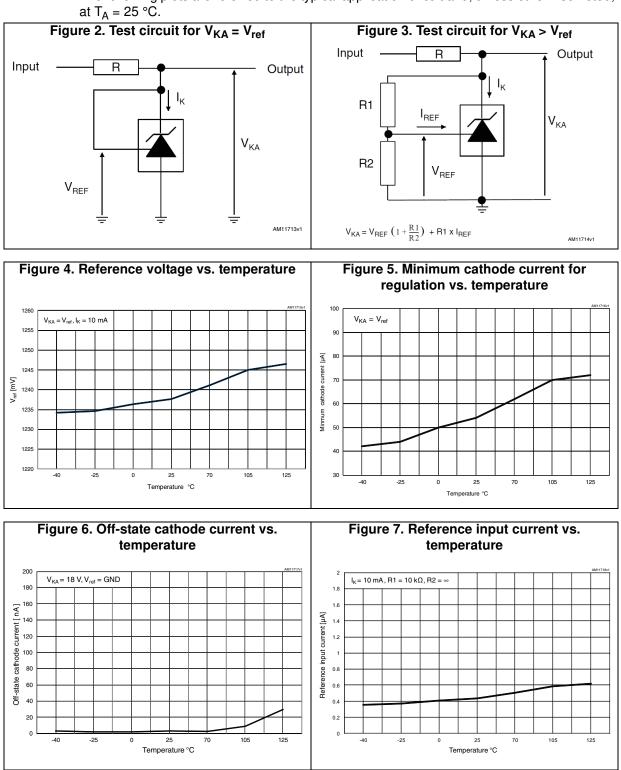
Symbol	Parameter	Value	Unit
V _{KA}	Cathode to anode voltage	V _{ref} to 18	V
I _{kmin}	Minimum operating current	100	μA
I _{kmax}	Maximum operating current	60	mA
T _{oper}	Operating free air temperature range	-40 to +125	°C

3 Electrical characteristics

 I_k = 10 mA, T_{amb} = 25 °C (unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{ref}	Reference voltage	V _{KA} = V _{ref} TLVH431A 0.5% TLVH431B 0.25% TLVH431M 1% TLVH431L 1.5%	1.234 1.237 1.227 1.222	1.24	1.246 1.243 1.253 1.258	V
ΔV_{ref}	Reference voltage variation over temperature range ⁽¹⁾	- 40 °C < T _{amb} < +125 °C TLVH431A 0.5% TLVH431B 0.25% TLVH431M 1% TLVH431L 1.5%	-26.7 -23.5 -32.8 -39		+26.7 +23.5 +32.8 +39	mV
$\Delta V_{KA} / \Delta T$	Average temperature coefficient	$V_{KA} = V_{ref,} - 40 \text{ °C} < T_{amb} < +125 \text{ °C}$		±30	±100	ppm/°C
I _{kmin}	Minimum cathode current for regulation	$V_{KA} = V_{ref}$ $V_{KA} = V_{KAmax}$		60 160	100 200	μA
ΔI_{kmin}	Minimum cathode current variation over temperature range	$V_{KA} = V_{ref}, -40 \text{ °C} < T_{amb} < +125 \text{ °C}$ $V_{KA} = V_{KAmax}, -40 \text{ °C} < T_{amb} < +125 \text{ °C}$		70 100	100 200	μA
I _{ref}	Reference input current	$R_1 = 10$ kΩ, $R_2 = \infty$		1.5	2.5	μA
ΔI_{ref}	Reference current variation over temperature range	R ₁ = 10 kΩ, R ₂ = ∞ - 40 °C < T _{amb} < + 125 °C		2.5	3.5	μA
$\frac{\Delta Vref}{\Delta Vka}$	Ratio of change in reference input voltage to change in cathode to anode voltage	ΔV_{KA} = 18 V to V _{ref} ΔV_{KA} = 18 V to V _{ref} , - 40 °C < T _{amb} < +125 °C			-2 -2.5	mV/V
I _{off}	Off-state cathode current	$V_{KA} = V_{KAmax}, V_{ref} = GND$		10	80	nA
ΔI_{off}	Off-state cathode current over temperature range	$V_{KA} = V_{KAmax}, V_{ref} = GND$ - 40 °C < T_{amb} < +125 °C		1000	2000	nA
R _{KA}	Static impedance	$V_{KA} = V_{ref,} \Delta I_{K} = 100 \ \mu A \text{ to } 60 \ mA$		0.14	0.62	W
Z _{KA}	Dynamic impedance ⁽²⁾	$V_{KA} = V_{ref,} \Delta I_{K} = 10 \text{ mA to } 60 \text{ mA}, \text{ f} \le 1 \text{ kHz}$		0.22	0.85	W
e _n	Wide band noise	I _K = 10 mA; 10 Hz < f < 100 kHz		30		mV _{RMS}
T _{ON}	Turn-on setting time	$V_{KA} = V_{ref,} \Delta I_{K} = 10 \text{ mA}$		40	70	µsec

