

4 x 51 W quad bridge car radio amplifier

Datasheet - production data

Features

- Superior output power capability:
 - 4 x 51 W/4 Ω max.
 - 4 x 45 W/4 Ω EIAJ
 - 4 x 30 W/4 Ω @ 14.4 V, 1 kHz, 10 %
 - 4 x 80 W/2 Ω max.
 - 4 x 77 W/2 Ω EIAJ
 - 4 x 55 W/2 Ω @ 14.4 V, 1 kHz, 10 %
- Multipower BCD technology
- MOSFET output power stage
- \blacksquare Excellent 2 Ω driving capability
- Hi-Fi class distortion
- Low output noise
- Standby function
- Mute function
- Automute at min. supply voltage detection
- Low external component count:
 - Internally fixed gain (26 dB)
 - No external compensation
 - No bootstrap capacitors
- On board 0.35 A high side driver
- Protections:
 - Output short circuit to GND, to V_S, across the load
 - Very inductive loads

Flexiwatt25 (vertical)

Flexiwatt25 (horizontal)

- Overrating chip temperature with soft thermal limiter
- Output DC offset detection
- Load dump voltage
- Fortuitous open GND
- Reversed battery
- ESD

Description

The TDA7560 is a breakthrough BCD (Bipolar / CMOS / DMOS) technology class AB audio power amplifier in Flexiwatt 25 package designed for high power car radio.

The fully complementary P-Channel/N-Channel output structure allows a rail to rail output voltage swing which, combined with high output current and minimized saturation losses sets new power references in the car-radio field, with unparalleled distortion performances.

Table 1. Device summary

This is information on a product in full production.

Order code	Package	Packing
TDA7560	Flexiwatt25 (vertical)	Tube
TDA7560H	Flexiwatt25 (horizontal)	Tube

Contents TDA7560

Contents

1	Bloc	k and pin connection diagram
2	Elec	trical specifications 6
	2.1	Absolute maximum ratings 6
	2.2	Thermal data 6
	2.3	Electrical characteristics 6
	2.4	Standard test and application circuit, and PCB layout
	2.5	Electrical characteristics curves
3	Арр	lication hints
	3.1	SVR 13
	3.2	Input stage 13
	3.3	Standby and muting
	3.4	DC offset detector
	3.5	Heatsink definition
4	Pack	rage information
5	Revi	sion history

TDA7560 List of tables

List of tables

	Device summary	
Table 2.	Absolute maximum ratings	6
Table 3.	Thermal data	6
Table 4.	Electrical characteristics	6
Table 5.	Document revision history	6

List of figures TDA7560

List of figures

Block diagram	5
Standard test and application circuit	
PCB and component layout of the Figure 3	. 9
Quiescent current vs. supply voltage	10
Output power vs. supply voltage ($R_L = 4\Omega$)	10
Output power vs. supply voltage ($R_L = 2\Omega$)	10
Distortion vs. output power ($R_L = 4\Omega$)	10
Distortion vs. output power ($R_L = 2\Omega$)	10
Distortion vs. frequency ($R_L = 4\Omega$)	10
Distortion vs. frequency ($R_L = 2\Omega$)	. 11
Crosstalk vs. frequency	
Supply voltage rejection vs. frequency	. 11
Output attenuation vs. supply voltage	. 11
Output noise vs. source resistance	. 11
Power dissipation and efficiency vs. output power (sine-wave operation)	11
Power dissipation vs. output power (music/speech simulation); $R_L = 4 \times 4\Omega$.12
Power dissipation vs. output power (music/speech simulation); $R_L = 4 \times 2\Omega$.12
ITU R-ARM frequency response, weighting filter for transient pop	12
Flexiwatt25 (vertical) mechanical data and package dimensions	
Flexiwatt25 (horizontal) mechanical data and package dimensions	15
	PCB and component layout of the <i>Figure 3</i> . Quiescent current vs. supply voltage Output power vs. supply voltage ($R_L = 4\Omega$). Output power vs. supply voltage ($R_L = 2\Omega$). Distortion vs. output power ($R_L = 4\Omega$). Distortion vs. output power ($R_L = 2\Omega$). Distortion vs. frequency ($R_L = 2\Omega$). Distortion vs. frequency ($R_L = 2\Omega$). Crosstalk vs. frequency Supply voltage rejection vs. frequency Output attenuation vs. supply voltage. Output noise vs. source resistance. Power dissipation and efficiency vs. output power (sine-wave operation). Power dissipation vs. output power (music/speech simulation); $R_L = 4 \times 4\Omega$. Power dissipation vs. output power (music/speech simulation); $R_L = 4 \times 2\Omega$. ITU R-ARM frequency response, weighting filter for transient pop. Flexiwatt25 (vertical) mechanical data and package dimensions.

