dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

Data Sheet
High-Performance, 16-bit
Digital Signal Controllers and Microcontrollers

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELoq logo, MPLAB, PIC, PICmicro, PICSTART, PIC^{32} logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.
© 2009-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-589-4
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC ${ }^{\circledR}$ MCUs and dsPIC ${ }^{\circledR}$ DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

High-Performance, 16-bit Digital Signal Controllers and Microcontrollers

Operating Range:

- Up to 60 MIPS Operation (at $3.0 \mathrm{~V}-3.6 \mathrm{~V}$):
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

High-Performance MCU CPU: (All Devices)

- Modified Harvard Architecture
- C Compiler Optimized Instruction Set
- 16-bit Wide Data Path
- 24-bit Wide Instructions
- Linear Program Memory Addressing up to 4 M Instruction Words
- Linear Data Memory Addressing up to 64 Kbytes
- 73 Base Instructions: mostly with an effective instruction execution throughput of one instruction per cycle
- Flexible and Powerful Indirect Addressing mode
- Software Stack
- 16×16 Integer Multiply Operations
- 32/16 and 16/16 Integer Divide Operations
- Up to ± 16-bit Shifts

Additional High-Performance DSC CPU Features: (dsPIC33EPXXXMU8XX Devices Only)

- 11 Additional Instructions
- Two 40-bit Accumulators with Rounding and Saturation Options
- Additional Flexible and Powerful Addressing modes:
- Modulo
- Bit-Reversed
- Single-Cycle Multiply and Accumulate:
- Accumulator write back for DSP operations
- Dual data fetch
- Single-Cycle shifts for up to 40-bit Data
- $16 x 16$ Fractional Multiply/Divide Operations

Hardware Real-Time Clock and Calendar (RTCC):

- Provides clock, calendar, and alarm functions

Direct Memory Access (DMA):

- 15-Channel Hardware DMA:
- Allows for transfer of data to/from any data memory location
- Up to 4 Kbytes Dual Ported DMA Buffer Area
(DPSRAM) to store data transferred via DMA:
- Allows for fast data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most Peripherals Support DMA

Interrupt Controller:

- 13-Cycle Fixed Latency or 9- to 13-Cycle Variable Latency (user-selectable)
- Up to 116 Available Interrupt Sources
- Up to Five External Interrupts
- Seven Programmable Priority Levels
- Seven Processor Exceptions

Timers/Capture/Compare/Standard PWM:

- Up to nine dedicated 16 -bit timers:
- Can pair up to make four 32-bit timers
- One timer runs as a Real-Time Clock with an external 32.768 kHz oscillator
- Programmable prescaler
- Output Compare modules can be configured to provide up to a total of 25 general purpose timers
- Input Capture (up to 16 channels):
- Independent 16-bit time base
- Capture on up, down or both edges
- 16-bit capture input functions
- 4-deep FIFO on each capture
- Synchronous, Triggered and Cascaded modes
- Output Compare (up to 16 channels):
- Independent 16-bit time base
- Single or Dual 16-bit Compare mode
- 16-bit Glitchless PWM mode
- Synchronous, Triggered and Cascaded modes
- Configurable as independent general purpose timers

Digital I/O:

- Peripheral Pin Select (PPS) Functionality
- Wake-up/Interrupt-on-Change for up to 122 pins
- Output Pins can drive from 3.0V to 3.6 V
- Up to 5V Output with Open Drain Configuration
- Up to 8 or 10 mA sink on I/O pins
- Up to 8 mA or 12 mA source on I/O pins

On-Chip Flash and SRAM:

- Flash Program Memory (up to 512 Kbytes)
- Flash Auxiliary Memory (up to 24 Kbytes):
- Can be used as Bootloader space or for EEPROM emulation without stalling the CPU
- Data SRAM (up to 52 Kbytes)
- Read/Write Security for Program Flash and Auxiliary Memory

System Management:

- Flexible Clock Options:
- External, crystal, resonator, internal RC
- Fully integrated Phase-Locked Loop (PLL)
- Extremely low jitter PLL
- Auxiliary PLL for USB clocking
- Reference clock output
- Programmable Power-up Timer
- Oscillator Start-up Timer
- Watchdog Timer with its own RC Oscillator
- Fail-Safe Clock Monitor
- Multiple Reset Sources

Power Management:

- On-chip 1.8V Voltage Regulator
- Switch between Clock Sources in Real Time
- Idle, Sleep, and Doze modes with Fast Wake-up

CMOS Flash Technology:

- Low-Power, High-Speed Flash Technology
- Fully Static Design
- $3.3 \mathrm{~V}(\pm 10 \%)$ Operating Voltage
- Industrial and Extended Temperature
- Low-Power Consumption

Analog-to-Digital Converters (ADCs):

- 10-bit, 1.1 Msps or 12-bit, 500 Ksps Conversion:
- Two and four simultaneous samples (10-bit mode)
- Up to 32 input channels with auto-scanning
- Conversion start can be manual or synchronized with one of 13 trigger sources
- Conversions in Sleep mode
- ± 2 LSb max integral nonlinearity
- ± 1 LSb max differential nonlinearity
- Additional 10-bit, 1.1 Msps ADC, with up to 16 Input Channels

Data Converter Interface (DCI) Module:

- Codec Interface
- Supports $I^{2} S$ and AC'97 Protocols
- Up to 16-bit Data Words, up to 16 Words per Frame:
- 4-word deep TX and RX buffers

Comparator Module:

- Three Analog Comparators with Programmable Input/Output Configuration
- Blanking and Filtering Options
- Internal or External Voltage References

Motor Control Peripherals:

(dsPIC33EPXXXMU806/810/814 Devices Only)

- Motor Control PWM:
- Two master time base modules can control dual 3-phase motors simultaneously
- Up to seven PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM output
- Dead-time insertion and correction
- Duty cycle, dead time, phase shift and frequency resolution of 8.32 ns
- Seven independent Fault and current-limit inputs
- Center-Aligned, Edge-Aligned, Push-Pull, Multi-Phase, Variable Phase, Fixed Off-time, Current Reset and Current Limit modes
- Output override control
- Output Chopping (gated) mode
- Special Event Triggers

Motor Control Peripherals (Continued): (dsPIC33EPXXXMU806/810/814 Devices Only)

- Quadrature Encoder Interface (QEI):
- 32-bit position counter
- 32-bit Index pulse counter
- 32-bit Interval timer
- 16-bit velocity counter
- 32-bit Position Initialization/Capture/Compare High register
- 32-bit Position Compare Low register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Internal Timer mode
- Can be configured as a general purpose timer

Communication Modules:

- USB On-The-Go (OTG):
- USB v2.0 On-The-Go (OTG) compliant
- Dual role capable - can act as either Host or Peripheral
- Low-speed (1.5 Mbps) and Full-speed (12 Mbps) USB operation in Host mode
- High-precision PLL for USB
- Supports up to 32 endpoints (16 bidirectional):
- USB module can use any RAM location on the device as USB endpoint buffers:
- On-chip USB transceiver
- Interface for Off-chip USB transceiver
- On-chip pull-up and pull-down resistors
- 4-wire SPI (up to four modules):
- Framing supports I/O interface to simple codecs
- Supports 8-bit and 16-bit data
- Supports all serial clock formats and sampling modes
- $\mathrm{I}^{2} \mathrm{C}^{\text {TM }}$ (up to two modules):
- Full Multi-Master Slave mode support
- 7-bit and 10-bit addressing
- Bus collision detection and arbitration
- Integrated signal conditioning
- Slave address masking
- IPMI support
- SMBus support

Communication Modules (Continued):

- UART (up to four modules):
- Interrupt on address bit detect
- Interrupt on UART error
- Wake-up on Start bit from Sleep mode
- 4-character TX and RX FIFO buffers
- LIN bus support
- IrDA ${ }^{\circledR}$ encoding and decoding in hardware
- High-Speed Baud mode
- Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN ${ }^{\text {TM }}$) 2.0B active (up to two modules):
- Up to eight transmit and up to 32 receive buffers
- 16 receive filters and three masks
- Loopback, Listen Only and Listen All
- Messages modes for diagnostics and bus monitoring
- Wake-up on CAN message
- Automatic processing of Remote Transmission Requests
- FIFO mode using DMA
- DeviceNet ${ }^{\text {TM }}$ addressing support
- Parallel Master Slave Port (PMP/EPSP):
- Supports 8-bit or 16-bit data
- Supports up to 16 address lines
- Programmable Cyclic Redundancy Check (CRC):
- Programmable bit length for the CRC generator polynomial (up to 32-bit length)
- $4 \times 32,8 \times 16$ or 16×8 FIFO for data input

Packaging:

- 64-pin QFN (9x9x0.9 mm)
- 64-pin TQFP (10x10x1 mm)
- 100-pin TQFP ($12 \times 12 \times 1 \mathrm{~mm}$)
- 100-pin TQFP $(14 \times 14 \times 1 \mathrm{~mm})$
- 121-pin XBGA (10×10x1.2 mm)
- 144-pin LQFP ($20 \times 20 \times 1.4 \mathrm{~mm}$)
- 144-pin TQFP (16x16x1 mm)

Note: See Table 1 for exact peripheral features per device.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 PRODUCT
 FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. Their pinout diagrams appear on the following pages.

TABLE 1: dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 CONTROLLER FAMILIES

									号	able	Per	her											
Device	$\stackrel{n}{0}$								$\overline{\mathrm{O}}$		$\overline{\bar{\omega}}$	$\begin{aligned} & \sum \\ & \substack{\Sigma \\ \hline \\ \hline} \end{aligned}$			\bar{U}		$\begin{aligned} & \text { U } \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \underline{E} \\ & \vdots \\ & \underline{0} \end{aligned}$			$\begin{aligned} & \underset{\sim}{\infty} \\ & \end{aligned}$		$\begin{aligned} & \text { n } \\ & \underline{0} \\ & \underline{0} \end{aligned}$
dsPIC33EP256MU806	64	$\begin{aligned} & \text { QFN, } \\ & \text { TQFP } \end{aligned}$	280	28	9	16	16	8	2	4	4	2	5	15	1	3/4	1	2	1	$\begin{array}{\|c\|} \hline 2 \mathrm{ADC}, \\ 24 \mathrm{ch} \end{array}$	1	Y	51
dsPIC33EP256MU810	100	TQFP	280	28	9	16	16	12	2	4	4	2	5	15	1	3/4	1	2	1	$\begin{array}{\|c} 2 \mathrm{ADC}, \\ 32 \mathrm{ch} \end{array}$	1	Y	83
dsPIC33EP256MU814	144	$\begin{aligned} & \text { TQFP, } \\ & \text { LQFP } \end{aligned}$	280	28	9	16	16	14	2	4	4	2	5	15	1	3/4	1	2	1	$\begin{gathered} 2 \mathrm{ADC}, \\ 32 \mathrm{ch} \end{gathered}$	1	Y	122
dsPIC33EP512MU810	100	TQFP	536	52	9	16	16	12	2	4	4	2	5	15	1	3/4	1	2	1	$\begin{aligned} & 2 \mathrm{ADC}, \\ & 32 \mathrm{ch} \end{aligned}$	1	Y	83
dsPIC33EP512MU814	144	$\begin{aligned} & \text { TQFP, } \\ & \text { LQFP } \end{aligned}$	536	52	9	16	16	14	2	4	4	2	5	15	1	3/4	1	2	1	$\begin{array}{\|l} 2 \mathrm{ADC}, \\ 32 \mathrm{ch} \end{array}$	1	Y	122
PIC24EP256GU810	100	TQFP	280	28	9	16	16	0	0	4	4	2	5	15	1	3/4	1	2	1	$\begin{gathered} 2 \mathrm{ADC}, \\ 32 \mathrm{ch} \end{gathered}$	1	Y	83
PIC24EP256GU814	144	$\begin{aligned} & \text { TQFP, } \\ & \text { LQFP } \end{aligned}$	280	28	9	16	16	0	0	4	4	2	5	15	1	3/4	1	2	1	$\begin{array}{\|c} 2 \mathrm{ADC}, \\ 32 \mathrm{ch} \end{array}$	1	Y	122
PIC24EP512GU810	100	TQFP	536	52	9	16	16	0	0	4	4	2	5	15	1	3/4	1	2	1	$\begin{aligned} & 2 \mathrm{ADC}, \\ & 32 \mathrm{ch} \end{aligned}$	1	Y	83
PIC24EP512GU814	144	$\begin{aligned} & \text { TQFP, } \\ & \text { LQFP } \end{aligned}$	536	52	9	16	16	0	0	4	4	2	5	15	1	3/4	1	2	1	$\begin{array}{\|c} 2 \mathrm{ADC}, \\ 32 \mathrm{ch} \end{array}$	1	Y	122

Note 1: Flash size is inclusive of 24 Kbytes of auxiliary Flash.
RAM size is inclusive of 4 Kbytes of DMA RAM (DPSRAM) for all devices.
Up to eight of these timers can be combined into four 32-bit timers.
Eight out of nine timers are remappable.
PWM faults and Sync signals are remappable.
Four out of five interrupts are remappable.
Comparator output is remappable.
The ADC2 module supports 10-bit mode only.

Pin Diagrams

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

Pin Diagrams (Continued)

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

Pin Diagrams (Continued)

Note 1: Refer to Table 2 for full pin names.

TABLE 2: PIN NAMES: dsPIC33EP256MU810 AND dsPIC33EP512MU810 DEVICES ${ }^{(1,2)}$

Pin Number	Full Pin Name	Pin Number	Full Pin Name
A1	AN28/PWM3L/PMD4/RP84/RE4	E8	RPI31/RA15
A2	AN27/PWM2H/PMD3/RPI83/RE3	E9	RTCC/DMLN/RPI72/RD8
A3	RP125/RG13	E10	ASDA1/DPLN/RPI73/RD9
A4	AN24/PWM1L/PMD0/RP80/RE0	E11	RPI30/RA14
A5	RP112/RG0	F1	$\overline{\text { MCLR }}$
A6	Vcmpst2/RP97/RF1	F2	C2IN3-/SDO2/PMA3/RP120/RG8
A7	VDD	F3	C2IN1-/PMA2/RPI121/RG9
A8	No Connect	F4	C1IN1-/SDI2/PMA4/RPI119/RG7
A9	RPI76/RD12	F5	Vss
A10	DPH/RP66/RD2	F6	No Connect
A11	VcPCon/RP65/RD1	F7	No Connect
B1	No Connect	F8	VDD
B2	RP127/RG15	F9	OSC1/RPI60/RC12
B3	AN26/PWM2L/PMD2/RP82/RE2	F10	Vss
B4	AN25/PWM1H/PMD1/RPI81/RE1	F11	OSC2/CLKO/RC15
B5	AN23/RPI23/RA7	G1	AN20/RPI88/RE8
B6	Vcmpst1/RP96/RF0	G2	AN21/RPI89/RE9
B7	VCAP	G3	TMS/RPI16/RA0
B8	PMRD/RP69/RD5	G4	No Connect
B9	PMBE/RP67/RD3	G5	VDD
B10	Vss	G6	Vss
B11	PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14	G7	Vss
C1	AN30/PWM4L/PMD6/RPI86/RE6	G8	No Connect
C2	VDD	G9	TDO/RPI21/RA5
C3	RPI124/RG12	G10	ASDA2/RPI19/RA3
C4	RP126/RG14	G11	TDI/RPI20/RA4
C5	AN22/RPI22/RA6	H1	AN5/C1IN1+/Vbuson/Vbusst/RPI37/RB5
C6	No Connect	H2	AN4/C1IN2-/USBOEN/RPI36/RB4
C7	C3IN1+/Vcmpst3/RP71/RD7	H3	No Connect
C8	PMWR/RP68/RD4	H4	No Connect
C9	No Connect	H5	No Connect
C10	PGED2/SOSCI/C3IN3-/RPI61/RC13	H6	VDD
C11	PMCS1/RPI75/RD11	H7	No Connect
D1	AN16/PWM5L/RPI49/RC1	H8	Vbus
D2	AN31/PWM4H/PMD7/RP87/RE7	H9	Vusb
D3	AN29/PWM3H/PMD5/RP85/RE5	H10	D+/RG2
D4	No Connect	H11	ASCL2/RPI18/RA2
D5	No Connect	J1	AN3/C2IN1+/VPIO/RPI35/RB3
D6	No Connect	J2	AN2/C2IN2-/VMIO/RPI34/RB2
D7	C3IN2-/RP70/RD6	J3	PGED1/AN7/RCV/RPI39/RB7
D8	RPI77/RD13	J4	AVDD
D9	INT0/DMH/RP64/RD0	J5	AN11/PMA12/RPI43/RB11
D10	No Connect	J6	TCK/RPI17/RA1
D11	ASCL1/PMCS2/RPI74/RD10	J7	AN12/PMA11/RPI44/RB12
E1	AN19/PWM6H/RPI52/RC4	J8	No Connect
E2	AN18/PWM6L/RPI51/RC3	J9	No Connect
E3	C1IN3-/SCK2/PMA5/RP118/RG6	J10	RP104/RF8
E4	AN17/PWM5H/RPI50/RC2	J11	D-/RG3
E5	No Connect	K1	PGEC3/AN1/RPI33/RB1
E6	RP113/RG1	K2	PGED3/AN0/RPI32/RB0
E7	No Connect	K3	Vref+/RA10
Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information			

TABLE 2: PIN NAMES: dsPIC33EP256MU810 AND dsPIC33EP512MU810 DEVICES ${ }^{(1,2)}$ (CONTINUED)

Pin Number	Full Pin Name	Pin Number	Full Pin Name
K4	AN8/PMA6/RPI40/RB8	L3	AVss
K5	No Connect	L4	AN9/PMA7//RPI41/RB9
K6	RP108/RF12	L5	AN10/CVREF/PMA13/RPI42/RB10
K7	AN14/PMA1/RPI46/RB14	L6	RP109/RF13
K8	Vdd	L7	AN13/PMA10/RPI45/RB13
K9	RP79/RD15	L8	AN15/PMA0/RPI47/RB15
K10	USBID/RP99/RF3	L9	RPI78/RD14
K11	RP98/RF2	L10	SDA2/PMA9/RP100/RF4
L1	PGEC1/AN6/RPI38/RB6	L11	SCL2/PMA8/RP101/RF5
L2	VREF-/RA9		

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

Pin Diagrams (Continued)

Note 1: Refer to Table 3 for full pin names.