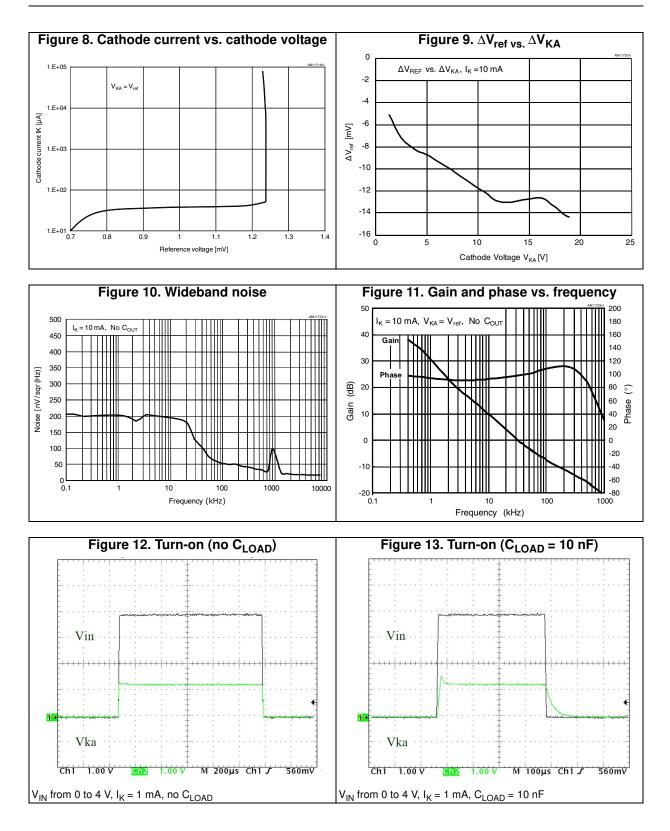
Table 5. Electrical characteristics for TLVH431


1. The tolerance values, across the temperature range, are calculated as: $\pm Vk_{25^{\circ}C} \times \{\text{tolerance}_{25^{\circ}C}+[(\text{ppm}_{max}/^{\circ}C) \times (\Delta T)]\}$. Example: TLVH431A $\Delta V_{k} = \pm 1.24 \times (0.5\% + 100 \text{ ppm}/^{\circ}C \times 165 \text{ }^{\circ}C) = \pm 1.24 \times (0.5\% + 1.65\%) = \pm 1.24 \times 2.15\% = \pm 26.7 \text{ mV}$.

2. The dynamic impedance is defined as $|Z_{KA}| = \Delta V_{KA} / \Delta I_{k.}$

Note: Limits are 100% production tested at 25 °C. Limits over the temperature range are guaranteed through correlation and by design.

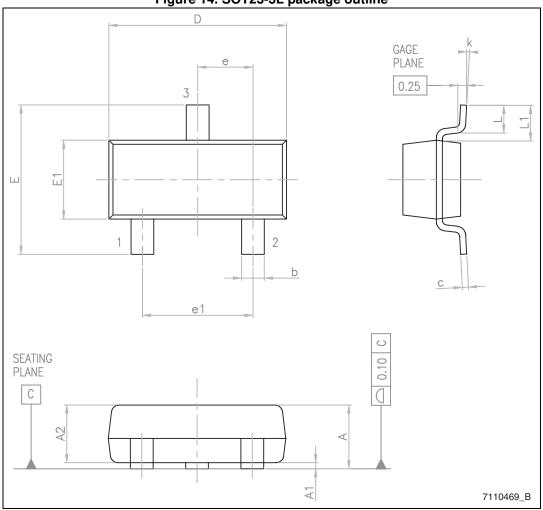
Typical performance characteristics 4

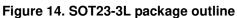


The following plots are referred to the typical application circuit and, unless otherwise noted,