1 Block and pin connection diagram

Figure 1. Block diagram

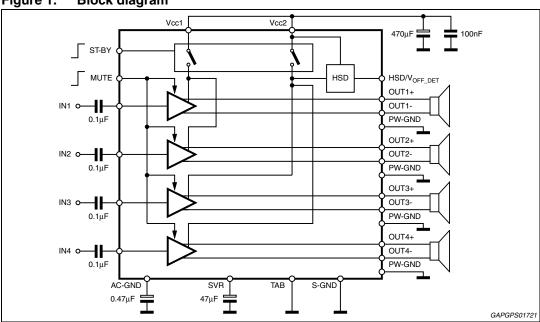
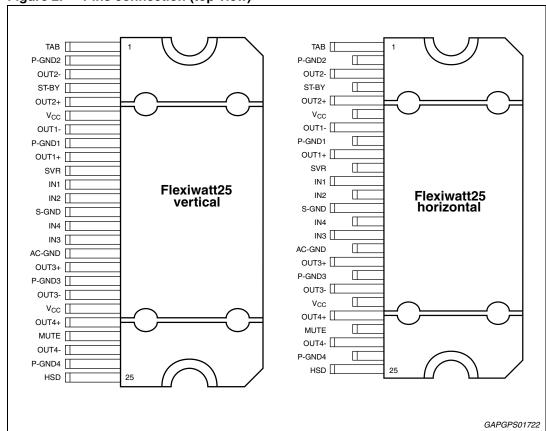



Figure 2. Pins connection (top view)

577

Doc ID 6886 Rev 6

2 Electrical specifications

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Operating supply voltage	18	V
V _{CC (DC)}	DC supply voltage	28	V
V _{CC (pk)}	Peak supply voltage (for t = 50 ms)	50	V
I _O	Output peak current Repetitive (duty cycle 10 % at f = 10 Hz) Non repetitive (t = 100 µs)	9 10	A A
P _{tot}	Power dissipation T _{case} = 70 °C	80	W
T _j	Junction temperature	150	°C
T _{stg}	Storage temperature	-55 to 150	°C

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal resistance junction-to-case Max.	1	°C/W

2.3 Electrical characteristics

Refer to the test and application diagram, V_S = 14.4 V; R_L = 4 Ω ; R_g = 600 Ω ; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified.

Table 4. Electrical characteristics

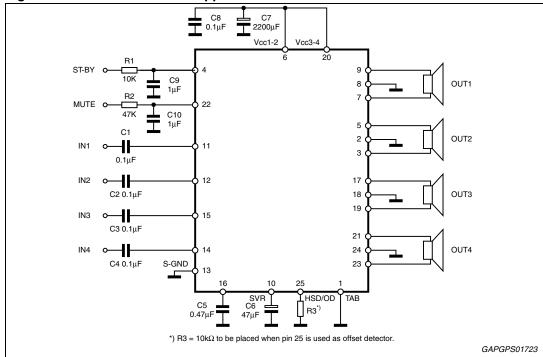
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{q1}	Quiescent current	$R_L = \infty$	80	200	320	mA
V _{OS}	Output offset voltage	Play Mode	-	-	±50	mV
dV _{OS}	During mute ON/OFF output offset voltage	-	-	-	±60	mV
G _v	Voltage gain	-	25	26	27	dB
dG _v	Channel gain unbalance	-	-	-	±1	dB
P _o	Output power	V_S = 13.2 V; THD = 10 % V_S = 13.2 V; THD = 1 % V_S = 14.4 V; THD = 10 % V_S = 14.4 V; THD = 1 %	23 16 28 20	25 19 30 23	-	W