TABLE 3: PIN NAMES: PIC24EP256GU810 AND PIC24EP512GU810 DEVICES ${ }^{(1,2)}$

Pin Number	Full Pin Name
A1	AN28/PMD4/RP84/RE4
A2	AN27/PMD3/RPI83/RE3
A3	RP125/RG13
A4	AN24/PMD0/RP80/RE0
A5	RP112/RG0
A6	Vcmpst2/RP97/RF1
A7	VDD
A8	No Connect
A9	RPI76/RD12
A10	DPH/RP66/RD2
A11	VcPCon/RP65/RD1
B1	No Connect
B2	RP127/RG15
B3	AN26/PMD2/RP82/RE2
B4	AN25/PMD1/RPI81/RE1
B5	AN23/RPI23/RA7
B6	Vcmpst1/RP96/RF0
B7	VCAP
B8	PMRD/RP69/RD5
B9	PMBE/RP67/RD3
B10	Vss
B11	PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
C1	AN30/PMD6/RPI86/RE6
C2	VDD
C3	RPI124/RG12
C4	RP126/RG14
C5	AN22/RPI22/RA6
C6	No Connect
C7	C3IN1+/Vcmpst3/RP71/RD7
C8	PMWR/RP68/RD4
C9	No Connect
C10	PGED2/SOSCI/C3IN3-/RPI61/RC13
C11	PMCS1/RPI75/RD11
D1	AN16/RPI49/RC1
D2	AN31/PMD7/RP87/RE7
D3	AN29/PMD5/RP85/RE5
D4	No Connect
D5	No Connect
D6	No Connect
D7	C3IN2-/RP70/RD6
D8	RPI77/RD13
D9	INT0/DMH/RP64/RD0
D10	No Connect
D11	ASCL1/PMCS2/RPI74/RD10
E1	AN19/RPI52/RC4
E2	AN18/RPI51/RC3
E3	C1IN3-/SCK2/PMA5/RP118/RG6
E4	AN17/RPI50/RC2
E5	No Connect
E6	RP113/RG1
E7	No Connect

Pin Number	Full Pin Name
E8	RPI31/RA15
E9	RTCC/DMLN/RPI72/RD8
E10	ASDA1/DPLN/RPI73/RD9
E11	RPI30/RA14
F1	$\overline{\text { MCLR }}$
F2	C2IN3-/SDO2/PMA3/RP120/RG8
F3	C2IN1-/PMA2/RPI121/RG9
F4	C1IN1-/SDI2/PMA4/RPI119/RG7
F5	Vss
F6	No Connect
F7	No Connect
F8	VDD
F9	OSC1/RPI60/RC12
F10	Vss
F11	OSC2/CLKO/RC15
G1	AN20/RPI88/RE8
G2	AN21/RPI89/RE9
G3	TMS/RPI16/RA0
G4	No Connect
G5	VDD
G6	Vss
G7	Vss
G8	No Connect
G9	TDO/RPI21/RA5
G10	ASDA2/RPI19/RA3
G11	TDI/RPI20/RA4
H1	AN5/C1IN1+/Vbuson/Vbusst/RPI37/RB5
H2	AN4/C1IN2-/USBOEN/RPI36/RB4
H3	No Connect
H4	No Connect
H5	No Connect
H6	VDD
H7	No Connect
H8	Vbus
H9	Vusb
H10	D+/RG2
H11	ASCL2/RPI18/RA2
J1	AN3/C2IN1+/VPIO/RPI35/RB3
J2	AN2/C2IN2-/VMIO/RPI34/RB2
J3	PGED1/AN7/RCV/RPI39/RB7
J4	AVdD
J5	AN11/PMA12/RPI43/RB11
J6	TCK/RPI17/RA1
J7	AN12/PMA11/RPI44/RB12
J8	No Connect
J9	No Connect
J10	RP104/RF8
J11	D-/RG3
K1	PGEC3/AN1/RPI33/RB1
K2	PGED3/AN0/RPI32/RB0
K3	Vref+/RA10

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

TABLE 3: PIN NAMES: PIC24EP256GU810 AND PIC24EP512GU810 DEVICES ${ }^{(1,2)}$ (CONTINUED)

Pin Number	Full Pin Name
K4	AN8/PMA6/RPI40/RB8
K5	No Connect
K6	RP108/RF12
K7	AN14/PMA1/RPI46/RB14
K8	VDD
K9	RP79/RD15
K10	USBID/RP99/RF3
K11	RP98/RF2
L1	PGEC1/AN6/RPI38/RB6
L2	VREF-/RA9

Pin Number	Full Pin Name
L3	AVss
L4	AN9/PMA7/RPI41/RB9
L5	AN10/CVREF/PMA13/RPI42/RB10
L6	RP109/RF13
L7	AN13/PMA10/RPI45/RB13
L8	AN15/PMA0/RPI47/RB15
L9	RPI78/RD14
L10	SDA2/PMA9/RP100/RF4
L11	SCL2/PMA8/RP101/RF5

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section $\mathbf{1 1 . 0}$ "I/O Ports" for more information.

Pin Diagrams (Continued)

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RKx) can be used as change notification (CNAx-CNKx). See Section 11.0 "I/O Ports" for more information.

Table of Contents

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Product Families. 6
1.0 Device Overview 21
2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers 29
3.0 CPU 33
4.0 Memory Organization 43
5.0 Flash Program Memory 125
6.0 Resets 129
7.0 Interrupt Controller 133
8.0 Direct Memory Access (DMA) 147
9.0 Oscillator Configuration 163
10.0 Power-Saving Features 175
11.0 I/O Ports 189
12.0 Timer1 249
13.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 251
14.0 Input Capture 257
15.0 Output Compare 261
16.0 High-Speed PWM Module (dsPIC33EPXXXMU806/810/814 Devices Only) 267
17.0 Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810/814 Devices Only) 295
18.0 Serial Peripheral Interface (SPI). 309
19.0 Inter-Integrated Circuit ${ }^{\top M}$ ($I^{2} \mathrm{C}^{\mathrm{TM}}$) 315
20.0 Universal Asynchronous Receiver Transmitter (UART) 323
21.0 Enhanced CAN (ECAN ${ }^{\text {TM }}$) Module 329
22.0 USB On-The-Go (OTG) Module 355
23.0 10-bit/12-bit Analog-to-Digital Converter (ADC) 381
24.0 Data Converter Interface (DCI) Module. 395
25.0 Comparator Module. 401
26.0 Real-Time Clock and Calendar (RTCC) 413
27.0 Programmable Cyclic Redundancy Check (CRC) Generator 423
28.0 Parallel Master Port (PMP). 429
29.0 Special Features 437
30.0 Instruction Set Summary 445
31.0 Development Support. 455
32.0 Electrical Characteristics 459
33.0 Packaging Information. 531
Appendix A: Revision History 551
Index 561
The Microchip Web Site 567
Customer Change Notification Service 567
Customer Support. 567
Reader Response 568
Product Identification System 569

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Digital Signal Controller (DSC) and Microcontroller (MCU) devices. The dsPIC33EPXXXMU806/810/814 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit MCU architecture.
Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices.
Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 BLOCK DIAGRAM

Note 1: This feature or peripheral is only available on dsPIC33EPXXXMU806/810/814 devices.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	PPs		
AN0-AN31	I	Analog	No	Analog input channels.	
CLKI	I	ST/	No	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. CMOS	
CLKO	O	-	No	Always associated with OSC2 pin function.	

Note 1: This pin is available on dsPIC33EPXXXMU806/810/814 devices only.
2: AVDD must be connected at all times.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description
T1CK	I	ST	No	Timer1 external clock input.
T2CK	1	ST	Yes	Timer2 external clock input.
T3CK	1	ST	Yes	Timer3 external clock input.
T4CK	1	ST	Yes	Timer4 external clock input.
T5CK	I	ST	Yes	Timer5 external clock input.
T6CK	I	ST	Yes	Timer6 external clock input.
T7CK	I	ST	Yes	Timer7 external clock input.
T8CK	I	ST	Yes	Timer8 external clock input.
T9CK	1	ST	Yes	Timer9 external clock input.
U1CTS	1	ST	Yes	UART1 clear to send.
U1RTS	0	-	Yes	UART1 ready to send.
U1RX	1	ST	Yes	UART1 receive.
U1TX	0	-	Yes	UART1 transmit.
$\overline{\text { U2CTS }}$	1	ST	Yes	UART2 clear to send.
U2RTS	0	-	Yes	UART2 ready to send.
U2RX	I	ST	Yes	UART2 receive.
U2TX	0	-	Yes	UART2 transmit.
$\overline{\text { U3CTS }}$	1	ST	Yes	UART3 clear to send.
U3RTS	0	-	Yes	UART3 ready to send.
U3RX	1	ST	Yes	UART3 receive.
U3TX	0	-	Yes	UART3 transmit.
U4CTS	1	ST	Yes	UART4 clear to send.
U4RTS	0	-	Yes	UART4 ready to send.
U4RX	1	ST	Yes	UART4 receive.
U4TX	0	-	Yes	UART4 transmit.
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1.
SDI1	1	ST	Yes	SPI1 data in.
SDO1	0	-	Yes	SPI1 data out.
SS1	I/O	ST	Yes	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	1	ST	Yes	SPI2 data in.
SDO2	0	-	Yes	SPI2 data out.
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCK3	I/O	ST	Yes	Synchronous serial clock input/output for SPI3.
SDI3	1	ST	Yes	SPI3 data in.
SDO3	0	-	Yes	SPI3 data out.
SS3	I/O	ST	Yes	SPI3 slave synchronization or frame pulse I/O.
SCK4	I/O	ST	Yes	Synchronous serial clock input/output for SPI4.
SDI4	1	ST	Yes	SPI4 data in.
SDO4	0	-	Yes	SPI4 data out.
$\overline{\text { SS4 }}$	I/O	ST	Yes	SPI4 slave synchronization or frame pulse I/O.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	1/O	ST	No	Alternate synchronous serial data input/output for I2C1.

Legend:	CMOS = CMOS compatible input or output	Analog = Analog input	$\mathrm{P}=$ Power
	ST = Schmitt Trigger input with CMOS levels	$\mathrm{O}=\mathrm{Output}$	$\mathrm{I}=$ Input
	PPS = Peripheral Pin Select	TTL = TTL input buffer	

Note 1: This pin is available on dsPIC33EPXXXMU806/810/814 devices only.
2: AVDD must be connected at all times.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	$\begin{gathered} \text { Pin } \\ \text { Type } \end{gathered}$	Buffer Type	PPS	Description
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS	I	ST	No	JTAG Test mode select pin.
TCK	1	ST	No	JTAG test clock input pin.
TDI	1	ST	No	JTAG test data input pin.
TDO	0	-	No	JTAG test data output pin.
INDX1 ${ }^{(1)}$	1	ST	Yes	Quadrature Encoder Index1 Pulse input.
HOME1 ${ }^{(1)}$	1	ST	Yes	Quadrature Encoder Home1 Pulse input.
$\text { QEA1 }^{(1)}$	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock input in Timer mode.
$\operatorname{QEB1}_{1}{ }^{(1)}$	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Gate input in Timer mode.
CNTCMP1 ${ }^{(1)}$	0	-	Yes	Quadrature Encoder Compare Output 1.
INDX2 ${ }^{(1)}$	1	ST	Yes	Quadrature Encoder Index2 Pulse input.
HOME2 ${ }^{(1)}$	1	ST	Yes	Quadrature Encoder Home2 Pulse input.
QEA2 ${ }^{(1)}$	I	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Clock input in Timer mode.
$\text { QEB2 }^{(1)}$	1	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Gate input in Timer mode.
CNTCMP2 ${ }^{(1)}$	O	-	Yes	Quadrature Encoder Compare Output 2.
COFS ${ }^{(1)}$	I/O	ST	Yes	Data Converter Interface frame synchronization pin.
$\operatorname{CSCK}^{(1)}$	I/O	ST	Yes	Data Converter Interface serial clock input/output pin.
$\operatorname{CSDI}^{(1)}$	1	ST	Yes	Data Converter Interface serial data input pin.
CSDO ${ }^{(1)}$	0	-	Yes	Data Converter Interface serial data output pin.
C1RX	1	ST	Yes	ECAN1 bus receive pin.
C1TX	0	-	Yes	ECAN1 bus transmit pin.
C2RX	I	ST	Yes	ECAN2 bus receive pin.
C2TX	0	-	Yes	ECAN2 bus transmit pin.
RTCC	0	-	No	Real-Time Clock Alarm Output.
CVREF	0	ANA	No	Comparator Voltage Reference Output.
$\begin{aligned} & \text { C1IN1+, C1IN2-, } \\ & \text { C1IN1-, C1IN3- } \\ & \text { C1OUT } \end{aligned}$	I 0	ANA	No Yes	Comparator 1 Inputs Comparator 1 Output.
$\begin{aligned} & \text { C2IN1+, C2IN2-, } \\ & \text { C2IN1-, C2IN3- } \\ & \text { C2OUT } \end{aligned}$	1	ANA	No Yes	Comparator 2 Inputs. Comparator 2 Output.
$\begin{aligned} & \text { C3IN1+, C3IN2-, } \\ & \text { C2IN1-, C3IN3- } \\ & \text { C3OUT } \end{aligned}$	1 0	ANA -	No Yes	Comparator 3 Inputs. Comparator 3 Output.

Legend: $\mathrm{CMOS}=\mathrm{CMOS}$ compatible input or output
ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

> | > Analog = Analog input | $\mathrm{P}=$ Power |
| :--- | :--- |
| > $\mathrm{O}=$ Output | $\mathrm{I}=$ Input > |

Note 1: This pin is available on dsPIC33EPXXXMU806/810/814 devices only.
2: AVDD must be connected at all times.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	$\begin{gathered} \text { Pin } \\ \text { Type } \end{gathered}$	Buffer Type	PPS	Description
PMAO	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2 -PMA13	0	-	No	Parallel Master Port Address Bits 2-13 (Demultiplexed Master Modes).
PMBE	0	-	No	Parallel Master Port Byte Enable Strobe.
PMCS1, PMCS2	0	-	No	Parallel Master Port Chip Select 1 and 2 Strobe.
PMD0-PMD7	I/O	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or Address/ Data (Multiplexed Master modes).
PMRD	0	-	No	Parallel Master Port Read Strobe.
PMWR	0	-	No	Parallel Master Port Write Strobe.
$\overline{\mathrm{FLT1}} \overline{\mathrm{FLT7}}^{(1)}$	1	ST	Yes	PWM Fault input 1 through 7.
DTCMP1-DTCMP7(1)	I	ST	Yes	PWM Dead Time Compensation Input.
PWM1L-PWM7L ${ }^{(1)}$	0	-	No	PWM Low output 1 through 7.
PWM1H-PWM7H ${ }^{(1)}$	0	-	No	PWM High output 1 through 7.
SYNCI1, SYNCI2 ${ }^{(1)}$	1	ST	Yes	PWM Synchronization Inputs 1 and 2.
SYNCO1, SYNCO2 ${ }^{(1)}$	0	-	Yes	PWM Synchronization Output 1 and 2.
Vbus	I	Analog	No	USB Bus Power Monitor.
Vusb	P	-	No	USB Internal Transceiver Supply. If the USB module is not being used, this pin must be connected to VDD.
Vbuson	0	-	No	USB Host and On-The-Go (OTG) Bus Power Control Output.
D+	I/O	Analog	No	USB D+ I/O pin.
D-	I/O	Analog	No	USB D- I/O pin.
USBID	1	ST	No	USB OTG ID Detect.
USBOEN	0	-	No	USB Output Enabled Control (for external transceiver).
Vbusst	1	ST	No	USB Boost Controller Overcurrent Detection.
VCPCON	0	-	No	USB Boost Controller PWM Signal.
Vcmpst1	1	ST	No	USB External Comparator 1 Input.
Vcmpst2	I	ST	No	USB External Comparator 2 Input.
Vcmpst3	1	ST	No	USB External Comparator 3 Input.
VMIO	I/O	ST	No	USB Differential Minus Input/Output (external transceiver).
VPIO	I/O	ST	No	USB Differential Plus Input/Output (external transceiver).
DMH	0	-	No	D- External Pull-up Control Output.
DPH	0	-	No	D+ External Pull-up Control Output.
DMLN	0	-	No	D- External Pull-down Control Output.
DPLN	0	-	No	D+ External Pull-down Control Output.
RCV	1	ST	No	USB Receive Input (from external transceiver).
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.
PGEC1	1	ST	No	Clock input pin for programming/debugging communication channel 1.
PGED2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 2.
PGEC2	1	ST	No	Clock input pin for programming/debugging communication channel 2.
PGED3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.
PGEC3	1	ST	No	Clock input pin for programming/debugging communication channel 3.
$\overline{\text { MCLR }}$	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD ${ }^{(2)}$	P	P	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	P	P	No	Ground reference for analog modules.
Legend: CMOS = CMOS compatible input or output Analog = Analog input $\mathrm{P}=$ Power ST = Schmitt Trigger input with CMOS levels $\mathrm{O}=\mathrm{Output}$ $\mathrm{I}=$ Input PPS = Peripheral Pin Select TTL = TTL input buffer				

Note 1: This pin is available on dsPIC33EPXXXMU806/810/814 devices only.
2: AVDD must be connected at all times.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description
VDD	P	-	No	Positive supply for peripheral logic and I/O pins.
VCAP	P	-	No	CPU logic filter capacitor connection.
VSS	P	-	No	Ground reference for logic and I/O pins.
VREF+	I	Analog	No	Analog voltage reference (high) input.
VREF-	I	Analog	No	Analog voltage reference (low) input.

Legend:	CMOS = CMOS compatible input or output	Analog = Analog input	$\mathrm{P}=$ Power
	ST = Schmitt Trigger input with CMOS levels	$O=O$ output	$\mathrm{I}=$ Input
	PPS = Peripheral Pin Select	$\mathrm{TTL}=\mathrm{TTL}$ input buffer	

Note 1: This pin is available on dsPIC33EPXXXMU806/810/814 devices only.
2: AVDD must be connected at all times.