6/15

DocID023303 Rev 8

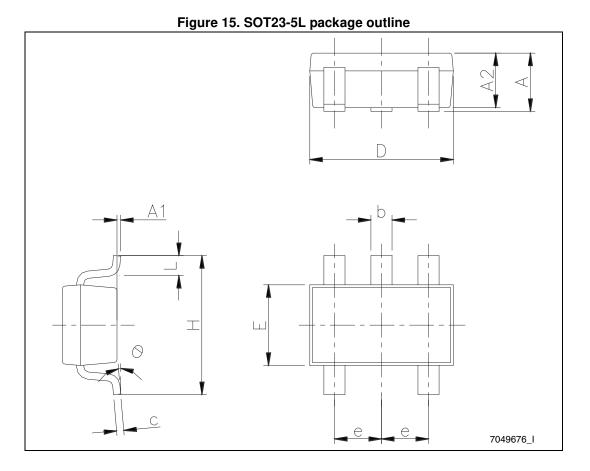




5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

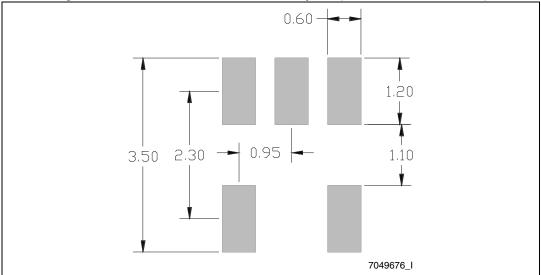
5.1 SOT23-3L package information



Dim		mm			
Dim.	Min.	Тур.	Max.		
А	0.89		1.12		
A1	0.01		0.10		
A2	0.88	0.95	1.02		
b	0.30 0.5		0.50		
с	0.08		0.20		
D	2.80 2.90		3.04		
E	2.10		2.64		
E1	1.20	1.30	1.40		
e		0.95			
e1		1.90			
L	0.40	0.50	0.60		
L1		0.54			
k	0°		8°		

Table 6. SOT23-3L mechanical data

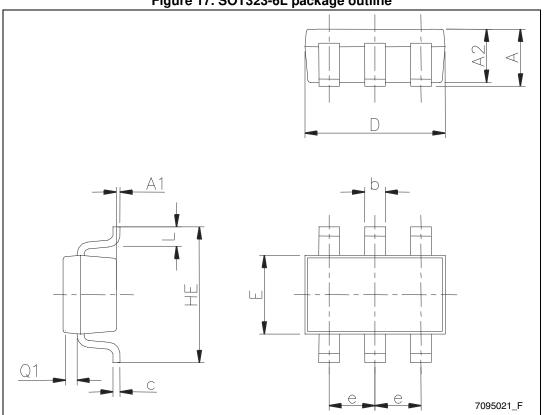
5.2 SOT23-5L package information

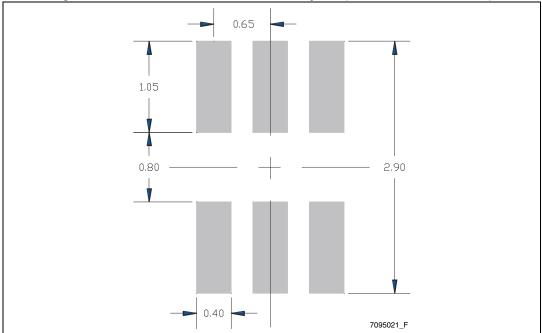


Dim.		mm				
Dini.	Min.	Тур.	Max.			
А	0.90	1.20	1.45			
A1			0.15			
A2	0.90	1.05	1.30			
b	0.35	0.40	0.50			
С	0.09	0.15	0.20			
D	2.80	2.90	3.00			
е		0.95				
E	1.50	1.60	1.75			
Н	2.60	2.80	3.00			
L	0.10	0.35	0.60			
θ	0°		10°			

Table 7. SOT23-5L mechanical data

5.3 SOT323-6L package information





Figure 17. SOT323-6L package outline

Dim	mm			
Dim.	Min.	Тур.	Max.	
А	0.80		1.10	
A1	0		0.10	
A2	0.80		1.00	
b	0.15		0.30	
С	0.10		0.18	
D	1.80		2.20	
E	1.15		1.35	
e		0.65		
HE	1.80		2.40	
L	0.10		0.40	
Q1	0.10		0.40	

Table 8. SOT323-6L mechanical data

6 Revision History

Date	Revision	Changes
13-Jun-2012	1	Initial release.
23-Jan-2014	2	Updated the Features in cover page, Table 1: Device summary and Table 5: Electrical characteristics for TLVH431. Minor text changes.
28-Jan-2014	3	Updated the min. value of Vref in Table 5: Electrical characteristics for TLVH431.
24-Mar-2015	4	Updated Table 7: SOT23-5L mechanical data. Minor text changes.
23-Nov-2015	5	Updated features in cover page, Table 1: Device summary and Table 5: Electrical characteristics for TLVH431. Minor text changes.
05-Dec-2017	6	Updated title on the cover page.
07-Jul-2020	7	Updated footnote in <i>Table 5</i> .
18-Sep-2020	8	Added Marking in <i>Table 1: Device summary</i> on the cover page.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to *www.st.com/trademarks*. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DocID023303 Rev 8