6/17 Doc ID 6886 Rev 6

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
P _o	Output power	$V_{S} = 13.2 \text{ V; THD} = 10 \%, 2 \Omega$ $V_{S} = 13.2 \text{ V; THD} = 1 \%, 2 \Omega$ $V_{S} = 14.4 \text{ V; THD} = 10 \%, 2 \Omega$ $V_{S} = 14.4 \text{ V; THD} = 1 \%, 2 \Omega$	42 32 50 40	45 34 55 43	-	w	
P _{o EIAJ}	EIAJ output power ⁽¹⁾	$V_S = 13.7 \text{ V}; R_L = 4 \Omega$ $V_S = 13.7 \text{ V}; R_L = 2 \Omega$	41 72	45 77	-	W	
P _{o max.}	Max. output power ⁽¹⁾	$V_S = 14.4 \text{ V}; R_L = 4 \Omega$ $V_S = 14.4 \text{ V}; R_L = 2 \Omega$ $V_S = 15.2 \text{ V}; R_L = 4 \Omega$	43 75	50 80 51	-	W	
THD	Distortion	$P_{o} = 4 \text{ W}$ $P_{o} = 15 \text{ W}; R_{L} = 2 \Omega$	-	0.006 0.015	0.02 0.03	%	
e _{No}	Output noise	"A" Weighted Bw = 20 Hz to 20 kHz	-	35 50	50 70	μV	
SVR	Supply voltage rejection	f = 100 Hz; V _r = 1 Vrms	50	70	-	dB	
f _{ch}	High cut-off frequency	P _O = 0.5 W	100	300	-	kHz	
R _i	Input impedance		80	100	120	ΚΩ	
C _T	Cross talk	f = 1 kHz P _O = 4 W f = 10 kHz P _O = 4 W	60 50	70 60	-	dB	
	Chandle comment as a supersticus	V _{ST-BY} = 1.5V	-	-	20	- μΑ	
I _{SB}	Standby current consumption	V _{ST-BY} = 0 V	-	-	10		
I _{pin5}	Standby pin current	V _{ST-BY} = 1.5 V to 3.5 V	-	-	±10	μΑ	
V _{SB out}	Standby out threshold voltage	(Amp: ON)	3.5	-	-	V	
V _{SB in}	Standby in threshold voltage	(Amp: OFF)	-	-	1.5	V	
A _M	Mute attenuation	P _{Oref} = 4W	80	90	-	dB	
V _{M out}	Mute out threshold voltage	(Amp: Play)	3.5	-	-	V	
V _{M in}	Mute in threshold voltage	(Amp: Mute)	-	-	1.5	V	
V _{AM in}	VS automute threshold	(Amp: Mute) Att ≥ 80 dB; P _{Oref} = 4 W (Amp: Play)	6.5	7	0	V	
I _{pin22}	Muting pin current	Att < 0.1 dB; $P_O = 0.5 W$ $V_{MUTE} = 1.5 V$ (Sourced current)	7	7.5 12	18	μΑ	
h		V _{MUTE} = 3.5 V	-5	-	18	μΑ	
HSD sect	ion	-1		1			
V _{dropout}	Dropout voltage	$I_O = 0.35 \text{ A}; V_S = 9 \text{ to } 16 \text{ V}$	-	0.25	0.6	V	
	î .	+	+				