1.1 Referenced Sources

This device data sheet is based on the following individual chapters of the "dsPIC33E/PIC24E Family Reference Manual". These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the dsPIC33EP256MU806 product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.
In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70573)
- Section 2. "CPU" (DS70359)
- Section 3. "Data Memory" (DS70595)
- Section 4. "Program Memory" (DS70613)
- Section 5. "Flash Programming" (DS70609)
- Section 6. "Interrupts" (DS70600)
- Section 7. "Oscillator" (DS70580)
- Section 8. "Reset" (DS70602)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70615)
- Section 10. "I/O Ports" (DS70598)
- Section 11. "Timers" (DS70362)
- Section 12. "Input Capture" (DS70352)
- Section 13. "Output Compare" (DS70358)
- Section 14. "High-Speed PWM" (DS70645)
- Section 15. "Quadrature Encoder Interface (QEI)" (DS70601)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70621)
- Section 17. "UART" (DS70582)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70569)
- Section 19. "Inter-Integrated Circuit ${ }^{T M}\left(I^{2} C^{T M}\right)$ " (DS70330)
- Section 20. "Data Converter Interface (DCI)" (DS70356)
- Section 21. "Enhanced Controller Area Network (ECAN ${ }^{\text {TM }}$)" (DS70353)
- Section 22. "Direct Memory Access (DMA)" (DS70348)
- Section 23. "CodeGuard ${ }^{\text {TM }}$ Security" (DS70634)
- Section 24. "Programming and Diagnostics" (DS70608)
- Section 25. "USB On-The-Go (OTG)" (DS70571)
- Section 26. "Op amp/Comparator" (DS70357)
- Section 27. "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- Section 28. "Parallel Master Port (PMP)" (DS70576)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS70584)
- Section 30. "Device Configuration" (DS70618)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of 16 -bit DSC and microcontrollers requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All Vdd and Vss pins (see Section 2.2
"Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used) (see Section 2.2 "Decoupling Capacitors")
- VcAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VcAP)")
- $\overline{M C L R}$ pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")
Additionally, the following pins may be required:
- VUSB pin is used when utilizing the USB module. If the USB module is not used, VUSB must be connected to VDD.
- Vref+/Vref- pins is used when external voltage reference for ADC module is implemented
Note: The AVDD and AVss pins must be connected independent of the ADC voltage reference source. The voltage difference between AVDD and VDD cannot exceed 300 mV at any time during operation or start-up.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as Vdd, Vss, Vusb, AVdd and $A V s s$ is required.
Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of $0.1 \mu \mathrm{~F}(100 \mathrm{nF}), 10-20 \mathrm{~V}$. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, above tens of MHz , add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \mu \mathrm{~F}$ to $0.001 \mu \mathrm{~F}$. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \mu \mathrm{~F}$ in parallel with $0.001 \mu \mathrm{~F}$.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from $4.7 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$.

2.3 CPU Logic Filter Capacitor Connection (Vcap)

A low-ESR (< 1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor greater than $4.7 \mu \mathrm{~F}(10 \mu \mathrm{~F}$ is recommended), 16 V connected to ground. The type can be ceramic or tantalum. See Section 32.0 "Electrical Characteristics" for additional information.
The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 29.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text { MCLR }}$ pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\mathrm{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.
For example, as shown in Figure 2-2, it is recommended that the capacitor C , be isolated from the $\overline{\mathrm{MCLR}}$ pin during programming and debugging operations.
Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the $\overline{\mathrm{MCLR}}$ pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Note 1: $R \leq 10 \mathrm{k} \Omega$ is recommended. A suggested starting value is $10 \mathrm{k} \Omega$. Ensure that the $\overline{\mathrm{MCLR}}$ pin VIH and VIL specifications are met.
2: $\quad \mathrm{R} 1 \leq 470 \Omega$ will limit any current flowing into $\overline{M C L R}$ from the external capacitor C, in the event of $\overline{M C L R}$ pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the $\overline{M C L R}$ pin VIH and VIL specifications are met.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.
Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.
Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB ${ }^{\circledR}$ PICkit ${ }^{\text {TM }} 3$, MPLAB ICD 3, or MPLAB REAL ICE ${ }^{\text {TM }}$.

For more information on MPLAB ICD 3 and MPLAB REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB ${ }^{\circledR}$ ICD 3 " (poster) DS51765
- "MPLAB ${ }^{\circledR}$ ICD 3 Design Advisory" DS51764
- "MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM }}$ In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM " In-Circuit Emulator }}$ (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see Section 9.0 "Oscillator Configuration" for details.
The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < FIN < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.
Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.
Alternatively, connect a 1 k to 10 k resistor between Vss and unused pins and drive the output to logic low.

NOTES:

3.0 CPU

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70359) in the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word, with a variable length opcode field. The Program Counter (PC) is 24 bits wide and addresses up to $4 \mathrm{M} \times 24$ bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses, and the table instructions. Overhead free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

Devices have sixteen 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a software Stack Pointer for interrupts and calls. The working registers, W0 through W3, and selected bits from the STATUS register, have shadow registers for fast context saves and restores using a single POP.S or PUSH.S instruction.

3.2 Instruction Set

The dsPIC33EPXXXMU806/810/814 instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The PIC24EPXXXGU810/814 instruction set has the MCU class of instructions and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base data space can be addressed as 32 K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear data space. On dsPIC33EPXXXMU806/ 810/814 devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device specific.
The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary. The program-to-dataspace mapping feature, known as Program Space Visibility (PSV), lets any instruction access program space as if it were data space. Moreover, the Base Data Space address is used in conjunction with a read or write page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8 Mwords or 16 Mbytes. Refer to Section 3. "Data Memory" (DS70595) and Section 4. "Program Memory" (DS70613) in the "dsPIC33E/ PIC24E Family Reference Manual" for more details on EDS, PSV and table accesses.

On dsPIC33EPXXXMU806/810/814 devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundarychecking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports BitReverse Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. PIC24EPXXXGU810/814 devices do not support Modulo and Bit-Reverse Addressing.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined Addressing mode group, depending upon its functional requirements. As many as six Addressing modes are supported for each instruction.

FIGURE 3-1: dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 CPU BLOCK DIAGRAM

Note 1: This feature or peripheral is only available on dsPIC33EPXXXMU806/810/814 devices.

3.5 Programmer's Model

The programmer's model for the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXMU806/810/ 814 and PIC24EPXXXGU810/814 devices contain control registers for Modulo Addressing (dsPIC33EPXXXMU806/810/814 devices only), BitReversed Addressing (dsPIC33EPXXXMU806/810/ 814 devices only) and interrupts. These registers are described in subsequent sections of this document.
All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15	Working register array
ACCA, ACCB	40-bit DSP Accumulators
PC	23-bit Program Counter
SR	ALU and DSP Engine Status register
SPLIM	Stack Pointer Limit Value register
TBLPAG	Table Memory Page Address register
DSRPAG	Extended Data Space (EDS) Read Page register
DSWPAG	Extended Data Space (EDS) Write Page register
RCOUNT	REPEAT Loop Count register
DCOUNT ${ }^{(1)}$	DO Loop Count register
DOSTARTH ${ }^{(\mathbf{1 2)}}$, DOSTARTL ${ }^{(\mathbf{1 , 2)}}$	D0 Loop Start Address register (High and Low)
DOENDH ${ }^{(1)}$, DOENDL ${ }^{(1)}$	DO Loop End Address register (High and Low)
CORCON	Contains DSP Engine, DO Loop control and trap status bits

Note 1: This register is available on dsPIC33EPXXXMU806/810/814 devices only.
2: The DOSTARTH and DOSTARTL registers are read-only.

FIGURE 3-2: PROGRAMMER'S MODEL

Note 1: This feature or bit is available on dsPIC33EPXXXMU806/810/814 devices only.

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

$R / W-0$	$R / W-0$	$R / W-0$	$R / W-0$	$R / C-0$	$R / C-0$	$R-0$	$R / W-0$
$\mathrm{OA}^{(\mathbf{1})}$	$\mathrm{OB}^{(\mathbf{1})}$	$\mathrm{SA}^{(1,4)}$	$\mathrm{SB}^{(\mathbf{1}, 4)}$	$\mathrm{OAB}^{(\mathbf{1})}$	$\mathrm{SAB}^{(\mathbf{1})}$	$\mathrm{DA}^{(\mathbf{1})}$	DC
bit 15			bit 8				

R/W-0 $0^{(2,3)}$	R/W-0 $0^{(2,3)}$	R/W-0 $0^{(2,3)}$	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	$\mathrm{IPL}<2: 0>$	RA	N	OV	Z	C	
bit 7				bit 0			

Legend:		$\mathrm{U}=$ Unimplemen	as '0'
$\mathrm{R}=$ Readable bit	W = Writable bit	C = Clearable bit	
-n = Value at POR	' 1 '= Bit is set	' 0 ' = Bit is cleared	$x=$ Bit is unknown

bit 15 OA: Accumulator A Overflow Status bit ${ }^{(1)}$
1 = Accumulator A has overflowed
0 = Accumulator A has not overflowed
bit 14 OB: Accumulator B Overflow Status bit ${ }^{(1)}$
$1=$ Accumulator B has overflowed
0 = Accumulator B has not overflowed
bit 13 SA: Accumulator A Saturation 'Sticky' Status bit ${ }^{(1,4)}$
1 = Accumulator A is saturated or has been saturated at some time
$0=$ Accumulator A is not saturated
bit 12 SB: Accumulator B Saturation 'Sticky' Status bit ${ }^{(1,4)}$
$1=$ Accumulator B is saturated or has been saturated at some time
$0=$ Accumulator B is not saturated
bit $11 \quad \mathrm{OAB}: \mathrm{OA} \|$ OB Combined Accumulator Overflow Status bit ${ }^{(1)}$
1 = Accumulators A or B have overflowed
$0=$ Neither Accumulators A or B have overflowed
bit $10 \quad$ SAB: SA || SB Combined Accumulator 'Sticky' Status bit ${ }^{(\mathbf{1})}$
1 = Accumulators A or B are saturated or have been saturated at some time
$0=$ Neither Accumulator A or B are saturated
bit $9 \quad$ DA: DO Loop Active bit ${ }^{(\mathbf{1})}$
1 = DO loop in progress
0 = DO loop not in progress
bit 8
DC: MCU ALU Half Carry/ $\overline{\text { Borrow }}$ bit
1 = A carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data) of the result occurred
$0=$ No carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data) of the result occurred

Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1 .
3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ${ }^{(2)}$
111 = CPU Interrupt Priority Level is 7 (15, user interrupts disabled)
110 = CPU Interrupt Priority Level is 6 (14)
$101=$ CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)
bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
$0=$ REPEAT loop not in progress
bit $3 \quad N$: MCU ALU Negative bit
1 = Result was negative
$0=$ Result was non-negative (zero or positive)
bit 2 OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
$0=$ No overflow occurred
bit 1
Z: MCU ALU Zero bit
1 = An operation that affects the Z bit has set it at some time in the past
$0=$ The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit $0 \quad$ C: MCU ALU Carry/ $\overline{\text { Borrow }}$ bit
1 = A carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Most Significant bit of the result occurred

Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1 .
3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	-	US<1:0> ${ }^{(1)}$		EDT ${ }^{(1,2)}$	DL<2:0> ${ }^{(1)}$		
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA ${ }^{(1)}$	SATB ${ }^{(1)}$	SATDW ${ }^{(1)}$	ACCSAT $^{(1)}$	IPL3 ${ }^{(3)}$	SFA	RND ${ }^{(1)}$	$\mathrm{IF}^{(1)}$
bit 7							bit 0

Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit $15 \quad$ VAR: Variable Exception Processing Latency Control bit
1 = Variable exception processing enabled
$0=$ Fixed exception processing enabled
bit 14
Unimplemented: Read as '0'
bit 13-12 US<1:0>: DSP Multiply Unsigned/Signed Control bits
11 = Reserved
$10=$ DSP engine multiplies are mixed-sign
01 = DSP engine multiplies are unsigned
00 = DSP engine multiplies are signed
bit 11 EDT: Early DO Loop Termination Control bit ${ }^{(1,2)}$
1 = Terminate executing DO loop at end of current loop iteration
$0=$ No effect
bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits
111 = 7 DO loops active
-
-
-
001 = 1 DO loop active
000 = 0 DO loops active
bit 7 SATA: AccA Saturation Enable bit 1 = Accumulator A saturation enabled
$0=$ Accumulator A saturation disabled
bit 6 SATB: AccB Saturation Enable bit 1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled
bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
0 = Data space write saturation disabled
bit 4 ACCSAT: Accumulator Saturation Mode Select bit
$1=9.31$ saturation (super saturation)
$0=1.31$ saturation (normal saturation)
bit $3 \quad$ IPL3: CPU Interrupt Priority Level Status bit $3^{(3)}$
$1=$ CPU interrupt priority level is greater than 7
$0=$ CPU interrupt priority level is 7 or less

Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.
2: This bit is always read as ' 0 '.
3: The IPL3 bit is concatenated with the IPL<2:0> bits ($\mathrm{SR}<7: 5>$) to form the CPU interrupt priority level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2 SFA: Stack Frame Active Status bit 1 = Stack frame is active. W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values
0 = Stack frame is not active. W14 and W15 address of EDS or Base Data Space
bit 1
RND: Rounding Mode Select bit
1 = Biased (conventional) rounding enabled
$0=$ Unbiased (convergent) rounding enabled
bit $0 \quad$ IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply
0 = Fractional mode enabled for DSP multiply
Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.
2: This bit is always read as ' 0 '.
3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.
The ALU can perform 8 -bit or 16 -bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.
Refer to the " 16 -bit MCU and DSC Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.
The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16 -bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16 -bit x 16 -bit signed
- 16 -bit x 16 -bit unsigned
- 16-bit signed x 5 -bit (literal) unsigned
- 16 -bit signed $\times 16$-bit unsigned
- 16-bit unsigned x 5 -bit (literal) unsigned
- 16 -bit unsigned $\times 16$-bit signed
- 8 -bit unsigned x 8 -bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

1. 32-bit signed/16-bit signed divide
2. 32-bit unsigned/16-bit unsigned divide
3. 16-bit signed/16-bit signed divide
4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16 -bit divisor (Wn) and any W register (aligned) pair $(W(m+1): W m)$ for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32 -bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine
 (dsPIC33EPXXXMU806/810/814 Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumula-tor-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned, or mixed-sign DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	$A=0$	Yes
ED	$A=(x-y)^{2}$	No
EDAC	$A=A+(x-y)^{2}$	No
MAC	$A=A+(x \cdot y)$	Yes
MAC	$A=A+x^{2}$	No
MOVSAC	No change in A	Yes
MPY	$A=x \cdot y$	No
MPY	$A=x^{2}$	No
MPY. N	$A=-x \cdot y$	No
MSC	$A=A-x \cdot y$	Yes

NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70613) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices is 4 M instructions. The space is addressable by a 24 -bit value derived either from the 23 -bit PC during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".
User application access to the program memory space is restricted to the lower half of the address range (0×000000 to $0 \times 7 F F F F F$). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.
The memory map for the dsPIC33EPXXXMU806/810/ 814 and PIC24EPXXXGU810/814 devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 DEVICES ${ }^{(1)}$

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).
Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS
 All dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices reserve the

 addresses between 0×00000 and 0×000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address 0×000000 of the primary Flash memory or at address 0x7FC000 of the auxiliary Flash memory, with the actual address for the start of code at address 0×000002 of the primary Flash memory or at address 0x7FC002 of the auxiliary Flash memory. Reset Target Vector Select bit (RSTPRI) in the FPOR Configuration register controls whether primary or auxiliary Flash Reset location is used.A more detailed discussion of the interrupt vector tables is provided in Section 7.1 "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6.
All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a base data space address range of 64 Kbytes or 32 K words.
The base data space address is used in conjunction with a read or write page register (DSRPAG or DSWPAG) to form an extended data space, which has a total address range of 16 MBytes.
dsPIC33EPXXXMU806/810/814
and PIC24EPXXXGU810/814 devices implement up to 56 Kbytes of data memory. If an EA point to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16 -bit wide blocks. Data is aligned in data memory and registers as 16 -bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with $\mathrm{PIC}^{\circledR} \mathrm{MCU}$ devices and improve data space memory usage efficiency, the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.
A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.
A Sign-Extend instruction (SE) is provided to allow user applications to translate 8 -bit signed data to 16 -bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to $0 x 0 F F F$, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 core and peripheral modules for controlling the operation of the device.
SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as ' 0 '.
Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0×0000 and $0 x 1 F F F$ is referred to as the near data space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16 -bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33EP512MU810/814 DEVICES WITH 52 KB RAM

FIGURE 4-4: DATA MEMORY MAP FOR PIC24EP512GU810/814 DEVICES WITH 52 KB RAM

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33EP256MU806/810/814 DEVICES WITH 28 KB RAM

FIGURE 4-6: DATA MEMORY MAP FOR PIC24EP256GU810/814 DEVICES WITH 28 KB RAM

4.2.5 $\quad X$ AND Y DATA SPACES

The dsPIC33EPXXXMU806/810/814 core has two data spaces, X and Y . These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).
The PIC24EPXXXGU810/814 devices do not have a Y data space and a Y AGU. For these devices, the entire data space is treated as X data space.
The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).
The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.
Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGU810/ 814 devices.
All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

4.2.6
 DMA RAM

Each dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 device contains 4 Kbytes of dual ported DMA RAM located at the end of Y data RAM and is part of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA Controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.
When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note 1: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.
2: On PIC24EPXXXGU810/814 devices, DMA RAM is located at the end of X data RAM and is part of X data space.
CPU CORE REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPLO	RA	N	OV	Z	C	0000
CORCON	0044	VAR	-	US<1:0>		EDT	DL<2:0>			SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	-	-	BWM<3:0>				YWM<3:0>				XWM<3:0>				0000
XMODSRT	0048	XMODSRT<15:1>															0	0000
XMODEND	004A	XMODEND<15:1>															1	0001
YMODSRT	004C	YMODSRT<15:1>															0	0000
YMODEND	004E	YMODEND<15:1>															1	0001
XbREV	0050	BREN	XBREV<14:0>															0000
DISICNT	0052	-	-	DISICNT<13:0>														0000
TBLPAG	0054	-	-	-	-	-	-	-	-	TBLPAG<7:0>								0000
MSTRPR	0058	MSTRPR<15:0>																0000

TABLE 4-2: CPU CORE REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
W0	0000	W0 (WREG)																0000
W1	0002	W1																0000
W2	0004	W2																0000
W3	0006	W3																0000
W4	0008	W4																0000
W5	000A	W5																0000
W6	000C	W6																0000
W7	000E	W7																0000
W8	0010	W8																0000
W9	0012	W9																0000
W10	0014	W10																0000
W11	0016	W11																0000
W12	0018	W12																0000
W13	001A	W13																0000
W14	001C	W14																0000
W15	001E	W15																1000
SPLIM	0020	SPLIM																0000
PCL	002E	PCL															-	0000
PCH	0030	-	-	-	-	-	-	-	-	-	PCH							0000
DSRPAG	0032	-	-	-	-	-	-	DSRPAG<9:0>										0001
DSWPAG	0034	-	-	-	-	-	-	-	DSWPAG<8:0>									0001
RCOUNT	0036	RCOUNT<15:0>																0000
SR	0042	-	-	-	-	-	-	-	DC	IPL2	IPL1	IPLO	RA	N	OV	z	c	0000
CORCON	0044	VAR	-	-	-	-	-	-	-	-	-	-	-	IPL3	SFA	-	-	0020
DISICNT	0052	-	-	DISICNT<13:0>														0000
TBLPAG	0054	-	-	-	-	-	-	-	-	TBLPAG<7:0>								0000
MSTRPR	0058	MSTRPR<15:0>																0000

