
Adafruit DS3231 Precision RTC Breakout
Created by lady ada

Last updated on 2021-08-04 02:36:08 PM EDT

2
3
8
8
9
9

10
10
10
11
13
13
14
15
16
18
18
20
20
24
25
25
25
26

Guide Contents

Guide Contents
Overview
Pinouts

Power Pins:
I2C Logic pins:
Other Pins:

Assembly
Prepare the header strip:
Add the breakout board:
And Solder!

Arduino Usage
Download RTCLib
First RTC Test
Load Demo

Reading the Time
CircuitPython

CircuitPython Wiring
CircuitPython Library Installation
CircuitPython Usage

Python Docs
Downloads
Datasheets &c
Schematic and Fab Print for STEMMA QT Version
Schematic and Fab Print for Original Version

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 2 of 28

Overview

The datasheet for the DS3231 explains that this part is an "Extremely Accurate I²C-Integrated

RTC/TCXO/Crystal". And, hey, it does exactly what it says on the tin! This Real Time Clock (RTC) is the

most precise you can get in a small, low power package.

We've had a breakout board version of this RTC for a while (https://adafru.it/sd6), but we want to make it

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 3 of 28

https://www.adafruit.com/product/3013

even easier for folks to use, so now it comes with STEMMA QT connectors for plug-and-play simplicity.

Most RTC's use an external 32kHz timing crystal that is used to keep time with low current draw. And

that's all well and good, but those crystals have slight drift, particularly when the temperature changes (the

temperature changes the oscillation frequency very very very slightly but it does add up!) This RTC is in a

beefy package because the crystal is inside the chip! And right next to the integrated crystal is a

temperature sensor. That sensor compensates for the frequency changes by adding or removing clock

ticks so that the timekeeping stays on schedule

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 4 of 28

This is the finest RTC you can get, and now we have it in a compact, breadboard-friendly breakout. With a

coin cell plugged into the back, you can get years of precision timekeeping, even when main power is

lost. Great for datalogging and clocks, or anything where you need to really know the time.

To make life easier so you can focus on your important work, we've taken the sensor and put it onto a

breakout PCB along with support circuitry to let you use it with 3.3V (Feather/Raspberry Pi) or 5V

(Arduino/ Metro328) logic levels. Additionally, since it speaks I2C you can easily connect it up with two

wires (plus power and ground!). We've even included SparkFun

qwiic (https://adafru.it/Fpw) compatible STEMMA QT (https://adafru.it/Ft4) connectors for the I2C bus

so you don't even need to solder! QT Cable is not included , but we have a variety in the

shop (https://adafru.it/JnB). Just wire up to your favorite micro and you can use our CircuitPython/Python

or Arduino drivers (https://adafru.it/IFR) to easily interface with the DS3231.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 5 of 28

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://github.com/adafruit/Adafruit_DPS310

Comes as a fully assembled and tested breakout plus a small piece of header. You can solder header in to

plug it into a breadboard, or solder wires directly.

A coin cell is required to use the battery-backup capabilities! We don't include one by default, to make

shipping easier for those abroad, but we do stock them so pick one up or use any CR1220 you have

handy. (http://adafru.it/380)

There are two versions of this board - the STEMMA QT version shown above (the black PCB), and

the original header-only version shown below (the blue PCB). Code works the same on both!
�

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 6 of 28

https://www.adafruit.com/products/380

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 7 of 28

Pinouts

Power Pins:

Vin - this is the power pin. Since the RTC can be powered from 2.3V to 5.5V power, you do not need

a regulator or level shifter for 3.3V or 5V logic/power. To power the board, give it the same power as

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 8 of 28

the logic level of your microcontroller - e.g. for a 5V micro like Arduino, use 5V

GND - common ground for power and logic

I2C Logic pins:

SCL - I2C clock pin, connect to your microcontrollers I2C clock line. This pin has a 10K pullup resistor

to Vin

SDA - I2C data pin, connect to your microcontrollers I2C data line. This pin has a 10K pullup resistor

to Vin

STEMMA QT (https://adafru.it/Ft4) - On the STEMMA QT version only! These connectors allow you

to connect to development boards with STEMMA QT connectors, or to other things, with various

associated accessories (https://adafru.it/Ft6).

Other Pins:

BAT - this is the same connection as the positive pad of the battery. You can use this if you want to

power something else from the coin cell, or provide battery backup from a different separate batery.