Doc ID 6886 Rev 6


Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
Offset detector (Pin 25)								
V _{M_ON}	Mute voltage for DC offset	V 5.V	8	-	-	V		
V_{M_OFF}	detection enabled	$V_{ST-BY} = 5 V$	-	-	6	V		
V _{OFF}	Detected differential output offset	V _{ST-BY} = 5 V; V _{mute} = 8 V	±2	±3	±4	V		
V _{25_T}	Pin 25 voltage for detection = True	$V_{ST-BY} = 5 \text{ V}; V_{mute} = 8 \text{ V}$ $V_{OFF} > \pm 4 \text{ V}$	0	-	1.5	V		
V _{25_F}	Pin 25 voltage for detection = False	$V_{ST-BY} = 5 \text{ V}; V_{mute} = 8 \text{ V}$ $V_{OFF} > \pm 2 \text{ V}$	12	-	-	V		

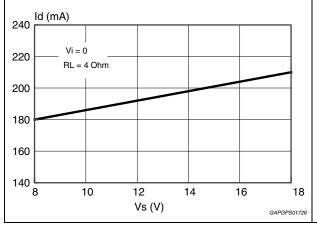
^{1.} Saturated square wave output.

2.4 Standard test and application circuit, and PCB layout

Figure 3. Standard test and application circuit

Components and top copper layer TDA 7560 IC1 C8 BW (OUT ort 🔾 1162-5473 器 C2 C1 **Bottom copper layer** 113 TU0 -1 (4) (4) TU0 +0 0 040 8 NI S

Figure 4. PCB and component layout of the Figure 3.

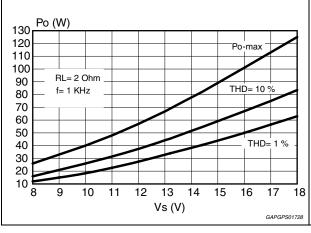

577

Doc ID 6886 Rev 6

2.5 Electrical characteristics curves

Figure 5. Quiescent current vs. supply voltage

Figure 6. Output power vs. supply voltage (R_L = 4Ω)


Po (W)

80
75
70
65
60
RL= 4 Ohm
f= 1 KHz
75
10
10
15
8 9 10 11 12 13 14 15 16 17 18
Vs (V)

RAPGEPSOITZT

Figure 7. Output power vs. supply voltage $(R_L = 2\Omega)$

Figure 8. Distortion vs. output power $(R_L = 4\Omega)$

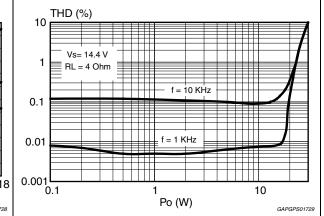
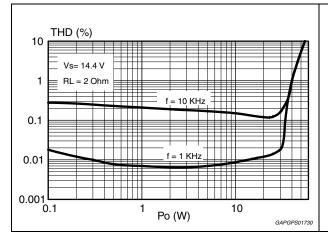
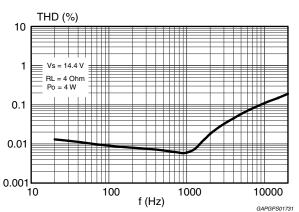




Figure 9. Distortion vs. output power $(R_L = 2\Omega)$

Figure 10. Distortion vs. frequency ($R_L = 4\Omega$)

10/17 Doc ID 6886 Rev 6

57

Figure 11. Distortion vs. frequency ($R_L = 2\Omega$) Figure 12. Crosstalk vs. frequency