TABLE 4-3:

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \hline \text { All } \\ \text { Resets } \end{array}$
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T31F	T2IF	OC2IF	IC2IF	DMAOIF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT11F	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC61F	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI21F	SPI2EIF	0000
IFS3	0806	-	RTCIF	DMA5IF	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	M12C2IF	SI2C2IF	T7IF	0000
IFS4	0808	-	-	-	-	QEI21F	-	PSESMIF	-	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	-	0000
IFS5	080A	PWM2IF	PWM1IF	IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	-	-	U3TXIF	U3RXIF	U3EIF	-	0000
IFS6	080C	-	-	-	-	-	-	-	-	-	-	-	PWM7IF	PWM6IF	PWM5IF	PWM4IF	PWM31F	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	-	-	-	-	-	-	0000
IFS8	0810	-	ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC131F	OC13IF	-	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMAOIE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI21E	SPI2EIE	0000
IEC3	0826	-	RTCIE	DMA5IE	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	-	-	-	-	QEI2IE	-	PSESMIE	-	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	-	0000
IEC5	082A	PWM2IE	PWM1IE	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	-	-	U3TXIE	U3RXIE	U3EIE	-	0000
IEC6	082C	-	-	-	-	-	-	-	-	-	-	-	PWM7IE	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE	-	-	-	-	-	-	0000
IEC8	0830	-	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	-	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840	-		T11P<2:0>		-		OC1IP<2:0>		-		IC1IP<2:0>		-		\|NTOIP<2:0>		4444
IPC1	0842	-		T2IP<2:0		-		OC2IP<2:0>		-		IC2IP<2:0>		-		DMAOIP $<2: 0$		4444
IPC2	0844	-		U1RXIP<2:		-		SP111P<2:0>		-		SPI1EIP<2:0>		-		T31P<2:0>		4444
IPC3	0846	-		NVMIP<2:0		-		DMA11P<2:0>		-		AD11P<2:0>		-		J1TXIP<2:0		4444
IPC4	0848	-		CNIP<2:0		-		CMIP<2:0>		-		M12C11P<2:0>		-		S12C11P<2:0		4444
IPC5	084A	-		IC8IP<2:0		-		IC7IP<2:0>		-		AD21P<2:0>		-		\|NT11P<2:0>		4444
IPC6	084C	-		T4IP<2:0		-		OC4IP<2:0>		-		OC3IP<2:0>		-		DMA2IP<2:0		4444
IPC7	084E	-		U2TXIP<2:0		-		U2RXIP $<2: 0$		-		INT2\|P<2:0>		-		T51P<2:0>		4444
IPC8	0850	-		C11P<2:0		-		C1RXIP<2:0>		-		SP121P<2:0>		-		SPI2EIP<2:0		4444
IPC9	0852	-		IC5IP<2:0		-		IC4IP<2:0>		-		IC31P<2:0>		-		DMA31P $<2: 0$		4444
IPC10	0854	-		OC71P<2:0		-		OC6\|P<2:0>		-		OC5IP<2:0>		-		IC6IP<2:0>		4444
IPC11	0856	-		T6IP<2:0		-		DMA4IP<2:0>		-		PMPIP<2:0>		-		OC8\|P<2:0>		4444
IPC12	0858	-		T8IP<2:0		-		MI2C2IP<2:0		-		SI2C21P<2:0>		-		T7IP<2:0>		4444
IPC13	085A			C2RXIP<2:		-		$1 \mathrm{NT} 4 \mathrm{P}<2: 0>$		-		INT3\|P<2:0>		-		T91P<2:0>		4444
IPC14	085C	-		DCIEIP<2:0		-		QEI11P<2:0>		-		PSEMIP<2:0>		-		C2IP<2:0>		4444
IPC15	085E	-	-	-	-	-		RTCIP<2:0>		-		DMA5IP<2:0>		-		DCIIP<2:0>		0444
IPC16	0860	-		CRCIP<2:0		-		U2EIP<2:0>		-		U1EIP<2:0>		-	-	-	-	4440

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \hline \text { All } \\ \text { Resets } \end{array}$
IPC17	0862	-	C2TXIP<2:0>			-	C1TXIP<2:0>			-	DMA7IP<2:0>			-	DMA6IP<2:0>			4444
IPC18	0864	-	QEI2IP<2:0>			-	-	-	-	-	PSESMIP<2:0>			-	-	-	-	4040
IPC20	0868	-	U3TXIP<2:0>			-	U3RXIP<2:0>			-	U3EIP<2:0>			-	-	-	-	4440
IPC21	086A	-	U4EIP<2:0>			-	USB11P<2:0>			-	-	-	-	-	-	-	-	4400
IPC22	086C	-	SPI31P<2:0>			-	SPI3EIP<2:0>			-	U4TXIP<2:0>			-	U4RXIP<2:0>			4444
IPC23	086E	-	PWM21P<2:0>			-	PWM11P<2:0>			-	IC91P<2:0>			-	OC91P<2:0>			4444
IPC24	0870	-	PWM6IP<2:0>			-	PWM5IP<2:0>			-	PWM4IP<2:0>			-	PWM31P<2:0>			4444
IPC25	0872	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM7IP<2:0>			0004
IPC29	087A	-	DMA91P<2:0>			-	DMA8IP<2:0>			-	-	-	-	-	-	-	-	4400
IPC30	087C	-	SP141P<2:0>			-	SPI4EIP<2:0>			-	DMA111P<2:0>			-	DMA10IP<2:0>			4444
IPC31	087E	-	IC11IP<2:0>			-	OC111P<2:0>			-	IC10IP<2:0>			-	OC10IP<2:0>			4444
IPC32	0880	-	DMA131P<2:0>			-	DMA12IP<2:0>			-	IC12IP<2:0>			-	OC121P<2:0>			4444
IPC33	0882	-	IC131P<2:0>			-	OC131P<2:0>			-	-	-	-	-	DMA14IP<2:0>			4404
IPC34	0884	-	IC15IP<2:0>			-	OC15IP<2:0>			-	IC14IP<2:0>			-		C14IP<2:0		4444
IPC35	0886	-	-	-	-	-	ICDIP<2:0>			-	IC16IP<2:0>			-	OC16IP<2:0>			0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000
INTCON2	08C2	GIE	DISI	SWTRAP	-	-	-	-	-	-	-	-	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	8000
INTCON3	08C4	-	-	-	-	-	-	-	-	-	UAE	DAE	DOOVR	-	-	-	-	0000
INTCON4	08C6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SGHT	0000
INTTREG	08C8	-	-	-	-		ILR	3:0>					VECNUM	<7:0>				0000

TABLE 4-4:

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \hline \text { All } \\ \text { Resets } \end{array}$
IFSO	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPITEIF	T3IF	T21F	OC2IF	IC2IF	DMAOIF	T11F	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21F	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI21F	SPI2EIF	0000
IFS3	0806	-	RTCIF	DMA5IF	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T91F	T8IF	M12C2IF	SI2C2IF	T7IF	0000
IFS4	0808	-	-	-	-	QEI2IF	-	PSESMIF	-	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	-	0000
IFS5	080A	PWM21F	PWM1IF	IC9IF	OC91F	SPI31F	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	-	-	U3TXIF	U3RXIF	U3EIF	-	0000
IFS6	080C	-	-	-	-	-	-	-	-	-	-	-	-	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	-	-	-	-	-	-	0000
IFS8	0810	-	ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF	-	DMA14IF	DMA131F	DMA12IF	IC121F	OC12IF	0000
IECO	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T21E	OC2IE	IC2IE	DMAOIE	T1IE	OC1IE	IC1IE	Intoie	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	M12C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	-	RTCIE	DMA5IE	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	-	-	-	-	QEI2IE	-	PSESMIE	-	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	-	0000
IEC5	082A	PWM21E	PWM1IE	IC9IE	Oc9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	-	-	U3TXIE	U3RXIE	U3EIE	-	0000
IEC6	082C	-	-	-	-	-	-	-	-	-	-	-	-	PWM6IE	PWM5IE	PWM4IE	PWM31E	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE	-	-	-	-	-	-	0000
IEC8	0830	-	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	-	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840	-	T11P<2:0>			-	OC11P<2:0>			-	IC1IP<2:0>			-	INTOIP<2:0>			4444
IPC1	0842	-	T21P<2:0>			-	OC2IP<2:0>			-	1 C 21 P <2:0>			-	DMAOIP<2:0>			4444
IPC2	0844	-	U1RXIP<2:0>			-	SP111P<2:0>			-	SPI1EIP<2:0>			-	T31P<2:0>			4444
IPC3	0846	-	NVMIP $<2: 0$ >			-	DMA11P<2:0>			-	AD11P<2:0>			-	U1TXIP<2:0>			4444
IPC4	0848	-	CNIP<2:0>			-	CMIP<2:0>			-	M12C1IP<2:0>			-	SI2C1IP<2:0>			4444
IPC5	084A	-	1 C 81 P <2:0>			-	$1 \mathrm{C7IP}$ <2:0>			-	AD21P<2:0>			-	INT1\|P<2:0>			4444
IPC6	084C	-	T4IP<2:0>			-	OC4\|P<2:0>			-	OC31P<2:0>			-	DMA21P<2:0>			4444
IPC7	084E	-	U2TXIP<2:0>			-	U2RXIP<2:0>			-	INT2\|P<2:0>			-	T51P<2:0>			4444
IPC8	0850	-	C11P<2:0>			-	C1RXIP<2:0>			-	SP121P<2:0>			-	SPI2EIP<2:0>			4444
IPC9	0852	-	IC5IP<2:0>			-	IC4IP<2:0>			-	IC31P<2:0>			-	DMA31P<2:0>			4444
IPC10	0854	-	OC7\|P<2:0>			-	OC6IP <2:0>			-	OC5\|P<2:0>			-	IC6IP<2:0>			4444
IPC11	0856	-	T6\|P<2:0>			-	DMA4IP<2:0>			-	PMPIP<2:0>			-	OC8\|P<2:0>			4444
IPC12	0858	-	T8\|P<2:0>			-	M12C21P<2:0>			-	SI2C21P<2:0>			-	T7IP<2:0>			4444
IPC13	085A		C2RXIP<2:0>			-	INT4\|P<2:0>			-	INT31P<2:0>			-	T91P<2:0>			4444
IPC14	085C	-	DCIEIP<2:0>			-	QE111P<2:0>			-	PSEMIP<2:0>			-	C21P<2:0>			4444
IPC15	085E	-	-	-	-	-	RTCIP<2:0>			-	DMA5IP<2:0>			-	DCIIP<2:0>			0444
IPC16	0860	-	CRCIP<2:0>			-	U2EIP<2:0>			-	U1EIP<2:0>			-	-	- -	-	4440

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \hline \text { All } \\ \text { Resets } \\ \hline \end{array}$
IPC17	0862	-	C2TXIP<2:0>			-	C1TXIP<2:0>			-	DMA7IP<2:0>			-	DMA6IP<2:0>			4444
IPC18	0864	-	QEI2IP<2:0>			-	-	-	-	-	PSESMIP<2:0>			-	-	-	-	4040
IPC20	0868	-	U3TXIP<2:0>			-	U3RXIP<2:0>			-	U3EIP<2:0>			-	-	-	-	4440
IPC21	086A	-	U4EIP<2:0>			-	USB11P<2:0>			-	-	-	-	-	-	-	-	4400
IPC22	086C	-	SPI31P<2:0>			-	SPI3EIP<2:0>			-	U4TXIP<2:0>			-	U4RXIP<2:0>			4444
IPC23	086E	-	PWM21P<2:0>			-	PWM1IP<2:0>			-	IC91P<2:0>			-	OC91P<2:0>			4444
IPC24	0870	-	PWM6IP<2:0>			-	PWM5IP<2:0>			-	PWM4IP<2:0>			-	PWM31P<2:0>			4444
IPC29	087A	-	DMA91P<2:0>			-	DMA8IP<2:0>			-	-	-	-	-	-	-	-	4400
IPC30	087C	-	SP14\|P<2:0>			-	SPI4EIP<2:0>			-	DMA111P<2:0>			-	DMA10IP<2:0>			4444
IPC31	087E	-	IC11\|P<2:0>			-	OC111P<2:0>			-	IC10\|P<2:0>			-	OC10IP<2:0>			4444
IPC32	0880	-	DMA131P<2:0>			-	DMA12IP<2:0>			-	IC12IP<2:0>			-	OC121P<2:0>			4444
IPC33	0882	-	IC131P<2:0>			-	OC131P<2:0>			-	-	-	-	-	DMA14IP<2:0>			4404
IPC34	0884	-	IC15IP<2:0>			-	OC15IP<2:0>			-	IC14IP<2:0>			-		C141P<2:0		4444
IPC35	0886	-	-	-	-	-	ICDIP<2:0>			-	IC16IP<2:0>			-	OC16\|P<2:0>			0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000
INTCON2	08C2	GIE	DISI	SWTRAP	-	-	-	-	-	-	-	-	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	8000
INTCON3	08C4	-	-	-	-	-	-	-	-	-	UAE	DAE	DOOVR	-	-	-	-	0000
INTCON4	08C6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SGHT	0000
INTTREG	08C8	-	-	-	-	-	ILR<3:0>				VECNUM<7:0>							0000

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \hline \text { All } \\ \text { Resets } \end{array}$	
IFSO	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T31F	T21F	OC21F	IC2IF	DMAOIF	T1IF	OC1IF	IC1IF	INTOIF	0000	
IFS1	0802	U2TXIF	U2RXIF	INT21F	T5IF	T4IF	OC4IF	OC3IF	DMA21F	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C11F	SI2C1IF	0000	
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C11F	C1RXIF	SPI21F	SPI2EIF	0000	
IFS3	0806	-	RTCIF	DMA5IF	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T91F	T8IF	M12C2IF	SI2C2IF	T7IF	0000	
IFS4	0808	-	-	-	-	QEI2IF	-	PSESMIF	-	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	-	0000	
IFS5	080A	PWM2IF	PWM11F	IC9IF	OC91F	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	-	-	U3TXIF	U3RXIF	U3EIF	-	0000	
IFS6	080C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM4IF	PWM31F	0000	
IFS7	080E	IC11IF	OC11IF	IC10IF	OC101F	SPI4IF	SPI4EIF	DMA11IF	DMA101F	DMA91F	DMA8IF	-	-	-	-	-	-	0000	
IFS8	0810	-	ICDIF	IC16IF	OC16IF	IC15IF	OC151F	IC14IF	OC14IF	IC13IF	OC13IF	-	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000	
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMAOIE	T1IE	OC1IE	IC1IE	INTOIE	0000	
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000	
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000	
IEC3	0826	-	RTCIE	DMA5IE	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000	
IEC4	0828	-	-	-	-	QEI2IE	-	PSESMIE	-	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	-	0000	
IEC5	082A	PWM2IE	PWM1IE	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	-	-	U3TXIE	U3RXIE	U3EIE	-	0000	
IEC6	082C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM4IE	PWM3IE	0000	
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA91E	DMA8IE	-	-	-	-	-	-	0000	
IEC8	0830	-	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	-	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000	
IPC0	0840	-	T11P<2:0>			-	OC11P<2:0>			-	IC11P<2:0>			-	INTOIP<2:0>			4444	
IPC1	0842	-	T2IP<2:0>			-	OC21P<2:0>			-	IC2IP<2:0>			-	DMAOIP<2:0>			4444	
IPC2	0844	-	U1RXIP<2:0>			-	SP111P<2:0>			-	SPI1EIP<2:0>			-	T31P<2:0>			4444	
IPC3	0846	-	NVMIP<2:0>			-	DMA11P<2:0>			-	AD11P<2:0>			-	U1TXIP<2:0>			4444	
IPC4	0848	-	CNIP<2:0>			-	CMIP<2:0>			-	M12C1IP<2:0>			-	SI2C11P<2:0>			4444	
IPC5	084A	-	$1 \mathrm{C} 81 \mathrm{P}<2: 0>$			-	IC7IP<2:0>			-	AD21P<2:0>			-	\|NT1	P <2:0>			4444
IPC6	084C	-	T4\|P<2:0>			-	OC41P<2:0>			-	OC31P<2:0>			-	DMA2IP<2:0>			4444	
IPC7	084E	-	U2TXIP<2:0>			-	U2RXIP<2:0>			-	INT2\|P<2:0>			-	T51P<2:0>			4444	
IPC8	0850	-	C11P<2:0>			-	C1RXIP<2:0>			-	SP121P<2:0>			-	SPI2EIP<2:0>			4444	
IPC9	0852	-	IC5IP<2:0>			-	IC4IP<2:0>			-	IC3IP<2:0>			-	DMA31P<2:0>			4444	
IPC10	0854	-	OC71P<2:0>			-	OC6IP<2:0>			-	OC5IP<2:0>			-	IC6IP<2:0>			4444	
IPC11	0856	-	T6\|P<2:0>			-	DMA4IP<2:0>			-	PMPIP<2:0>			-	OC8\|P<2:0>			4444	
IPC12	0858	-	T8\|P<2:0>			-	M12C2IP<2:0>			-	S12C2IP<2:0>			-	T7IP<2:0>			4444	
IPC13	085A		C2RXIP<2:0>			-	INT4\|P<2:0>			-	INT3IP<2:0>			-	T91P<2:0>			4444	
IPC14	085C	-	DCIEIP<2:0>			-	QE111P<2:0>			-	PSEMIP<2:0>			-	C2IP<2:0>			4444	
IPC15	085E	-	-	-	-	-	RTCIP<2:0>			-	DMA5IP<2:0>			-	DCIIP<2:0>			0444	
IPC16	0860	-	CRCIP<2:0>			-	U2EIP<2:0>			-	U1EIP<2:0>			-	-	- -	-	4440	