VBat can be between 2.3V and 5.5V and the DS3231 will switch over when main Vin power is lost

32K - 32KHz oscillator output. Open drain, you need to attach a pullup to read this signal from a

microcontroller pin

SQW - optional square wave or interrupt output. Open drain, you need to attach a pullup to read this

signal from a microcontroller pin

RST - This one is a little different than most RST pins, rather than being just an input, it is designed to

be used to reset an external device or indicate when main power is lost. Open drain, but has an

internal 50K pullup. The pullup keeps this pin voltage high as long as Vin is present. When Vin drops

and the chip switches to battery backup, the pin goes low.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 9 of 28

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204

Assembly

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

Add the breakout board:
Place the breakout board over the pins so that the short

pins poke through the breakout pads

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 10 of 28

https://learn.adafruit.com//assets/30340
https://learn.adafruit.com//assets/30341

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to

Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 11 of 28

https://learn.adafruit.com//assets/30342
https://learn.adafruit.com//assets/30343
https://learn.adafruit.com//assets/30344
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints visually and

continue onto the next steps

Don't forget that the Real Time Clock requires a battery

backup. A CR1220 size battery goes in the back, make

sure the + symbol on the battery is visible when you

insert!

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 12 of 28

https://learn.adafruit.com//assets/30345
https://learn.adafruit.com//assets/30346
https://learn.adafruit.com//assets/30347

Arduino Usage

You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For another kind of

microcontroller, just make sure it has I2C, then port the code - its pretty simple stuff!

Connect Vin (red wire) to the power supply, 3-5V is

fine. Use the same voltage that the microcontroller

logic is based off of. For most Arduinos, that is 5V

Connect GND (black wire) to common power/data

ground

Connect the SCL (yellow wire) pin to the I2C clock

SCL pin on your Arduino. On an UNO & '328 based

Arduino, this is also known as A5, on a Mega it is

also known as digital 21 and on a Leonardo/Micro,

digital 3

Connect the SDA (blue wire) pin to the I2C data

SDA pin on your Arduino. On an UNO & '328 based

Arduino, this is also known as A4, on a Mega it is

also known as digital 20 and on a Leonardo/Micro,

digital 2

The DS3231 has a default I2C address of 0x68 and cannot be changed

Download RTCLib

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 13 of 28

https://learn.adafruit.com//assets/103730
https://learn.adafruit.com//assets/103731
https://learn.adafruit.com//assets/103732

For the RTC library, we'll be using a fork of JeeLab's excellent RTC library RTClib (https://adafru.it/aX2)- a

library for getting and setting time from an RTC (originally written by JeeLab, our version is slightly

different so please only use ours to make sure its compatible!)

To begin reading data, you will need to download Adafruit's RTCLib from the Arduino library manager.

Open up the Arduino library manager:

Search for the RTCLib library and install the one by Adafruit

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

First RTC Test
The first thing we'll demonstrate is a test sketch that will read the time from the RTC once per second.

We'll also show what happens if you remove the battery and replace it since that causes the RTC to halt.

So to start, remove the battery from the holder while the Arduino is not powered or plugged into USB.

Wait 3 seconds and then replace the battery. This resets the RTC chip.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 14 of 28

http://github.com/adafruit/RTClib
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Load Demo
Open up File->Examples->RTClib->ds3231 and upload to your Arduino wired up to the RTC

Upload to your Arduino and check the serial console @ 9600 baud. After a few seconds, you'll see the

report that the Arduino noticed this is the first time the DS3231 has been powered up, and will set the time

based on the Arduino sketch.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 15 of 28

Unplug your Arduino plus RTC for a few seconds (or minutes, or hours, or weeks) and plug back in.

Next time you run it you won't get the same "RTC lost power" message, instead it will come immediately

and let you know the correct time!

From now on, you wont have to ever set the time again: the battery will last 5 or more years.

Reading the Time

Now that the RTC is merrily ticking away, we'll want to query it for the time. Lets look at the sketch again

to see how this is done.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 16 of 28

void loop () {
 DateTime now = rtc.now();

 Serial.print(now.year(), DEC);
 Serial.print('/');
 Serial.print(now.month(), DEC);
 Serial.print('/');
 Serial.print(now.day(), DEC);
 Serial.print(" (");
 Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);
 Serial.print(") ");
 Serial.print(now.hour(), DEC);
 Serial.print(':');
 Serial.print(now.minute(), DEC);
 Serial.print(':');
 Serial.print(now.second(), DEC);
 Serial.println();

There's pretty much only one way to get the time using the RTClib, which is to call now(), a function that

returns a DateTime object that describes the year, month, day, hour, minute and second when you called

now().