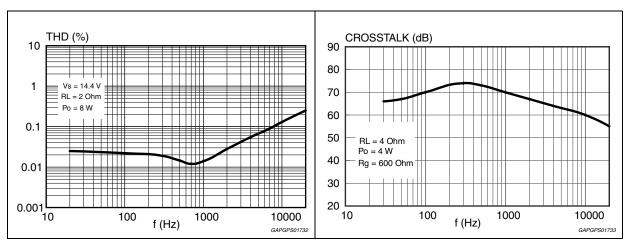


Figure 13. Supply voltage rejection vs. frequency

Figure 14. Output attenuation vs. supply voltage

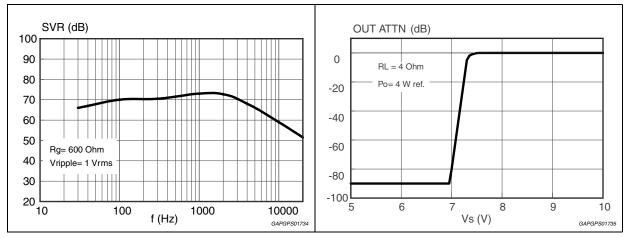
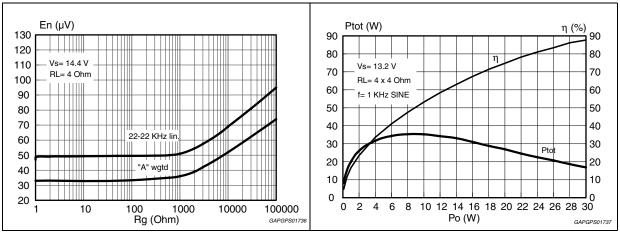



Figure 15. Output noise vs. source resistance

Figure 16. Power dissipation and efficiency vs. output power (sine-wave operation)

577

Doc ID 6886 Rev 6

Figure 17. Power dissipation vs. output power (music/speech simulation); (music/speech simulation); (music/speech simulation); $R_L = 4 \times 4\Omega$ $R_L = 4 \times 2\Omega$

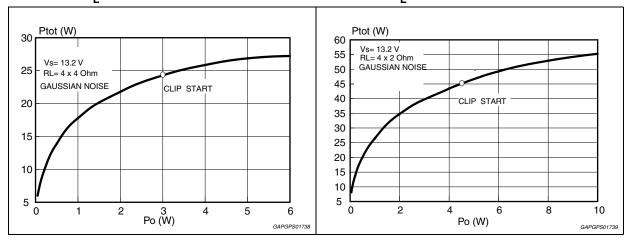
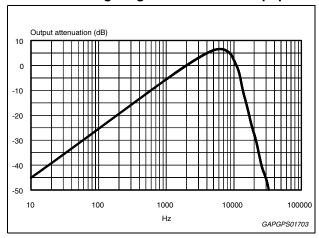



Figure 19. ITU R-ARM frequency response, weighting filter for transient pop

TDA7560 Application hints

3 Application hints

(ref. to the circuit of Figure 3)

3.1 SVR

Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during ON/OFF transients. To conveniently serve both needs, **ITS MINIMUM RECOMMENDED VALUE IS 10 \muF**.

3.2 Input stage

The TDA7560's inputs are ground-compatible and can stand very high input signals (±8 Vpk) without any performances degradation.

If the standard value for the input capacitors (0.1 μ F) is adopted, the low frequency cut-off will amount to 16 Hz.

3.3 Standby and muting

Standby and Muting facilities are both CMOS-compatible. In absence of true CMOS ports or microprocessors, a direct connection to Vs of these two pins is admissible but a 470 kOhm equivalent resistance should be present between the power supply and the muting and ST-BY pins.

R-C cells have always to be used in order to smooth down the transitions for preventing any audible transient noises.

About the standby, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5 V/ms.