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dSPIC33EPXXXMU806 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \hline \text { All } \\ \text { Resets } \end{array}$
IPC17	0862	-	C2TXIP<2:0>			-	C1TXIP<2:0>			-	DMA7IP<2:0>			-	DMA6IP<2:0>			4444
IPC18	0864	-	QEI21P<2:0>			-	-	-	-	-	PSESMIP<2:0>			-	-	-	-	4040
IPC20	0868	-	U3TXIP<2:0>			-	U3RXIP<2:0>			-	U3EIP<2:0>			-	-	-	-	4440
IPC21	086A	-	U4EIP<2:0>			-	USB11P<2:0>			-	-	-	-	-	-	-	-	4400
IPC22	086C	-	SPI31P<2:0>			-	SPI3EIP<2:0>			-	U4TXIP<2:0>			-	U4RXIP<2:0>			4444
IPC23	086E	-	PWM2IP<2:0>			-	PWM11P<2:0>			-	IC9IP<2:0>			-	OC91P<2:0>			4444
IPC24	0870	-	-	\| -	-	-	-	-	-	-	PWM4IP<2:0>			-	PWM3IP<2:0>			0044
IPC29	087A	-	DMA91P<2:0>			-	DMA8IP<2:0>			-	-	- -	-	-	-	-	-	4400
IPC30	087C	-	SP14\|P<2:0>			-	SPI4EIP<2:0>			-	DMA111P<2:0>			-	DMA10IP<2:0>			4444
IPC31	087E	-	IC111P<2:0>			-	OC111P<2:0>			-	IC10\|P<2:0>			-	OC101P<2:0>			4444
IPC32	0880	-	DMA13IP<2:0>			-	DMA121P<2:0>			-	IC12IP<2:0>			-	OC121P<2:0>			4444
IPC33	0882	-	IC131P<2:0>			-	OC131P<2:0>			-	-	-	-	-	DMA14\|P<2:0>			4404
IPC34	0884	-	IC15IP<2:0>			-	OC15IP<2:0>			-	IC14IP<2:0>			-		C141P<2:0>		4444
IPC35	0886	-	-	-	-	-	ICDIP<2:0>			-	IC16IP<2:0>			-	OC16IP<2:0>			0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000
INTCON2	08C2	GIE	DISI	SWTRAP	-	-	-	-	-	-	-	-	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	8000
INTCON3	08C4	-	-	-	-	-	-	-	-	-	UAE	DAE	DOOVR	-	-	-	-	0000
INTCON4	08C6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SGHT	0000
INTTREG	08C8	-	-	-	-	-	ILR<3:0>				VECNUM<7:0>							0000

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\left\lvert\, \begin{gathered} \text { All } \\ \text { Resets } \end{gathered}\right.$
IFSO	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMAOIF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21F	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI21F	SPI2EIF	0000
IFS3	0806	-	RTCIF	DMA5IF	DCIIF	DCIEIF	-	-	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T81F	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	-	-	-	-	-	-	-	-	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	-	0000
IFS5	080A	-	-	IC9IF	OC9IF	SPI31F	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	-	-	U3TXIF	U3RXIF	U3EIF	-	0000
IFS7	080E	IC111F	OC111F	IC10IF	OC101F	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	-	-	-	-	-	-	0000
IFS8	0810	-	ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC131F	OC131F	-	DMA14IF	DMA131F	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMAOIE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA21E	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	-	RTCIE	DMA5IE	DCIIE	DCIEIE	-	-	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	-	-	-	-	-	-	-	-	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	-	0000
IEC5	082A	-	-	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	-	-	U3TXIE	U3RXIE	U3EIE	-	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE	-	-	-	-	-	-	0000
IEC8	0830	-	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	-	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840	-	T11P<2:0>			-	OC11P<2:0>			-	IC11P<2:0>			-	INTOIP<2:0>			4444
IPC1	0842	-	T21P<2:0>			-	OC21P<2:0>			-	IC2IP<2:0>			-	DMAOIP<2:0>			4444
IPC2	0844	-	U1RXIP<2:0>			-	SP111P<2:0>			-	SPI1EIP<2:0>			-	T31P<2:0>			4444
IPC3	0846	-	NVMIP<2:0>			-	DMA11P<2:0>			-	AD11P<2:0>			-	U1TXIP<2:0>			4444
IPC4	0848	-	CNIP<2:0>			-	CMIP<2:0>			-	M12C1IP<2:0>			-	SI2C1IP<2:0>			4444
IPC5	084A	-	IC8IP<2:0>			-	IC7IP<2:0>			-	AD21P<2:0>			-	INT11P<2:0>			4444
IPC6	084C	-	T4IP<2:0>			-	OC4IP<2:0>			-	OC31P<2:0>			-	DMA2IP<2:0>			4444
IPC7	084E	-	U2TXIP<2:0>			-	U2RXIP<2:0>			-	INT2\|P<2:0>			-	T5IP<2:0>			4444
IPC8	0850	-	C11P<2:0>			-	C1RXIP<2:0>			-	SPI21P<2:0>			-	SPI2EIP<2:0>			4444
IPC9	0852	-	IC5IP<2:0>			-	IC4IP<2:0>			-	IC31P<2:0>			-	DMA31P<2:0>			4444
IPC10	0854	-	OC7IP<2:0>			-	OC6IP<2:0>			-	OC5IP<2:0>			-	IC6IP<2:0>			4444
IPC11	0856	-	T6\|P<2:0>			-	DMA4IP<2:0>			-	PMPIP<2:0>			-	OC8IP<2:0>			4444
IPC12	0858	-	T8\|P<2:0>			-	M12C2IP<2:0>			-	S12C2IP<2:0>			-	T71P<2:0>			4444
IPC13	085A		C2RXIP<2:0>			-	INT4\|P<2:0>			-	INT31P<2:0>			-	T91P<2:0>			4444
IPC14	085C	-	DCIEIP<2:0>			-	-	-	-	-	-	-	-	-	C21P<2:0>			4004
IPC15	085E	-	-	-	-	-	RTCIP<2:0>			-	DMA5IP<2:0>			-	DCIIP<2:0>			0444
IPC16	0860	-	CRCIP<2:0>			-	U2EIP<2:0>			-	U1EIP<2:0>			-	-	-	-	4440
IPC17	0862	-	C2TXIP<2:0>			-	C1TXIP<2:0>			-	DMA7IP<2:0>			-	DMA6IP<2:0>			4444
IPC20	0868	-	U3TXIP<2:0>			-	U3RXIP<2:0>			-	U3EIP<2:0>			-	-	-	-	4440

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY

TIMER1 THROUGH TIMER9 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
TMR1	0100	Timer1 Register																xxxx
PR1	0102	Period Register 1																FFFF
T1CON	0104	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	-	TSYNC	TCS	-	0000
TMR2	0106	Timer2 Register																xxxx
TMR3HLD	0108	Timer3 Holding Register (for 32-bit timer operations only)																$x \times x x$
TMR3	010A	Timer3 Register																$x \times x \times$
PR2	010C	Period Register 2																FFFF
PR3	010E	Period Register 3																FFFF
T2CON	0110	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	T32	-	TCS	-	0000
T3CON	0112	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	-	-	TCS	-	0000
TMR4	0114	Timer4 Register																xxxx
TMR5HLD	0116	Timer5 Holding Register (for 32-bit operations only)																$x \times x x$
TMR5	0118	Timer5 Register																xxxx
PR4	011A	Period Register 4																FFFF
PR5	011C	Period Register 5																FFFF
T4CON	011E	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	T32	-	TCS	-	0000
T5CON	0120	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	-	-	TCS	-	0000
TMR6	0122	Timer6 Register																xxxx
TMR7HLD	0124	Timer7 Holding Register (for 32-bit operations only)																$x \times x x$
TMR7	0126	Timer7 Register																xxxx
PR6	0128	Period Register 6																FFFF
PR7	012A	Period Register 7																FFFF
T6CON	012C	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	T32	-	TCS	-	0000
T7CON	012E	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	-	-	TCS	-	0000
TMR8	0130	Timer8 Register																xxxx
TMR9HLD	0132	Timer9 Holding Register (for 32-bit operations only)																$x \times x x$
TMR9	0134	Timer9 Register																xxxx
PR8	0136	Period Register 8																FFFF
PR9	0138	Period Register 9																FFFF
T8CON	013A	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	T32	-	TCS	-	0000
T9CON	013C	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	-	-	TCS	-	0000

INPUT CAPTURE 1 THROUGH INPUT CAPTURE 16 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
IC1CON1	0140	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICl<1:0>		ICOV	ICBNE	ICM<2:0>			
IC1CON2	0142	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					
IC1BUF	0144	Input Capture 1 Buffer Register																
IC1TMR	0146	Input Capture 1 Timer																
IC2CON1	0148	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE	ICM<2:0>			
IC2CON2	014A	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-			CSEL			
IC2BUF	014C	Input Capture 2 Buffer Register																
IC2TMR	014E	Input Capture 2 Timer																
IC3CON1	0150	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE		ICM<2:0		
IC3CON2	0152	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					
IC3BUF	0154	Input Capture 3 Buffer Register																
IC3TMR	0156	Input Capture 3 Timer																
IC4CON1	0158	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	\|C	<1:0>		ICOV	ICBNE		ICM<2:0	
IC4CON2	015A	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					
IC4BUF	015C	Input Capture 4 Buffer Register																
IC4TMR	015E	Input Capture 4 Timer																
IC5CON1	0160	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	IC1<1:0>		ICOV	ICBNE		ICM<2:0		
IC5CON2	0162	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					
IC5BUF	0164	Input Capture 5 Buffer Register																
IC5TMR	0166	Input Capture 5 Timer																
IC6CON1	0168	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE		ICM<2:0		
IC6CON2	016A	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					
IC6BUF	016C	Input Capture 6 Buffer Register																
IC6TMR	016E	Input Capture 6 Timer																
IC7CON1	0170	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICl<1:0>		ICOV	ICBNE		ICM<2:0		
IC7CON2	0172	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					
IC7BUF	0174	Input Capture 7 Buffer Register																
IC7TMR	0176	Input Capture 7 Timer																
IC8CON1	0178	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE		ICM<2:0		
IC8CON2	017A	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					
IC8BUF	017C	Input Capture 8 Buffer Register																
IC8TMR	017E	Input Capture 8 Timer																
IC9CON1	0180	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE		ICM<2:0		
IC9CON2	0182	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					
IC9BUF	0184	Input Capture 9 Buffer Register																
IC9TMR	0186	Input Capture 9 Timer																
IC10CON1	0188	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE		ICM<2:0		
IC10CON2	018A	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC10BUF	018C	Input Capture 10 Buffer Register																xxxx
IC10TMR	018E	Input Capture 10 Timer																0000
IC11CON1	0190	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE	ICM<2:0>			0000
IC11CON2	0192	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC11BUF	0194	Input Capture 11 Buffer Register																xxxx
IC11TMR	0196	Input Capture 11 Timer																0000
IC12CON1	0198	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE	ICM<2:0>			0000
IC12CON2	019A	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC12BUF	019C	Input Capture 12 Buffer Register																xxxx
IC12TMR	019E	Input Capture 12 Timer																0000
IC13CON1	01A0	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE		ICM<2:0>		0000
IC13CON2	01A2	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC13BUF	01A4	Input Capture 13 Buffer Register																xxxx
IC13TMR	01A6	Input Capture 13 Timer																0000
IC14CON1	01A8	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE		ICM<2:0>		0000
IC14CON2	01AA	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC14BUF	01AC	Input Capture 14 Buffer Register																xxxx
IC14TMR	01AE	Input Capture 14 Timer																0000
IC15CON1	01B0	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	$\mathrm{ICl<1:0>}$		ICOV	ICBNE		ICM<2:0>		0000
IC15CON2	01B2	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC15BUF	01B4	Input Capture 15 Buffer Register																xxxx
IC15TMR	01B6	Input Capture 15 Timer																0000
IC16CON1	01B8	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICl<1:0>		ICOV	ICBNE		ICM<2:0>		0000
IC16CON2	01BA	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC16BUF	01BC	Input Capture 16 Buffer Register																xxxx
IC16TMR	01BE	Input Capture 16 Timer																0000

[^0]

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC15CON1	098C	-	-	OCSIDL	OCTSEL<2:0>			ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE	OCM<2:0>			0000
OC15CON2	098E	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	-	-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL<4:0>					000C
OC15RS	0990	Output Compare 15 Secondary Register																xxxx
OC15R	0992	Output Compare 15 Register																xxxx
OC15TMR	0994	Timer Value 15 Register																xxxx
OC16CON1	0996	-	-	OCSIDL	OCTSEL<2:0>			ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE	OCM<2:0>			0000
OC16CON2	0998	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	-	-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL<4:0>					000C
OC16RS	099A	Output Compare 16 Secondary Register																xxxx
OC16R	099C	Output Compare 16 Register																xxxx
OC16TMR	099E	Timer Value 16 Register																xxxx
Legend: -= unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.																		

TABLE 4-10: PWM REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
PTCON	0C00	PTEN	-	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC<2:0>			SEVTPS<3:0>				0000
PTCON2	OC02	-	-	-	-	-	-	-	-	-	-	-	-	-		PCLKDIV<2:0>		0000
PTPER	0C04	PTPER<15:0>																FFF8
SEVTCMP	0C06	SEVTCMP<15:0>																0000
MDC	OCOA	MDC<15:0>																0000
STCON	OCOE	-	-	-	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC<2:0>			SEVTPS<3:0>				0000
STCON2	0C10	-	-	-	-	-	-	-	-	-	-	-	-	-		PCLKDIV<2:0		0000
STPER	0C12	STPER<15:0>																FFF8
SSEVTCMP	0C14	SSEVTCMP<15:0>																0000
CHOP	0C1A	CHPCLKEN	-	-	-	-	-		CHOPCLK<9:0>									0000

Legend: $\quad \mathrm{x}=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
TABLE 4-14: PWM GENERATOR 4 REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0C80	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC		DTCP	-	MTBS	CAM	XPRES	IUE	0000
IOCON4	0C82	PENH	PENL	POLH	POLL	PMOD<1:0>		OVRENH	OVRENL	OVRD	<1:0>	FLTD	<1:0>	CLDAT<1:0>		SWAP	OSYNC	0000
FCLCON4	0C84	IFLTMOD	CLSRC<4:0>					CLPOL	CLMOD	FLTSRC<4:0>					FLTPOL	FLTMOD<1:0>		0000
PDC4	0C86	PDC4<15:0>																0000
PHASE4	0C88	PHASE4<15:0>																0000
DTR4	0C8A	-	-	DTR4<13:0>														0000
ALTDTR4	0C8C	-	-	ALTDTR4<13:0>														0000
SDC4	0C8E	SDC4<15:0>																0000
SPHASE4	0C90	SPHASE4<15:0>																0000
TRIG4	0C92	TRGCMP<15:0>																0000
TRGCON4	0C94	TRGDIV<3:0>				-	-	-	-	-	-	TRGSTRT<5:0>						0000
PWMCAP4	0C98	PWMCAP4<15:0>																0000
LEBCON4	0C9A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	-	-	-	-	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY4	0C9C	-	-	-	-	LEB<11:0>												0000
AUXCON4	0C9E	-	-	-	-	BLANKSEL<3:0>				-	-	CHOPSEL<3:0>				CHOPHEN	CHOPLEN	0000

TABLE 4-18: QEI1 REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
QEITCON	01C0	QEIEN	-	QEISIDL	PIMOD<2:0>			IMV <1:0>		-	INTDIV<2:0>			CNTPOL	GATEN	CCM	1:0>	0000
QEIIIOC	01C2	QCAPEN	FLTREN	QFDIV<2:0>			OUTFNC<1:0>		SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	Home	INDEX	QEB	QEA	000x
QEI1STAT	01C4	-	-	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6	POSCNT<15:0>																0000
POS1CNTH	01C8	POSCNT<31:16>																0000
POS1HLD	01CA	POSHLD<15:0>																0000
VEL1CNT	01CC	VELCNT<15:0>																0000
INT1TMRL	01CE	INTTMR<15:0>																0000
INT1TMRH	01D0	INTTMR<31:16>																0000
INT1HLDL	01D2	INTHLD<15:0>																0000
INT1HLDH	01D4	INTHLD<31:16>																0000
INDX1CNTL	01D6	INDXCNT<15:0>																0000
INDX1CNTH	01D8	INDXCNT<31:16>																0000
INDX1HLD	01DA	INDXHLD<15:0>																0000
QEI1GECL	01DC	QEIGEC<15:0>																0000
QEI1ICL	01DC	QEIIC<15:0>																0000
QEIIGECH	01DE	QEIGEC<31:16>																0000
QEIIICH	01DE	QEIIC<31:16>																0000
QEI1LECL	01E0	QEILEC<15:0>																0000
QEI1LECH	01E2	QEILEC<31:16>																0000

TABLE 4-19: QEI2 REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\left\lvert\, \begin{gathered} \text { All } \\ \text { Resets } \end{gathered}\right.$
QEI2CON	05C0	QEIEN	-	QEISIDL	PIMOD<2:0>			IMV<1:0>		-	INTDIV<2:0>			CNTPOL	GATEN	CCM<1:0>		0000
QEI2IOC	05C2	QCAPEN	FLTREN	QFDIV<2:0>			OUTFNC<1:0>		SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI2STAT	05C4	-	-	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	Homien	IDXIRQ	IDXIEN	0000
POS2CNTL	05C6	POSCNT<15:0>																0000
POS2CNTH	05C8	POSCNT<31:16>																0000
POS2HLD	05CA	POSHLD<15:0>																0000
VEL2CNT	05CC	VELCNT<15:0>																0000
INT2TMRL	05CE	INTTMR<15:0>																0000
INT2TMRH	05D0	INTTMR<31:16>																0000
INT2HLDL	05D2	INTHLD<15:0>																0000
INT2HLDH	05D4	INTHLD<31:16>																0000
INDX2CNTL	05D6	INDXCNT<15:0>																0000
INDX2CNTH	05D8	INDXCNT<31:16>																0000
INDX2HLD	05DA	INDXHLD<15:0>																0000
QEI2GECL	05DC	QEIGEC<15:0>																0000
QEI2ICL	05DC	QEIIC<15:0>																0000
QEI2GECH	05DE	QEIGEC<31:16>																0000
QEI2ICH	05DE	QEIIC<31:16>																0000
QEI2LECL	05E0	QEILEC<15:0>																0000
QEI2LECH	05E2	QEILEC $31: 16$ >																0000

Legend: $\quad \mathrm{x}=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
TABLE 4-20: I2C1 and I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	-	-	-	-	-	-	-	-	Receive Register								0000
I2C1TRN	0202	-	-	-	-	-	-	-	-	Transmit Register								00FF
I2C1BRG	0204	-	-	-	-	-	-	-	Baud Rate Generator									0000
I2C1CON	0206	I2CEN	-	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	-	-	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF	0000
I2C1ADD	020A	-	-	-	-	-	-	Address Register										0000
I2C1MSK	020C	-	-	-	-	-	-	Address Mask										0000
I2C2RCV	0210	-	-	-	-	-	-	-	-	Receive Register								0000
I2C2TRN	0212	-	-	-	-	-	-	-	-	Transmit Register								00FF
I2C2BRG	0214	-	-	-	-	-	-	-	Baud Rate Generator									0000
I2C2CON	0216	I2CEN	-	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	-	-	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF	0000
I2C2ADD	021A	-	-	-	-	-	-	Address Register										0000
I2C2MSK	021C	-	-	-	-	-	-	Address Mask										0000
Legend:	- = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	