There are some RTC libraries that instead have you call something like RTC.year() and RTC.hour() to get

the current year and hour. However, there's one problem where if you happen to ask for the minute right

at 3:14:59 just before the next minute rolls over, and then the second right after the minute rolls over (so

at 3:15:00) you'll see the time as 3:14:00 which is a minute off. If you did it the other way around you could

get 3:15:59 - so one minute off in the other direction.

Because this is not an especially unlikely occurrence - particularly if you're querying the time pretty often -

we take a 'snapshot' of the time from the RTC all at once and then we can pull it apart into day() or

second() as seen above. Its a tiny bit more effort but we think its worth it to avoid mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which counts the number of

seconds (not counting leapseconds) since midnight, January 1st 1970

 Serial.print(" since midnight 1/1/1970 = ");
 Serial.print(now.unixtime());
 Serial.print("s = ");
 Serial.print(now.unixtime() / 86400L);
 Serial.println("d");

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since then as well. This

might be useful when you want to keep track of how much time has passed since the last query, making

some math a lot easier (like checking if its been 5 minutes later, just see if unixtime() has increased by

300, you dont have to worry about hour changes).

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 17 of 28

CircuitPython

It's easy to use the DS3231 RTC with CircuitPython too! There's a handy Adafruit CircuitPython DS3231

module (https://adafru.it/C4w) you can load on a board and get started setting and reading the time with

Python code!

CircuitPython Wiring

First wire up the DS3231 to your board as shown on the previous Arduino page. The DS3231 uses a

simple I2C connection with:

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 18 of 28

https://github.com/adafruit/Adafruit_CircuitPython_DS3231

Vin (red wire) connected to your board's 3.3V or 5V

output.

GND (black wire) connected to your board's ground.

SCL (yellow wire) connected to your board's I2C

SCL / clock line.

SDA (blue wire) connected to your board's I2C SDA

/ data line.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 19 of 28

https://learn.adafruit.com//assets/103734
https://learn.adafruit.com//assets/103735
https://learn.adafruit.com//assets/103736

CircuitPython Library Installation

You'll also need to install the Adafruit CircuitPython DS3231 (https://adafru.it/C4w) library on your

CircuitPython board. Remember this module is for Adafruit CircuitPython firmware and not

MicroPython.org firmware!

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/tBa) for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find

and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). For example

the Circuit Playground Express guide has a great page on how to install the library

bundle (https://adafru.it/C9M) for both express and non-express boards.

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/Metro M0 basic you'll

need to manually install the necessary libraries from the bundle:

adafruit_ds3231.mpy

adafruit_bus_device

adafruit_register

Before continuing make sure your board's lib folder or root filesystem has the adafruit_ds3231.mpy,

adafruit_bus_device, and adafruit_register files and folders copied over.

CircuitPython Usage

Next connect to the board's serial REPL (https://adafru.it/pMf)so you are at the CircuitPython >>> prompt.

Then import the necessary board module to initialize the I2C bus:

import board
i2c = board.I2C()

Note on some boards like the ESP8266 that don't have a hardware I2C interface you might need to

instead import and use the bitbangio module, like:

import board
import bitbangio
i2c = bitbangio.I2C(board.SCL, board.SDA)

Now import the DS3231 module and create an instance of the DS3231 class using the I2C interface

created above:

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 20 of 28

https://github.com/adafruit/Adafruit_CircuitPython_DS3231
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/adafruit-circuit-playground-express/circuitpython-libraries
file:///micropython-basics-how-to-load-micropython-on-a-board/serial-terminal

 import adafruit_ds3231
ds3231 = adafruit_ds3231.DS3231(i2c)

At this point you're read to read and even set the time of the clock. You just need to interact with the

datetime property of the DS3231 instance. For example to read it you can run:

ds3231.datetime

Notice the time is returned as a special Python time structure (https://adafru.it/C4x). This is from the time

module in Python and it has properties like:

tm_year - The year of the timestamp

tm_mon - The month of the timestamp

tm_mday - The day of the month of the timestamp

tm_hour - The hour of the timestamp

tm_min - The minute of the timestamp

tm_sec - The second of the timestamp

tm_wday - The day of the week (0 = Monday, 6 = Sunday)

tm_yday - The day within the year (1-366)

tm_isdst - 0 if not in daylight savings, 1 if in savings, and -1 if unknown

Also notice if the time hasn't been set it defaults to a value of January 1st, 2000 (wow Y2K retro!).