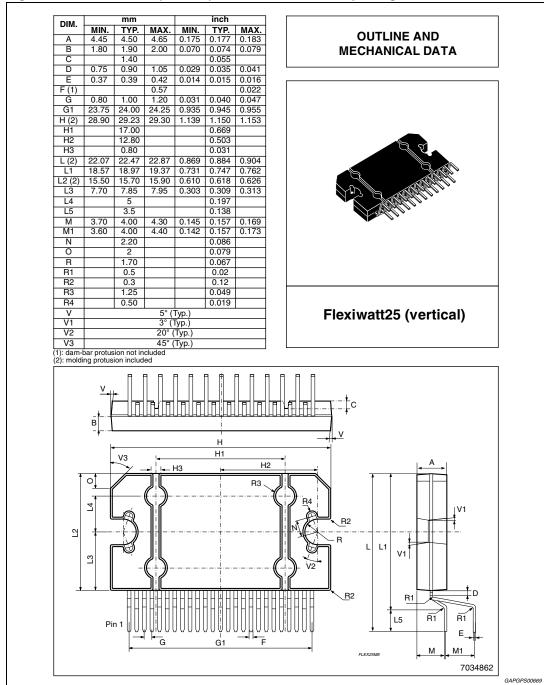
3.4 DC offset detector

The TDA7560 integrates a DC offset detector to avoid that an anomalous DC offset on the inputs of the amplifier may be multiplied by the gain and result in a dangerous large offset on the outputs which may lead to speakers damage for overheating. The feature is enabled by the MUTE pin (according to *Table 4*) and works with the amplifier unmuted and with no signal on the inputs.

The DC offset detection is signaled out on the HSD pin. To ensure the correct functionality of the Offset Detector it is necessary to connect a pulldown 10 $k\Omega$ resistor between HSD and ground.

3.5 Heatsink definition

Under normal usage (4 Ohm speakers) the heatsink's thermal requirements have to be deduced from *Figure 17*, which reports the simulated power dissipation when real music/speech programmes are played out. Noise with gaussian-distributed amplitude was employed for this simulation. Based on that, frequent clipping occurrence (worst-case) will cause $P_{diss} = 26$ W. Assuming $T_{amb} = 70$ °C and $T_{CHIP} = 150$ °C as boundary conditions, the heatsink's thermal resistance should be approximately 2 °C/W. This would avoid any thermal shutdown occurrence even after long-term and full-volume operation


Package information TDA7560

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

 $\mathsf{ECOPACK}^{(\! B\!)}$ is an ST trademark.