TABLE 4-21: UART1, UART2, UART3, and UART4 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	-	USIDL	IREN	RTSMD	-	UEN<1:0>		WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISELO	-	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	-	-	-	-	-	-	-	Transmit Register									xxxx
U1RXREG	0226	-	-	-	-	-	-	-	Receive Register									0000
U1BRG	0228	Baud Rate Generator Prescaler																0000
U2MODE	0230	UARTEN	-	USIDL	IREN	RTSMD	-	UEN < 1:0>		WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISELO	-	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	-	-	-	-	-	-	-	Transmit Register									xxxx
U2RXREG	0236	-	-	-	-	-	-	-	Receive Register									0000
U2BRG	0238	Baud Rate Generator Prescaler																0000
U3mode	0250	UARTEN	-	USIDL	IREN	RTSMD	-	UEN<1:0>		WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISELO	-	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	-	-	-	-	-	-	-	Transmit Register									xxxx
U3RXREG	0256	-	-	-	-	-	-	-	Receive Register									0000
U3BRG	0258	Baud Rate Generator Prescaler																0000
U4MODE	02B0	UARTEN	-	USIDL	IREN	RTSMD	-	UEN<1:0>		WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISELO	-	UTXBRK	UTXEN	UTXBF	TRMT	URXI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4	-	-	-	-	-	-	-	Transmit Register									xxxx
U4RXREG	02B6	-	-	-	-	-	-	-	Receive Register									0000
U4BRG	02B8	Baud Rate Generator Prescaler																0000

TABLE 4-22: SPI1, SPI2, SPI3, and SPI4 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$
SPI1STAT	0240	SPIEN	-	SPISIDL	-	-	SPIBEC<2:0>			SRMPT	SPIROV	SRXMPT	SISEL<2:0>			SPITBF	SPIRBF	0000
SPI1CON1	0242	-	-	-	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE<2:0>			PPRE<1:0>		0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	-	-	-	-	-	-	-	-	-		-	FRMDLY	SPIBEN	0000
SPI1BUF	0248	SPIx Transmit and Receive Buffer Register																0000
SPI2STAT	0260	SPIEN	-	SPISIDL	-	-	SPIBEC<2:0>			SRMPT	SPIROV	SRXMPT	SISEL<2:0>			SPITBF	SPIRBF	0000
SPI2CON1	0262	-	-	-	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE<2:0>			PPRE<1:0>		0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	-	-	-	-	-	-	-	-	-	-	-	FRMDLY	SPIBEN	0000
SPI2BUF	0268	SPIx Transmit and Receive Buffer Register																0000
SPI3STAT	02A0	SPIEN	-	SPISIDL	-	-	SPIBEC<2:0>			SRMPT	SPIROV	SRXMPT	SISEL<2:0>			SPITBF	SPIRBF	0000
SPI3CON1	02A2	-	-	-	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE<2:0>			PPRE<1:0>		0000
SPI3CON2	02A4	FRMEN	SPIFSD	FRMPOL	-	-	-	-	-	-	-	-	-	-	-	FRMDLY	SPIBEN	0000
SPI3BUF	02A8	SPIx Transmit and Receive Buffer Register																0000
SPI4STAT	02C0	SPIEN	-	SPISIDL	-	-	SPIBEC<2:0>			SRMPT	SPIROV	SRXMPT	SISEL<2:0>			SPITBF	SPIRBF	0000
SPI4CON1	02C2	-	-	-	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE<2:0>			PPRE<1:0>		0000
SPI4CON2	02C4	FRMEN	SPIFSD	FRMPOL	-	-	-	-	-	-	-	-	-	-	-	FRMDLY	SPIBEN	0000
SPI4BUF	02C8	SPIx Transmit and Receive Buffer Register																0000

[^1]TABLE 4-23: ADC1 and ADC2 REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
ADC2BUF9	0352	ADC Data Buffer 9																xxxx
ADC2BUFA	0354	ADC Data Buffer 10																xxxx
ADC2BUFB	0356	ADC Data Buffer 11																$x \times x x$
ADC2BUFC	0358	ADC Data Buffer 12																xxxx
ADC2BUFD	035A	ADC Data Buffer 13																xxxx
ADC2BUFE	035C	ADC Data Buffer 14																xxxx
ADC2BUFF	035E	ADC Data Buffer 15																xxxx
AD2CON1	0360	ADON	-	ADSIDL	ADDMABM	-	-	FORM<1:0>		SSRC<2:0>			SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362	VCFG<2:0>			-	-	CSCNA		S<1:0>	BUFS	-	SMPI<3:0>				BUFM	ALTS	0000
AD2CON3	0364	ADRC	-	-	SAMC<4:0>					ADCS<7:0>								0000
AD2CHS123	0366	-	-	-	-	-	CH123NB<1:0>		CH123SB	-	-	-	-	-	CH123N	<1:0>	CH123SA	0000
AD2CHS0	0368	CHONB	-	-	CHOSB<4:0>					CHONA	-	-	CHOSA<4:0>					0000
AD2CSSL	0270	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	Css9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	csso	0000
AD2CON4	0272	-	-	-	-	-	-	-	ADDMAEN	-	-	-	-	-		ABL<2:0		0000

Note 1: These bits are not available on dsPIC33EP256MU806 devices.
TABLE 4-24: DCI REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$
DCICON1	0280	DCIEN	-	DCISIDL	-	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	-	-	-	COF	<1:0>	0000
DCICON2	0282	-	-	-	-	BLEN<1:0>		-	COFSG<3:0>				-	WS<3:0>				0000
DCICON3	0284	-	-	-	-	BCG<11:0>												0000
DCISTAT	0286	-	-	-	-	SLOT<3:0>				-	-	-	-	ROV	RFUL	TUNF	TMPTY	0000
TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000
RSCON	028C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0	0000
RXBUFO	0290	Receive 0 Data Register																unuu
RXBUF1	0292	Receive 1 Data Register																unuu
RXBUF2	0294	Receive 2 Data Register																unuu
RXBUF3	0296	Receive 3 Data Register																ииии
TXBUF0	0298	Transmit 0 Data Register																0000
TXBUF1	029A	Transmit 1 Data Register																0000
TXBUF2	029C	Transmit 2 Data Register																0000
TXBUF3	029E	Transmit 3 Data Register																0000

TABLE 4-25: USB OTG REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
U1OTGIR	0488	-	-	-	-	-	-	-	-	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	-	VBUSVDIF	0000
U1OTGIE	048A	-	-	-	-	-	-	-	-	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	-	VBUSVDIE	0000
U1OTGSTAT	048C	-	-	-	-	-	-	-	-	ID	-	LSTATE	-	SESVD	SESEND	-	VBUSVD	0000
U1OTGCON	048E	-	-	-	-	-	-	-	-	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
U1PWRC	0490	-	-	-	-	-	-	-	-	UACTPND ${ }^{(4)}$	-	-	USLPGRD	-	-	USUSPND	USBPWR	0000
U1 $1 \mathrm{R}^{(1)}$	04C0	-	-	-	-	-	-	-	-	STALLIF	-	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
U1IR ${ }^{(2)}$	04C0	-	-	-	-	-	-	-	-	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF	0000
U1IE ${ }^{(1)}$	04C2	-	-	-	-	-	-	-	-	STALLIE	-	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
U1IE ${ }^{(2)}$	04C2	-	-	-	-	-	-	-	-	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE	0000
U1EIR ${ }^{(1)}$	04C4	-	-	-	-	-	-	-	-	BTSEF	BUSACCEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	0000
U1EIR ${ }^{(2)}$	04C4	-	-	-	-	-	-	-	-	BTSEF	BUSACCEF	DMAEF	BTOEF	DFN8EF	CRC16EF	EOFEF	PIDEF	0000
U1EIE ${ }^{(1)}$	04C6	-	-	-	-	-	-	-	-	BTSEE	BUSACCEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	0000
U1EIE ${ }^{(2)}$	04C6	-	-	-	-	-	-	-	-	BTSEE	BUSACCEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE	PIDEE	0000
U1STAT	04C8	-	-	-	-	-	-	-	-		ENDP	<3:0> ${ }^{(3)}$		DIR	PPBI	-	-	0000
U1CON ${ }^{(1)}$	04CA	-	-	-	-	-	-	-	-	-	SE0	PKTDIS	-	HOSTEN	RESUME	PPBRST	USBEN	0000
U1CON ${ }^{(2)}$	04CA	-	-	-	-	-	-	-	-	JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	0000
U1ADDR	04CC	-	-	-	-	-	-	-	-	LSPDEN $^{(1)}$			USB Device Ad	ddress (DEV	VADDR)			0000
U1BDTP1	04CE	-	-	-	-	-	-	-	-			BDT	PTRL<7:1>				-	0000
U1FRML	04D0	-	-	-	-	-	-	-	-				FRML<7:0>					0000
U1FRMH	04D2	-	-	-	-	-	-	-	-	-	-	-	-	-		FRMH<2:0>		0000
U1TOK ${ }^{(3)}$	04D4	-	-	-	-	-	-	-	-		PID	3:0>				<3:0>		0000
U1SOF ${ }^{(3)}$	04D6	-	-	-	-	-	-	-	-				CNT<7:0>					0000
U1BDTP2	04D8	-	-	-	-	-	-	-	-				BDTPTRH<7					0000
U1BDTP3	04DA	-	-	-	-	-	-	-	-				BDTPTRU<7	:0>				0000
U1CNFG1	04DC	-	-	-	-	-	-	-	-	UTEYE	UOEMON	-	USBSIDL	-	-	-	-	0000
U1CNFG2	O4DE	-	-	-	-	-	-	-	-	-	-	UVCMPSEL	PUVBUS	EXTI2CEN	UVBUSDIS	UVCMPDIS	UTRDIS	0000
U1EP0	04E0	-	-	-	-	-	-	-	-	LSPD	RETRYDIS	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP1	04E2	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP2	04E4	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP3	04E6	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP4	04E8	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
Legend:	- = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	
Note $1:$ $2:$ $3:$ $4:$	This bit This bit Device The res	s availab is availab mode only value for	e when e when These r this bit	he modu be modu is ane a	le is ope le is ope lways re ned.	rating in	Device Host mod in Host	de. ode.										

TABLE 4-25:

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1EP5	04EA	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP6	04EC	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP7	04EE	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP8	04F0	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP9	04F2	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP10	04F4	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP11	04F6	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP12	04F8	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP13	04FA	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP14	04FC	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP15	04FE	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1PWMRRS	0580				DC	<7:0>							PER<7:0>					0000
U1PWMCON	0582	PWMEN	-	-	-	-	-	PWMPOL	CNTEN	-	-	-	-	-	-	-	-	0000
Legend:	- = unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.																	
Note $1:$ $2:$ $3:$ $4:$	This bit This bit Device The res	is availabl is availabl mode only, en value fo	e when	em modu	ule is ope ule is ope always re ined.	erating in	Device Host mo in Host	mode. de mode.										

TABLE 4-26: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	-	-	CSIDL	ABAT	CANCKS	REQOP<2:0>			OPMODE<2:0>			-	CANCAP	-	-	WIN	0480
C1CTRL2	0402	-	-	-	-	-	-	-	-	ICODE<6:0>								0000
C1VEC	0404	-	-	-	FILHIT<4:0>													0040
C1FCTRL	0406	DMABS<2:0>			-	-	-	-	-	-	-	-	FSA<4:0>					0000
C1FIFO	0408	-	-	FBP<5:0>						-	-	FNRB<5:0>						0000
C1INTF	040A	-	-	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	-	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	-	-	-	-	-	-	-	-	IVRIE	WAKIE	ERRIE	-	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	TERRCNT<7:0>								RERRCNT<7:0>								0000
C1CFG1	0410	-	-	-	-	-	-	-	-	SJW<1:0> \quad BRP<5:0>								0000
C1CFG2	0412	-	WAKFIL	-	-	-	SEG2PH<2:0>			SEG2PHTS	SAM	SEG1PH<2:0>			PRSEG<2:0>			0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTENO	FFFF
C1FMSKSEL1	0418	F7MSK<1:0>		F6MSK<1:0>		F5MSK<1:0>		F4MSK<1:0>		F3MSK<1:0>		F2MSK<1:0>		F1MSK<1:0>		FOMSK<1:0>		0000
C1FMSKSEL2	041A	F15MSK<1:0>		F14MSK<1:0>		F13MSK<1:0>		F12MSK<1:0>		F11MSK<1:0>		F10MSK<1:0>		F9MSK<1:0>		F8MSK<1:0>		0000

TABLE 4-28: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1
TABLE 4-28: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 (CONTINUED)

TABLE 4-30: ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 0

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
-	$0500-$	See Table 4-29																-
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFULO	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVFO	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TXABAT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PR	R1<1:0>	TXEN0	TXABATO	TXLARB0	TXERR0	TXREQ0	RTREN0	TXOPR	1<1:0>	0000
C2TR23CON	0532	TXEN3	TXABAT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PR	R1<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PR	1<1:0>	0000
C2TR45CON	0534	TXEN5	TXABAT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PR	R1<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PR	k1:0>	0000
C2TR67CON	0536	TXEN7	TXABAT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PR	R1<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PR	<1:0>	xxxx
C2RXD	0540	Received Data Word																xxxx
C2TXD	0542	Transmit Data Word																xxxx

Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
TABLE 4-31:

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
-	0500- 051E	See Table 4-29																-
C2BUFPNT1	0520	F3BP<3:0>				F2BP<3:0>				F1BP<3:0>				F0BP<3:0>				0000
C2BUFPNT2	0522	F7BP<3:0>				F6BP<3:0>				F5BP $<3: 0>$				F4BP<3:0>				0000
C2BUFPNT3	0524	F11BP<3:0>				F10BP<3:0>				F9BP $<3: 0>$				F8BP<3:0>				0000
C2BUFPNT4	0526	F15BP<3:0>				F14BP<3:0>				F13BP<3:0>				F12BP<3:0>				0000
C2RXMOSID	0530	SID<10:3>								SID<2:0>			-	MIDE	-	EID<17:16>		xxxx
C2RXMOEID	0532	EID<15:8>								EID<7:0>								xxxx
C2RXM1SID	0534	SID<10:3>								SID<2:0>			-	MIDE	-	EID<1	16>	xxxx
C2RXM1EID	0536	EID<15:8>								EID<7:0>								xxxx
C2RXM2SID	0538	SID<10:3>								SID<2:0>			-	MIDE	-	EID<17	16>	xxxx
C2RXM2EID	053A	EID<15:8>								EID<7:0>								xxxx
C2RXFOSID	0540	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<1	16>	xxxx
C2RXFOEID	0542	EID<15:8>								EID<7:0>								xxxx
C2RXF1SID	0544	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<17	16>	xxxx
C2RXF1EID	0546	EID<15:8>								EID<7:0>								xxxx
C2RXF2SID	0548	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<17	16>	xxxx
C2RXF2EID	054A	EID<15:8>								EID<7:0>								$x \times x \times$
C2RXF3SID	054C	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<1	16>	$x \times x x$
C2RXF3EID	054E	EID<15:8>								EID<7:0>								$x \times x x$
C2RXF4SID	0550	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<1	16>	xxxx
C2RXF4EID	0552	EID<15:8>								EID<7:0>								$x \times x x$
C2RXF5SID	0554	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<1	16>	$x \times x x$
C2RXF5EID	0556	EID<15:8>								EID<7:0>								$x \times x x$
C2RXF6SID	0558	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<1	16>	$x \times x x$
C2RXF6EID	055A	EID<15:8>								EID<7:0>								$x \times x x$
C2RXF7SID	055C	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<1	16>	xxxx
C2RXF7EID	055E	EID<15:8>								EID<7:0>								$x \times x x$
C2RXF8SID	0560	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<1	16>	xxxx
C2RXF8EID	0562	EID<15:8>								EID<7:0>								xxxx
C2RXF9SID	0564	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<1	16>	$x \times x x$
C2RXF9EID	0566	EID<15:8>								EID<7:0>								xxxx
C2RXF10SID	0568	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<1	16>	$x \times x \times$
C2RXF10EID	056A	EID<15:8>								EID<7:0>								xxxx
C2RXF11SID	056C	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<17	16>	$x \times x x$
C2RXF11EID	056E	EID<15:8>																xxxx
C2RXF12SID	0570	SID<10:3>								EID<7:0> SID $2: 0>$ - EXIDE - EID<17:16>								$x \times x x$
C2RXF12EID	0572	EID<15:8>								EID<7:0>								xxxx

Legend: $\quad \mathrm{x}=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
TABLE 4-31: ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 1 (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
C2RXF13SID	0574	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<17:16>		$x \times x \times$
C2RXF13EID	0576	EID<15:8>								EID<7:0>								xxxx
C2RXF14SID	0578	SID<10:3>								SID<2:0>			-	EXIDE	-	EID	16>	$x \times x x$
C2RXF14EID	057A	EID<15:8>								EID<7:0>								$x \times x x$
C2RXF15SID	057C	SID<10:3>								SID<2:0>			-	EXIDE	-	EID	:16>	xxxx
C2RXF15EID	057E	EID<15:8>								EID<7:0>								xxxx
Legend:	$x=$ unknown value on Reset, $-=$ unimplemented, read as ‘ 0 ’. Reset values are shown in hexadecimal.																	

TABLE 4-32: PARALLEL MASTERISLAVE PORT REGISTER MAP ${ }^{(1)}$

Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN	-	PSIDL	ADRMU	X<1:0>	Ptbeen	PTWREN	PTRDEN	CSF	1:0>	ALP	CS2P	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM<1:0>		INCM<1:0>		MODE16	MODE<1:0>		WAITB<1:0>		WAITM<3:0>				WAITE<1:0>		0000
PMADDR ${ }^{(1)}$	0604	CS2	CS1	Parallel Port Address (ADDR<13:0>)														0000
PMDOUT1 ${ }^{(1)}$	0604	Parallel Port Data Out Register 1 (Buffers Level 0 and 1)																0000
PMDOUT2	0606	Parallel Port Data Out Register 2 (Buffers Level 2 and 3)																0000
PMDIN1	0608	Parallel Port Data In Register 1 (Buffers Level 0 and 1)																0000
PMDIN2	060A	Parallel Port Data In Register 2 (Buffers Level 2 and 3)																0000
PMAEN	060C	PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTENO	0000
PMSTAT	060E	IBF	IBOV	-	-	IB3F	IB2F	IB1F	IBOF	OBE	OBUF	-	-	OB3E	OB2E	OB1E	OBOE	008F
Legend: Note 1:	- = unimplemented, read as ' 0 '. Shaded bits are not used in the operation of the PMP module. PMADDR and PMDOUT1 are the same physical register, but are defined differently depending on the module's operating mode.																	