You can write to the datetime property to set the time of the clock, for example to set it to January 1st,

2017, at midnight local time you could run:

import time
ds3231.datetime = time.struct_time((2017, 1, 1, 0, 0, 0, 6, 1, -1))

Notice the parameters to the struct_time initializer, you must pass in a tuple of all the values listed above.

Now if you read the datetime property you'll see the clock is running from the set time. For example if

you want to read and print out just the year, month, day, hour, minute, and second you could run:

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 21 of 28

https://docs.python.org/3/library/time.html#time.struct_time

current = ds3231.datetime
print('The current time is: {}/{}/{} {:02}:{:02}:{:02}'.format(current.tm_mon, current.tm_mday,
current.tm_year, current.tm_hour, current.tm_min, current.tm_sec))

That's all there is to using the DS3231 with CircuitPython! Simply import the DS3231 module, create an

instance of the class, and interact with its datetime property to set and get the time!

Here's a complete example program you can save as main.py on your board and see the time and date

printed every second to the REPL:

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 22 of 28

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple demo of reading and writing the time for the DS3231 real-time clock.
Change the if False to if True below to set the time, otherwise it will just
print the current date and time every second. Notice also comments to adjust
for working with hardware vs. software I2C.

import time
import board
import adafruit_ds3231

i2c = board.I2C() # uses board.SCL and board.SDA
rtc = adafruit_ds3231.DS3231(i2c)

Lookup table for names of days (nicer printing).
days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")

pylint: disable-msg=using-constant-test
if False: # change to True if you want to set the time!
 # year, mon, date, hour, min, sec, wday, yday, isdst
 t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))
 # you must set year, mon, date, hour, min, sec and weekday
 # yearday is not supported, isdst can be set but we don't do anything with it at this time
 print("Setting time to:", t) # uncomment for debugging
 rtc.datetime = t
 print()
pylint: enable-msg=using-constant-test

Main loop:
while True:
 t = rtc.datetime
 # print(t) # uncomment for debugging
 print(
 "The date is {} {}/{}/{}".format(
 days[int(t.tm_wday)], t.tm_mday, t.tm_mon, t.tm_year
)
)
 print("The time is {}:{:02}:{:02}".format(t.tm_hour, t.tm_min, t.tm_sec))
 time.sleep(1) # wait a second

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 23 of 28

Python Docs
Python Docs (https://adafru.it/C4y)

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 24 of 28

https://circuitpython.readthedocs.io/projects/ds3231/en/latest/

Downloads

Datasheets &c
Maxim product page for the DS3231 (https://adafru.it/ldy)

Datasheet (https://adafru.it/ldA)

EagleCAD PCB files on GitHub (https://adafru.it/ohE)

Fritzing object available in the Adafruit Fritzing Library (https://adafru.it/aP3)

Schematic and Fab Print for STEMMA QT Version

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 25 of 28

https://www.maximintegrated.com/en/products/digital/real-time-clocks/DS3231.html
https://www.adafruit.com/images/product-files/3013/DS3231.pdf
https://github.com/adafruit/Adafruit-DS3231-Precision-RTC-Breakout-PCB
https://github.com/adafruit/Fritzing-Library

Schematic and Fab Print for Original Version

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 26 of 28

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 27 of 28

© Adafruit Industries Last Updated: 2021-08-04 02:36:08 PM EDT Page 28 of 28

	Guide Contents
	Overview
	Pinouts
	Power Pins:
	I2C Logic pins:
	Other Pins:

	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Arduino Usage
	Download RTCLib
	First RTC Test
	Load Demo
	Reading the Time

	CircuitPython
	CircuitPython Wiring
	CircuitPython Library Installation
	CircuitPython Usage

	Python Docs
	Downloads
	Datasheets &c
	Schematic and Fab Print for STEMMA QT Version
	Schematic and Fab Print for Original Version