Figure 20. Flexiwatt25 (vertical) mechanical data and package dimensions

TDA7560 Package information

Figure 21. Flexiwatt25 (horizontal) mechanical data and package dimensions

DIM. MIN. TYP. MAX. MIN.								
A 4.45 4.50 4.65 0.175 0.177 0.183 B 1.80 1.90 2.00 0.070 0.074 0.079 C 1.40 1.40 0.055 D 2.00 0.079 0.055 F 0 0.37 0.39 0.42 0.014 0.015 0.016 F 0 0.57 0 0.022 G 0.75 1.00 1.25 0.029 0.040 0.049 G 1 23.70 24.00 24.30 0.933 0.945 0.957 H 0 28.90 29.23 29.30 1.139 1.150 1.153 H 11 17.00 0.055 H 0 0.80 0.031 0.953 H 12 12.80 0.030 0.303 0.945 0.957 H 0 0.80 0.031 0.953 H 15.50 15.70 15.90 0.610 0.618 0.626 L 0 21.64 22.04 22.44 0.852 0.868 0.888 L 0 21.64 1.80 1.95 2.10 0.070 0.077 0.883 M 2.75 3.00 3.50 0.197 0.083 M 2.75 3.00 3.50 0.108 0.118 0.138 M 2.75 3.00 3.50 0.108 0.118 0.138 M 2.75 3.00 3.50 0.108 0.118 0.138 M 2.75 3.00 3.50 0.080 1.12 R3 1.25 0.049 R4 0.50 0.002 V 0.003 3.80 0.126 0.138 0.15 R1 0.50 0.002 V 0.003 3.80 0.126 0.138 0.15 R1 0.50 0.002 V 0.003 3.80 0.126 0.138 0.15 R3 1.25 0.049 V 0.003 3.80 0.120 0.02 V 0.003 3.80 0.120 0.030 0.002 V 0.003 3.80 0.120 0.003 0.00	DIM.	MIN	mm	MAV	MIN	inch	MAY	
B 1.80 1.90 2.00 0.070 0.079 0.0	Λ							OUTLINE AND
C 1.40 0.055 0.079 0.079 0.079 0.070 0.0								MECHANICAL DATA
D 3 200		1.60		2.00	0.070		0.079	MILOTIANIOAL DATA
E 0.37 0.39 0.42 0.014 0.015 0.016 F(1) 0.057 0.0022 G 0.75 1.00 1.25 0.029 0.040 0.049 G1 2370 24.00 243 0.033 0.945 0.957 H(2) 28.90 29.23 29.30 1.139 1.150 1.153 H1 17.00 0.069 H2 12.80 0.80 0.033 1.139 1.150 1.153 H3 0.80 0.80 0.031 1.139 1.150 1.153 L(2) 21.64 22.04 22.44 0.852 0.868 0.883 L(3) 27.76 85 7.95 0.040 0.413 0.427 L(2) 15.50 15.70 15.90 0.610 0.618 0.626 L(3) 3.770 7.785 7.95 0.030 0.309 0.313 L4 1.015 1.54 5.85 0.020 0.214 0.23 L6 1.80 1.95 2.10 0.070 0.077 0.083 M 2.75 3.40 0.352 0.086 1.80 M 2.75 5.61 0.220 N 2.20 0.086 N 2.20 0.086 N 2.20 0.086 N 2.20 0.086 R4 0.50 0.02 R4 0.50 0.02 R4 0.50 0.02 R5 0.0049 R4 0.50 0.002 R5 0.0049 R4 0.50 0.002 R5 0.0049 R4 0.50 0.002 R5 0.0049 R5 0.0049 R6 0.0049 R6 0.0049 R7 0.0049 R7 0.0049 R8 0.0049 R9 0.0049								
F(1)		0.37		0.42	0.014		0.016	
G 0.75 1.00 1.25 0.029 0.040 0.049 (12.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1		0.57	0.55		0.014	0.013		
12.370 24.00 24.30 0.933 0.945 0.957 H 12.29 0.923 9.93 1.139 1.150 1.153 H 17.00		0.75	1.00		0.029	0.040		
H D 28 90 29 23 29 30 1.139 1.150 1.153 H H H 17 70 0 0.669 H2 12 80 0 0.503 H3 0.80 0.903 0.30 L2 21 64 22 24 0.852 0.868 0.883 L1 10 15 0.5 0.35 0.40 0.413 0.427 L2 91 15 50 15 70 5.90 0.610 6.18 0.826 L3 7.70 7.85 7.95 0.303 0.390 0.313 L5 5.15 5.45 5.85 0.203 0.214 0.22 L6 1.80 1.95 2.10 0.070 0.077 0.063 M 2.75 3.00 3.50 0.180 0.18 0.180 M2 5.61 0 0.220 P 3.20 3.50 3.80 0.126 0.138 M1 4.73 4.73 0.186 M2 5.61 0.020 P 3.20 3.50 3.80 0.126 0.384 R 1.70 0.067 R1 0.50 0.002 V 5 (Typ.) V2 20 (Typ.) V3 45 (Typ.) U3 345 (Typ.) U4 34 (Typ.) U5 34 (Ty								
H1								
H2		20.00		20.00			1.100	
H3								
1								
1		21.64		22.44	0.852		0.883	
12 15 50 15 70 15 50 0 610 0 618 6 626 33 7 785 795 0 0 0 0 0 37 785 795 0 0 0 0 0 4 5 5 5 5 5 5 5 5 5								
13 7.70 7.85 7.95 0.303 0.309 0.313 14 5 0.197 15 5.15 5.45 5.85 0.203 0.214 0.23 16 1.80 1.95 2.10 0.070 0.077 0.083 M1 2.75 3.00 3.50 0.108 0.118 0.138 M1 1.7 4.73 5 0.86 1 0.220 N 2.20 3.50 3.80 0.126 0.138 0.15 R 1.70 8.00 0.02 R2 0.30 0.12 0.02 R2 0.30 0.12 R3 1.25 0.0049 R4 0.50 0.02 V 5° (Typ.) V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) V3 45° (Typ.) T): Dam-bar protusion not included: (2): Molding protusion included.								