[^2]\mp@subsup{}{}{(2)
111 = Fast RC Oscillator (FRC) with Divide-by-N
110 = Fast RC Oscillator (FRC) with Divide-by-16
101 = Low-Power RC Oscillator (LPRC)
100 = Secondary Oscillator (Sosc)
011 = Primary Oscillator (XT, HS, EC) with PLL
010 = Primary Oscillator (XT, HS, EC)
001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL
000 = Fast RC Oscillator (FRC)

```
bit 7 CLKLOCK: Clock Lock Enable bit
1 = If (FCKSM0 = 1), then clock and PLL configurations are locked If (FCKSM0 = 0), then clock and PLL configurations may be modified
\(0=\) Clock and PLL selections are not locked, configurations may be modified
bit 6 IOLOCK: I/O Lock Enable bit
\(1=1 / O\) Lock is active
\(0=1 / \mathrm{O}\) Lock is not active
bit 5 LOCK: PLL Lock Status bit (read-only)
1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied
\(0=\) Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit \(4 \quad\) Unimplemented: Read as ' 0 '

Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70580) in the "dsPIC33E/PIC24E Family Reference Manual" (available from the Microchip web site) for details.
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
3: This register resets only on a Power-on Reset (POR).

\section*{REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER \({ }^{(1,3)}\) (CONTINUED)}
bit 3 CF: Clock Fail Detect bit (read/clear by application)
\(1=\) FSCM has detected clock failure
\(0=\) FSCM has not detected clock failure
bit 2 Unimplemented: Read as ' 0 '
bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
1 = Enable Secondary Oscillator
0 = Disable Secondary Oscillator
bit \(0 \quad\) OSWEN: Oscillator Switch Enable bit
1 = Request oscillator switch to selection specified by NOSC<2:0> bits
\(0=\) Oscillator switch is complete

Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70580) in the "dsPIC33E/PIC24E Family Reference Manual" (available from the Microchip web site) for details.
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
3: \(\quad\) This register resets only on a Power-on Reset (POR).

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER \({ }^{(2)}\)

\begin{tabular}{|lll|}
\hline Legend: & \(y=\) Value set from Configuration bits on POR \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 ROI: Recover on Interrupt bit
1 = Interrupts will clear the DOZEN bit and the processor clock and peripheral clock ratio is set to \(1: 1\)
\(0=\) Interrupts have no effect on the DOZEN bit
bit 14-12 DOZE<2:0>: Processor Clock Reduction Select bits \({ }^{(3)}\)
111 = Fcy divided by 128
\(110=\) Fcy divided by 64
101 = FCY divided by 32
\(100=\) FCY divided by 16
011 = Fcy divided by 8 (default)
\(010=\) FCY divided by 4
001 = FCY divided by 2
000 = Fcy divided by 1
bit 11 DOZEN: Doze Mode Enable bit \({ }^{(1,4)}\)
\(1=\) DOZE \(<2: 0>\) field specifies the ratio between the peripheral clocks and the processor clocks
0 = Processor clock and peripheral clock ratio forced to 1:1
bit 10-8 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits
111 = FRC divided by 256
\(110=\) FRC divided by 64
101 = FRC divided by 32
\(100=\) FRC divided by 16
\(011=\) FRC divided by 8
\(010=\) FRC divided by 4
\(001=\) FRC divided by 2
\(000=\) FRC divided by 1 (default)
bit 7-6 PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)
11 = Output divided by 8
10 = Reserved
01 = Output divided by 4 (default)
\(00=\) Output divided by 2
bit 5 Unimplemented: Read as ' 0 '

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
2: This register resets only on a Power-on Reset (POR).
3: DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
4: The DOZEN bit cannot be set if \(D O Z E<2: 0>=000\). If \(D O Z E<2: 0>=000\), any attempt by user software to set the DOZEN bit is ignored.

\section*{REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER \({ }^{(2)}\) (CONTINUED)}
bit 4-0 PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33
-
-
-
00001 = Input divided by 3
00000 = Input divided by 2 (default)

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
2: This register resets only on a Power-on Reset (POR).
3: \(\operatorname{DOZE}<2: 0>\) bits can only be written to when the DOZEN bit is clear. If \(D O Z E N=1\), any writes to DOZE<2:0> are ignored.
4: The DOZEN bit cannot be set if \(D O Z E<2: 0>=000\). If \(D O Z E<2: 0>=000\), any attempt by user software to set the DOZEN bit is ignored.

\section*{REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER \({ }^{(\mathbf{1})}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline- & - & - & - & - & - & - & PLLDIV<8> \\
\hline bit 15
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & & PLLDIV \(<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown C
```

bit 15-9 Unimplemented: Read as '0'
bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)
111111111 = 513
•
-
-
000110000 = 50 (default)
•
•
•
000000010 = 4
000000001 = 3
000000000 = 2

```

Note 1: This register is reset only on a Power-on Reset (POR).

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{TUN<5:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
```

bit 15-6 Unimplemented: Read as ' }0\mathrm{ '
bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits
011111 = Center frequency + 11.625% (8.23 MHz)
011110 = Center frequency + 11.25% (8.20 MHz)
•
•
-
000001 = Center frequency + 0.375% (7.40 MHz)
000000 = Center frequency (7.37 MHz nominal)
1111111 = Center frequency -0.375% (7.345 MHz)
•
•
-
100001 = Center frequency -11.625% (6.52 MHz)
100000 = Center frequency -12% (6.49 MHz)

```

Note 1: This register resets only on a Power-on Reset (POR).

REGISTER 9-5: ACLKCON3: AUXILIARY CLOCK CONTROL REGISTER \(3^{(1)}\)

\begin{tabular}{|c|c|}
\hline bit 15 & \begin{tabular}{l}
ENAPLL: Enable Auxiliary PLL (APLL) and Select APLL as USB Clock Source bit 1 = APLL is enabled, the USB clock source is the APLL output \\
\(0=\) APLL is disabled, the USB clock source is the input clock to the APLL
\end{tabular} \\
\hline bit 14 & APLLCK: APLL Phase Locked Status bit 1 = APLL is in lock 0 = APLL is not in lock \\
\hline bit 13 & SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit 1 = Auxiliary PLL or oscillator provides the source clock for auxiliary clock divider 0 = Primary PLL provides the source clock for auxiliary clock divider \\
\hline bit 12-11 & \begin{tabular}{l}
AOSCMD<1:0>: Auxiliary Oscillator Mode bits 11 = EC (External Clock) mode select \\
\(10=\) XT (Crystal) Oscillator mode select \\
01 = HS (High-Speed) Oscillator mode select \\
\(00=\) Auxiliary Oscillator Disabled (default)
\end{tabular} \\
\hline bit 10 & \begin{tabular}{l}
ASRCSEL: Select Reference Clock Source for APLL bit 1 = Primary Oscillator is the clock source for APLL \\
0 = Auxiliary Oscillator is the clock source for APLL
\end{tabular} \\
\hline bit 9 & \begin{tabular}{l}
FRCSEL: Select FRC as Reference Clock Source for APLL bit \\
1 = FRC is clock source for APLL \\
\(0=\) Auxiliary oscillator or Primary Oscillator is the clock source for APLL (determined by ASRCSEL bit)
\end{tabular} \\
\hline bit 8 & Unimplemented: Read as '0' \\
\hline \multirow[t]{9}{*}{bit 7-5} & APLLPOST<2:0>: Select PLL VCO Output Divider bits \\
\hline & 111 = Divided by 1 \\
\hline & 110 = Divided by 2 \\
\hline & 101 = Divided by 4 \\
\hline & 100 = Divided by 8 \\
\hline & 011 = Divided by 16 \\
\hline & 010 = Divided by 32 \\
\hline & 001 = Divided by 64 \\
\hline & 000 = Divided by 256 (default) \\
\hline bit 4-3 & Unimplemented: Read as '0' \\
\hline \multirow[t]{9}{*}{bit 2-0} & APLLPRE<2:0>: PLL Phase Detector Input Divider bits \\
\hline & 111 = Divided by 12 \\
\hline & \(110=\) Divided by 10 \\
\hline & 101 = Divided by 6 \\
\hline & 100 = Divided by 5 \\
\hline & 011 = Divided by 4 \\
\hline & 010 = Divided by 3 \\
\hline & 001 = Divided by 2 \\
\hline & 000 = Divided by 1 (default) \\
\hline
\end{tabular}

Note 1: This register resets only on a Power-on Reset (POR).

\section*{REGISTER 9-6: ACLKDIV3: AUXILIARY CLOCK DIVISOR REGISTER \(\mathbf{3}^{(1)}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|cccc|}
\hline U-0 & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & & APLLDIV<2:0> & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
```

bit 15-3 Unimplemented: Read as '0'
bit 2-0 APLLDIV<2:0>: PLL Feedback Divisor bits (PLL Multiplier Ratio)
111=24
110=21
101=20
100 = 19
011=18
010=17
001=16
000=15 (default)

```

Note 1: This register resets only on a Power-on Reset (POR).

REGISTER 9-7: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER
\begin{tabular}{|l|c|c|c|cccc|}
\hline \multicolumn{8}{|c|}{ R/W-0 } \\
\hline ROON & - & ROSSLP & ROSEL & & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 9 RODIV<3:0>(1) \(\quad\) bit 8
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ U-0 U-0 } \\
\hline- & - & - & - & U-0 & U-0 & U-0 & U-0 \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15 ROON: Reference Oscillator Output Enable bit
1 = Reference oscillator output enabled on REFCLK \({ }^{(2)}\) pin
0 = Reference oscillator output disabled
bit 14
Unimplemented: Read as ' 0 '
bit 13 ROSSLP: Reference Oscillator Run in Sleep bit
1 = Reference oscillator output continues to run in Sleep
0 = Reference oscillator output is disabled in Sleep
bit 12 ROSEL: Reference Oscillator Source Select bit
1 = Oscillator crystal used as the reference clock
\(0=\) System clock used as the reference clock
bit 11-8 RODIV<3:0>: Reference Oscillator Divider bits \({ }^{(1)}\)
1111 = Reference clock divided by 32,768
\(1110=\) Reference clock divided by 16,384
1101 = Reference clock divided by 8,192
\(1100=\) Reference clock divided by 4,096
1011 = Reference clock divided by 2,048
\(1010=\) Reference clock divided by 1,024
1001 = Reference clock divided by 512
1000 = Reference clock divided by 256
0111 = Reference clock divided by 128
0110 = Reference clock divided by 64
0101 = Reference clock divided by 32
0100 = Reference clock divided by 16
0011 = Reference clock divided by 8
0010 = Reference clock divided by 4
0001 = Reference clock divided by 2
0000 = Reference clock
bit 7-0 Unimplemented: Read as ' 0 ’

Note 1: The reference oscillator output must be disabled ( \(\mathrm{ROON}=0\) ) before writing to these bits.
2: This pin is remappable. See Section 11.4 "Peripheral Pin Select" for more information.

\subsection*{10.0 POWER-SAVING FEATURES}

The dsPIC33EPXXXMU806/810/814 and
PIC24EPXXXGU810/814 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power.
dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices can manage power consumption in four ways:
- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

\subsection*{10.1 Clock Frequency and Clock Switching}

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits ( \(\mathrm{OSCCON}<10: 8>\) ). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

\subsection*{10.2 Instruction-Based Power-Saving Modes}

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake up.

\subsection*{10.2.1 SLEEP MODE}

The following occur in Sleep mode:
- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.
The device wakes up from Sleep mode on any of the these events:
- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

\section*{EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX}
```