L4 5 5 45 5 5 45 5 5 45 5	L3							
LS 5.15 5.46 5.85 0.203 0.214 0.23 LG 1.80 1.95 2.10 0.070 0.077 0.083 M 2.75 3.00 3.50 0.108 0.118 0.138 M1 4.73 0.186 N2 5.61 0.2220 N 2.20 3.50 3.80 0.126 0.138 0.15 R 1 1.70 0.067 R1 0.50 0.002 R2 0.30 0.12 0.02 V 5' (Typ.) V1 3' (Typ.) V2 20' (Typ.) V3 45' (Typ.) V1 3' (Typ.) V2 10 0.0049 M1 M1 M2 M3 M4 M4 M4 M5 M5 M6 M6 M6 M6 M7 M7 M8 M8 M8 M9 M9 M9 M9 M9								
L6 1.80 1.95 2.10 0.070 0.077 0.083 M 2.75 3.00 3.50 0.108 0.118 0.138 M1 4.73 3.00 3.50 0.108 0.118 0.138 M2 5.61 0.220 N 2.20 3.50 3.80 0.126 0.138 0.15 R 1.70 0.067 R1 0.50 0.02 R2 0.30 0.012 R3 1.25 0.049 R4 0.50 0.02 V1 3' (Typ.) V2 20' (Typ.) V3 45' (Typ.) V3 45' (Typ.) V1): Dam-bar protusion not included; (2): Molding protusion included.		5.15		5.85	0.203		0.23	
M1 2.75 3.00 3.50 0.108 0.118 0.138 M1 4.73 0.186 M2 5.61 0.220 N 2.20 3.50 3.80 0.126 0.086 N 2.20 3.50 3.80 0.126 0.067 R1 0.50 0.02 R2 0.30 0.12 R3 1.25 0.049 R4 0.50 0.02 Y1 3° (Typ.) Y2 20° (Typ.) Y2 20° (Typ.) Y3 45° (Typ.) T1) Dam-bar protusion not included: (2): Molding protusion included.								
M1	М	2.75			0.108	0.118		
N	M1							U
P 3.20 3.50 3.80 0.126 0.138 0.15 R 1.70 0.067 R1 0.50 0.02 R2 0.30 0.12 0.049 R4 0.50 5 (Typ.) V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) (1): Dam-bar protusion not included; (2): Molding protusion included.	M2		5.61			0.220		
R1	N		2.20			0.086		
R1		3.20		3.80	0.126		0.15	
R2								
R3								
R4 0.50 0.02 Flexiwatt25 V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) (1): Dam-bar protusion not included; (2): Molding protusion included.								
V 5° (Typ.) V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) (1): Dam-bar protusion not included; (2): Molding protusion included.								
V S (IYP.) V2 20° (Typ.) V3 45° (Typ.) V3 1): Dam-bar protusion not included; (2): Molding protusion included.			0.50			0.02		Flexiwatt25
V2 20 (Typ.) 1): Dam-bar protusion not included; (2): Molding protusion included.		-						
V2 20 (Typ.) 1): Dam-bar protusion not included; (2): Molding protusion included.								(Horizontal)
T): Dam-bar protusion not included; (2): Molding protusion included.								, , ,
	[4 D			— нз 		1		A A A A A A A A A A A A A A A A A A A
1333133 G1							排出排出	

577

Revision history TDA7560

5 Revision history

Table 5. Document revision history

Date	Revision	Changes
20-Dec-2001	1	Initial release.
10-Feb-2005	2	Improved value from 75 to 20mA of the "standby current consumption" parameter in the <i>Table 4: Electrical characteristics on page 6</i> .
18-Sep-2008	3	Document reformatted. Added new order code in Flexiwatt25 horizontal package. Updated Figure 3: Standard test and application circuit. Updated Table 4: Electrical characteristics. Updated Section 3.4: DC offset detector and Section 3.3: Standby and muting. Added Figure 19: ITU R-ARM frequency response, weighting filter for transient pop.
07-Nov-2008	4	Modified max. values of the V _{OS} and THD parameter in <i>Table 4:</i> Electrical characteristics.
11-Sep-2012	5	Updated Features on page 1; Updated Section 2.3: Electrical characteristics.
16-Sep-2013	6	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 6886 Rev 6 17/17