PWRSAV \#SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV \#IDLE_MODE ; Put the device into IDLE mode

```

\subsection*{10.2.2 IDLE MODE}

The following occur in Idle mode:
- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:
- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

\subsection*{10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS}

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

\subsection*{10.3 Doze Mode}

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from \(1: 1\) to \(1: 128\), with \(1: 1\) being the default setting.
Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of \(1: 4\), the ECAN module continues to communicate at the required bit rate of 500 kbps , but the CPU now starts executing instructions at a frequency of 5 MIPS.

\subsection*{10.4 Peripheral Module Disable}

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.
A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC \({ }^{\circledR}\) DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

> Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1
\begin{tabular}{|l|l|l|l|l|l|l|r|}
\hline R/W-0 & R/W-0 \\
\hline T5MD & T4MD & T3MD & T2MD & T1MD & QEI1MD \(^{(\mathbf{1})}\) & PWMMD \({ }^{(\mathbf{1})}\) & DCIMD \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ R/W-0 } & R/W-0 \\
\hline I2C1MD & U2MD & U1MD & SPI2MD & SPI1MD & C2MD & C1MD & AD1MD \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15 T5MD: Timer5 Module Disable bit 1 = Timer5 module is disabled 0 = Timer5 module is enabled
bit 14 T4MD: Timer4 Module Disable bit 1 = Timer4 module is disabled 0 = Timer4 module is enabled
bit 13 T3MD: Timer3 Module Disable bit 1 = Timer3 module is disabled \(0=\) Timer3 module is enabled
bit 12 T2MD: Timer2 Module Disable bit 1 = Timer2 module is disabled \(0=\) Timer2 module is enabled
bit 11 T1MD: Timer1 Module Disable bit 1 = Timer1 module is disabled \(0=\) Timer1 module is enabled
bit 10 QEIIMD: QEI1 Module Disable bit \({ }^{(\mathbf{1})}\) \(1=\) QEI1 module is disabled \(0=\) QEI1 module is enabled
bit \(9 \quad\) PWMMD: PWM Module Disable bit \({ }^{(1)}\)
\(1=\) PWM module is disabled
\(0=\) PWM module is enabled
bit 8 DCIMD: DCI Module Disable bit
\(1=\mathrm{DCI}\) module is disabled
\(0=\mathrm{DCI}\) module is enabled
bit \(7 \quad\) I2C1MD: I2C1 Module Disable bit
\(1=\) I2C1 module is disabled
\(0=\) I2C1 module is enabled
bit \(6 \quad\) U2MD: UART2 Module Disable bit
1 = UART2 module is disabled
\(0=\) UART2 module is enabled
bit \(5 \quad\) U1MD: UART1 Module Disable bit
1 = UART1 module is disabled
\(0=\) UART1 module is enabled
bit \(4 \quad\) SPI2MD: SPI2 Module Disable bit
\(1=\mathrm{SPI} 2\) module is disabled
\(0=\) SPI2 module is enabled

Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.


Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline R/W-0 & R/W-0 \\
\hline IC8MD & IC7MD & IC6MD & IC5MD & IC4MD & IC3MD & IC2MD & IC1MD \\
\hline bit 15 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline OC8MD & OC7MD & OC6MD & OC5MD & OC4MD & OC3MD & OC2MD & OC1MD \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 IC8MD: Input Capture 8 Module Disable bit \(1=\) Input Capture 8 module is disabled 0 = Input Capture 8 module is enabled
bit 14 IC7MD: Input Capture 2 Module Disable bit
1 = Input Capture 7 module is disabled
\(0=\) Input Capture 7 module is enabled
bit 13 IC6MD: Input Capture 6 Module Disable bit
1 = Input Capture 6 module is disabled
0 = Input Capture 6 module is enabled
bit 12 IC5MD: Input Capture 5 Module Disable bit
1 = Input Capture 5 module is disabled
\(0=\) Input Capture 5 module is enabled
bit 11 IC4MD: Input Capture 4 Module Disable bit
1 = Input Capture 4 module is disabled
\(0=\) Input Capture 4 module is enabled
bit 10 IC3MD: Input Capture 3 Module Disable bit
1 = Input Capture 3 module is disabled
\(0=\) Input Capture 3 module is enabled
bit 9 IC2MD: Input Capture 2 Module Disable bit
1 = Input Capture 2 module is disabled
\(0=\) Input Capture 2 module is enabled
bit \(8 \quad\) IC1MD: Input Capture 1 Module Disable bit
1 = Input Capture 1 module is disabled
\(0=\) Input Capture 1 module is enabled
bit 7 OC8MD: Output Compare 8 Module Disable bit
1 = Output Compare 8 module is disabled
\(0=\) Output Compare 8 module is enabled
bit \(6 \quad\) OC7MD: Output Compare 7 Module Disable bit 1 = Output Compare 7 module is disabled \(0=\) Output Compare 7 module is enabled
bit 5 OC6MD: Output Compare 6 Module Disable bit 1 = Output Compare 6 module is disabled \(0=\) Output Compare 6 module is enabled
bit 4 OC5MD: Output Compare 5 Module Disable bit
1 = Output Compare 5 module is disabled
\(0=\) Output Compare 5 module is enabled

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)
bit 3 OC4MD: Output Compare 4 Module Disable bit
1 = Output Compare 4 module is disabled
\(0=\) Output Compare 4 module is enabled
bit 2 OC3MD: Output Compare 3 Module Disable bit
1 = Output Compare 3 module is disabled \(0=\) Output Compare 3 module is enabled
bit \(1 \quad\) OC2MD: Output Compare 2 Module Disable bit 1 = Output Compare 2 module is disabled \(0=\) Output Compare 2 module is enabled
bit \(0 \quad\) OC1MD: Output Compare 1 Module Disable bit 1 = Output Compare 1 module is disabled \(0=\) Output Compare 1 module is enabled

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3
\begin{tabular}{|l|l|l|l|l|l|l|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline T9MD & T8MD & T7MD & T6MD & - & CMPMD & RTCCMD & PMPMD \\
\hline bit 15 & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c}{ R/W-0 } & U-0 & R/W-0 & U-0 & R/W-0 & U-0 & \multicolumn{1}{c}{ R/W-0 } & R/W-0 \\
\hline CRCMD & - & QEI2MD & \\
\hline \multicolumn{8}{|l|}{} \\
bit 7 & - & U3MD & - & I2C2MD & AD2MD \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit \(15 \quad\) T9MD: Timer9 Module Disable bit 1 = Timer9 module is disabled \(0=\) Timer9 module is enabled
bit \(14 \quad\) T8MD: Timer8 Module Disable bit 1 = Timer8 module is disabled 0 = Timer8 module is enabled
bit 13 T7MD: Timer7 Module Disable bit 1 = Timer7 module is disabled \(0=\) Timer7 module is enabled
bit 12 T6MD: Timer6 Module Disable bit 1 = Timer6 module is disabled \(0=\) Timer6 module is enabled
bit 11
Unimplemented: Read as ' 0 ’
bit 10 CMPMD: Comparator Module Disable bit
1 = Comparator module is disabled
0 = Comparator module is enabled
bit \(9 \quad\) RTCCMD: RTCC Module Disable bit
\(1=\) RTCC module is disabled
\(0=\) RTCC module is enabled
bit 8 PMPMD: PMP Module Disable bit
1 = PMP module is disabled
0 = PMP module is enabled
bit \(7 \quad\) CRCMD: CRC Module Disable bit
1 = CRC module is disabled
\(0=\) CRC module is enabled
bit \(6 \quad\) Unimplemented: Read as ' 0 '
bit \(5 \quad\) QEI2MD: QEI2 Module Disable bit \({ }^{(1)}\)
1 = QEI2 module is disabled
\(0=\) QEI2 module is enabled
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit \(3 \quad\) U3MD: UART3 Module Disable bit
1 = UART3 module is disabled
\(0=\) UART3 module is enabled
bit \(2 \quad\) Unimplemented: Read as ' 0 '
bit \(1 \quad\) I2C2MD: I2C2 Module Disable bit
\(1=\) I2C2 module is disabled
\(0=\) I2C2 module is enabled
bit 0 AD2MD: ADC2 Module Disable bit
\(1=\) ADC2 module is disabled
\(0=\) ADC2 module is enabled
Note 1: This bit is available in dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & U-0 & R/O & U-0 & U-0 & R/W-0 \\
\hline- & - & U4MD & - & REFOMD & - & - & USB1MD \\
\hline bit 7 &
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplement & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-6 Unimplemented: Read as ' 0 '
bit \(5 \quad\) U4MD: UART4 Module Disable bit
1 = UART4 module is disabled
\(0=\) UART4 module is enabled
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit 3 REFOMD: Reference Clock Module Disable bit
1 = Reference Clock module is disabled
0 = Reference Clock module is enabled
bit 2-1 Unimplemented: Read as ' 0 '
bit \(0 \quad\) USB1MD: USB Module Disable bit
1 = USB module is disabled
\(0=\) USB module is enabled

REGISTER 10-5: PMD5: PERIPHERAL MODULE DISABLE CONTROL REGISTER 5
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline IC16MD & IC15MD & IC14MD & IC13MD & IC12MD & IC11MD & IC10MD & IC9MD \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ R/W-0 } & R/W-0 \\
\hline OC16MD & OC15MD & OC14MD & OC13MD & OC12MD & OC11MD & OC10MD & OC9MD \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 IC16MD: IC16 Module Disable bit 1 = IC16 module is disabled \(0=\) IC16 module is enabled
bit \(14 \quad\) IC15MD: IC15 Module Disable bit 1 = IC15 module is disabled
\(0=\) IC15 module is enabled
IC14MD: IC14 Module Disable bit
1 = IC14 module is disabled
\(0=\) IC14 module is enabled
bit 9
bit 8
bit 7
bit 6
bit 5
bit 4 OC13MD: OC13 Module Disable bit
1 = OC13 module is disabled
\(0=\) OC13 module is enabled

REGISTER 10-5: PMD5: PERIPHERAL MODULE DISABLE CONTROL REGISTER 5 (CONTINUED)
bit 3 OC12MD: OC12 Module Disable bit
1 = OC12 module is disabled \(0=\) OC12 module is enabled
bit 2 OC11MD: OC11 Module Disable bit 1 = OC11 module is disabled \(0=\) OC11 module is enabled
bit \(1 \quad\) OC10MD: OC10 Module Disable bit 1 = OC10 module is disabled \(0=\) OC10 module is enabled
bit \(0 \quad\) OC9MD: OC9 Module Disable bit
1 = OC9 module is disabled
\(0=\) OC9 module is enabled

REGISTER 10-6: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & PWM7MD \({ }^{(1)}\) & PWM6MD \({ }^{(1)}\) & PWM5MD \({ }^{(1)}\) & PWM4MD \({ }^{(1)}\) & PWM3MD \({ }^{(1)}\) & PWM2MD \({ }^{(1)}\) & PWM1MD \({ }^{(1)}\) \\
\hline \multicolumn{8}{|l|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & - & SPI4MD & SPI3MD \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit \(15 \quad\) Unimplemented: Read as ' 0 '
bit \(14 \quad\) PWM7MD: PWM7 Module Disable bit \({ }^{(1)}\)
\(1=\) PWM7 module is disabled
\(0=\) PWM7 module is enabled
bit 13
bit 12
bit 11
bit \(10 \quad\) PWM3MD: PWM3 Module Disable bit \({ }^{(1)}\)
1 = PWM3 module is disabled
\(0=\) PWM3 module is enabled
bit \(9 \quad\) PWM2MD: PWM2 Module Disable bit \({ }^{(1)}\)
\(1=P W M 2\) module is disabled
\(0=\) PWM2 module is enabled
bit \(8 \quad\) PWM1MD: PWM1 Module Disable bit \({ }^{(1)}\)
1 = PWM1 module is disabled
\(0=\) PWM1 module is enabled
bit 7-2 Unimplemented: Read as '0'
bit 1 SPI4MD: SPI4 Module Disable bit
1 = SPI4 module is disabled
0 = SPI4 module is enabled
bit \(0 \quad\) SPI3MD: SPI3 Module Disable bit
\(1=\) SPI3 module is disabled
\(0=\) SPI3 module is enabled

Note 1: This bit is available in dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 10-7: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 \\
\hline DMA12MD & DMA8MD & DMA4MD & DMA0MD & & & & \\
\hline DMA13MD & DMA9MD & DMA5MD & DMA1MD & & & \\
\hline DMA14MD & DMA10MD & DMA6MD & DMA2MD & & & - & - & \\
\hline- & DMA11MD & DMA7MD & DMA3MD & & & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15-8 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 7} & \begin{tabular}{l}
DMA12MD: DMA12 Module Disable bit \\
1 = DMA12 module is disabled \\
\(0=\) DMA12 module is enabled
\end{tabular} \\
\hline & \begin{tabular}{l}
DMA13MD: DMA13 Module Disable bit \\
1 = DMA13 module is disabled \\
0 = DMA13 module is enabled
\end{tabular} \\
\hline & \begin{tabular}{l}
DMA14MD: DMA14 Module Disable bit \\
1 = DMA14 module is disabled \\
0 = DMA14 module is enabled
\end{tabular} \\
\hline \multirow[t]{4}{*}{bit 6} & \begin{tabular}{l}
DMA8MD: DMA3 Module Disable bit \\
1 = DMA8 module is disabled \\
\(0=\) DMA8 module is enabled
\end{tabular} \\
\hline & \begin{tabular}{l}
DMA9MD: DMA2 Module Disable bit \\
1 = DMA9 module is disabled \\
\(0=\) DMA9 module is enabled
\end{tabular} \\
\hline & \begin{tabular}{l}
DMA10MD: DMA10 Module Disable bit \\
1 = DMA10 module is disabled \\
0 = DMA10 module is enabled
\end{tabular} \\
\hline & \begin{tabular}{l}
DMA11MD: DMA11 Module Disable bit \\
1 = DMA11 module is disabled \\
0 = DMA11 module is enabled
\end{tabular} \\
\hline \multirow[t]{4}{*}{bit 5} & \begin{tabular}{l}
DMA4MD: DMA4 Module Disable bit \\
1 = DMA4 module is disabled \\
\(0=\) DMA4 module is enabled
\end{tabular} \\
\hline & \begin{tabular}{l}
DMA5MD: DMA5 Module Disable bit \\
1 = DMA5 module is disabled \\
\(0=\) DMA5 module is enabled
\end{tabular} \\
\hline & \begin{tabular}{l}
DMA6MD: DMA6 Module Disable bit \\
1 = DMA6 module is disabled \\
\(0=\) DMA6 module is enabled
\end{tabular} \\
\hline & \begin{tabular}{l}
DMA7MD: DMA7 Module Disable bit \\
1 = DMA7 module is disabled \\
\(0=\) DMA7 module is enabled
\end{tabular} \\
\hline
\end{tabular}

REGISTER 10-7: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7 (CONTINUED)
bit 4 DMAOMD: DMA0 Module Disable bit
\(1=\) DMAO module is disabled
\(0=\) DMA0 module is enabled
DMA1MD: DMA1 Module Disable bit
1 = DMA1 module is disabled
\(0=\) DMA1 module is enabled
DMA2MD: DMA2 Module Disable bit
1 = DMA2 module is disabled
0 = DMA2 module is enabled
DMA3MD: DMA3 Module Disable bit
1 = DMA3 module is disabled
\(0=\) DMA3 module is enabled
bit 3-0 Unimplemented: Read as ' 0 '

NOTES:

\subsection*{11.0 I/O PORTS}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70598) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, Vss, \(\overline{M C L R}\) and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

\subsection*{11.1 Parallel I/O (PIO) Ports}

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of
the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.
When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.
All port pins have eight registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ' 1 ', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.
When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE


\subsection*{11.1.1 OPEN-DRAIN CONFIGURATION}

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.
The open-drain feature allows the generation of outputs higher than VDD (e.g., 5 V on a 5 V tolerant pin) by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification for that pin.
See the "Pin Diagrams" section for the available pins and their functionality.

\subsection*{11.2 Configuring Analog and Digital Port Pins}

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.
The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.
If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or Vol) is converted by an analog peripheral, such as the ADC module or Comparator module.
When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).
Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

\subsection*{11.2.1 I/O PORT WRITE/READ TIMING}

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

\subsection*{11.3 Input Change Notification}

The input change notification function of the I/O ports allows the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices to generate interrupt requests to the processor in response to a change-ofstate on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.
Three control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.
Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.
Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE
\begin{tabular}{|c|c|c|}
\hline MOV & 0xFF00, W0 & Configure PORTB<15:8> as inputs \\
\hline MOV & W0, TRISB & and PORTB<7:0> as outputs \\
\hline NOP & & ; Delay 1 cycle \\
\hline BTSS & PORTB, \#13 & ; Next Instruction \\
\hline
\end{tabular}

\subsection*{11.4 Peripheral Pin Select}

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.
The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

\subsection*{11.4.1 AVAILABLE PINS}

The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" or "RPIn" in their full pin designation, where "RP" designates a remappable function for input or output and "RPI" designates a remappable functions for input only, and " \(n\) " is the remappable pin number.

\subsection*{11.4.2 AVAILABLE PERIPHERALS}

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.
In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include \(\mathrm{I}^{2} \mathrm{C}\) and the PWM. A similar requirement excludes all modules with analog inputs, such as the A/D converter.
A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

\subsection*{11.4.3 CONTROLLING PERIPHERAL PIN SELECT}

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.
The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

\subsection*{11.4.3.1 INPUT MAPPING}

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-22). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals (see Table 11-1). Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn/RPIn pin with the corresponding value to that peripheral (see Table 11-2). For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.
For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: U1RX REMAPPABLE INPUT


Note: For input only, peripheral pin select functionality does not have priority over TRISx settings. Therefore, when configuring RPn/RPIn pin for input, the corresponding bit in the TRISx register must also be configured for input (set to ' 1 ').

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)
\begin{tabular}{|c|c|c|c|}
\hline Input Name \({ }^{(1)}\) & Function Name & Register & Configuration Bits \\
\hline External Interrupt 1 & INT1 & RPINR0 & INT1R<6:0> \\
\hline External Interrupt 2 & INT2 & RPINR1 & INT2R<6:0> \\
\hline External Interrupt 3 & INT3 & RPINR1 & INT3R<6:0> \\
\hline External Interrupt 4 & INT4 & RPINR2 & INT4R<6:0> \\
\hline Timer2 External Clock & T2CK & RPINR3 & T2CKR<6:0> \\
\hline Timer3 External Clock & T3CK & RPINR3 & T3CKR<6:0> \\
\hline Timer4 External Clock & T4CK & RPINR4 & T4CKR<6:0> \\
\hline Timer5 External Clock & T5CK & RPINR4 & T5CKR<6:0> \\
\hline Timer6 External Clock & T6CK & RPINR5 & T6CKR<6:0> \\
\hline Timer7 External Clock & T7CK & RPINR5 & T7CKR<6:0> \\
\hline Timer8 External Clock & T8CK & RPINR6 & T8CKR<6:0> \\
\hline Timer9 External Clock & T9CK & RPINR6 & T9CKR<6:0> \\
\hline Input Capture 1 & IC1 & RPINR7 & IC1R<6:0> \\
\hline Input Capture 2 & IC2 & RPINR7 & IC2R<6:0> \\
\hline Input Capture 3 & IC3 & RPINR8 & IC3R<6:0> \\
\hline Input Capture 4 & IC4 & RPINR8 & IC4R<6:0> \\
\hline Input Capture 5 & IC5 & RPINR9 & IC5R<6:0> \\
\hline Input Capture 6 & IC6 & RPINR9 & IC6R<6:0> \\
\hline Input Capture 7 & IC7 & RPINR10 & IC7R<6:0> \\
\hline Input Capture 8 & IC8 & RPINR10 & IC8R<6:0> \\
\hline Output Compare Fault A & OCFA & RPINR11 & OCFAR<6:0> \\
\hline Output Compare Fault B & OCFB & RPINR11 & OCFBR<6:0> \\
\hline PMW Fault \(1^{(2)}\) & FLT1 & RPINR12 & FLT1R<6:0> \\
\hline PMW Fault \(2^{(2)}\) & FLT2 & RPINR12 & FLT2R<6:0> \\
\hline PMW Fault 3 \({ }^{(2)}\) & FLT3 & RPINR13 & FLT3R<6:0> \\
\hline PMW Fault \(4^{(2)}\) & FLT4 & RPINR13 & FLT4R<6:0> \\
\hline QEI1 Phase \(\mathrm{A}^{(2)}\) & QEA1 & RPINR14 & QEA1R<6:0> \\
\hline QEI1 Phase \(A^{(2)}\) & QEB1 & RPINR14 & QEB1R<6:0> \\
\hline QEI1 Index \({ }^{(2)}\) & INDX1 & RPINR15 & INDX1R<6:0> \\
\hline QEI1 Home \({ }^{(2)}\) & HOME1 & RPINR15 & HOM1R<6:0> \\
\hline QEI2 Phase \(A^{(2)}\) & QEA2 & RPINR16 & QEA2R<6:0> \\
\hline QEI2 Phase \(A^{(2)}\) & QEB2 & RPINR16 & QEB2R<6:0> \\
\hline QEI2 Index \({ }^{(2)}\) & INDX2 & RPINR17 & INDX2R<6:0> \\
\hline QEI2 Home \({ }^{(2)}\) & HOME2 & RPINR17 & HOM2R<6:0> \\
\hline UART1 Receive & U1RX & RPINR18 & U1RXR<6:0> \\
\hline UART1 Clear To Send & U1CTS & RPINR18 & U1CTSR<6:0> \\
\hline UART2 Receive & U2RX & RPINR19 & U2RXR<6:0> \\
\hline UART2 Clear To Send & U2CTS & RPINR19 & U2CTSR<6:0> \\
\hline SPI1 Data Input & SDI1 & RPINR20 & SDI1R<6:0> \\
\hline SPI1 Clock Input & SCK1 & RPINR20 & SCK1R<6:0> \\
\hline SPI1 Slave Select & \(\overline{\text { SS1 }}\) & RPINR21 & SS1R<6:0> \\
\hline SPI2 Slave Select & SS2 & RPINR23 & SS2R<6:0> \\
\hline DCI Data Input & CSDI & RPINR24 & CSDIR<6:0> \\
\hline
\end{tabular}

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.
2: This input source is available on dsPIC33EPXXXMU806/810/814 devices only.

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) (CONTINUED)
\begin{tabular}{|c|c|c|c|}
\hline Input Name \({ }^{(1)}\) & Function Name & Register & Configuration Bits \\
\hline DCI Clock Input & CSCKIN & RPINR24 & CSCKR<6:0> \\
\hline DCI FSYNC Input & COFSIN & RPINR25 & COFSR<6:0> \\
\hline CAN1 Receive & C1RX & RPINR26 & C1RXR<6:0> \\
\hline CAN2 Receive & C2RX & RPINR26 & C2RXR<6:0> \\
\hline UART3 Receive & U3RX & RPINR27 & U3RXR<6:0> \\
\hline UART3 Clear To Send & U3CTS & RPINR27 & U3CTSR<6:0> \\
\hline UART4 Receive & U4RX & RPINR28 & U4RXR<6:0> \\
\hline UART4 Clear To Send & U4CTS & RPINR28 & U4CTSR<6:0> \\
\hline SPI3 Data Input & SDI3 & RPINR29 & SDI3R<6:0> \\
\hline SPI3 Clock Input & SCK3 & RPINR29 & SCK3R<6:0> \\
\hline SPI3 Slave Select & \(\overline{\text { SS3 }}\) & RPINR30 & SS3R<6:0> \\
\hline SPI4 Data Input & SDI4 & RPINR31 & SDI4R<6:0> \\
\hline SPI4 Clock Input & SCK4 & RPINR31 & SCK4R<6:0> \\
\hline SPI4 Slave Select & \(\overline{\text { SS4 }}\) & RPINR32 & SS4R<6:0> \\
\hline Input Capture 9 & IC9 & RPINR33 & IC9R<6:0> \\
\hline Input Capture 10 & IC10 & RPINR33 & IC10R<6:0> \\
\hline Input Capture 11 & IC11 & RPINR34 & IC11R<6:0> \\
\hline Input Capture 12 & IC12 & RPINR34 & IC12R<6:0> \\
\hline Input Capture 13 & IC13 & RPINR35 & IC13R<6:0> \\
\hline Input Capture 14 & IC14 & RPINR35 & IC14R<6:0> \\
\hline Input Capture 15 & IC15 & RPINR36 & IC15R<6:0> \\
\hline Input Capture 16 & IC16 & RPINR36 & IC16R<6:0> \\
\hline Output Compare Fault C & OCFC & RPINR37 & OCFCR<6:0> \\
\hline PWM Fault \(5^{(2)}\) & FLT5 & RPINR42 & FLT5R<6:0> \\
\hline PWM Fault 6 \({ }^{(2)}\) & FLT6 & RPINR42 & FLT6R<6:0> \\
\hline PWM Fault \(7^{(2)}\) & FLT7 & RPINR43 & FLT7R<6:0> \\
\hline PWM Dead Time Compensation \(1^{(2)}\) & DTCMP1 & RPINR38 & DTCMP1R<6:0> \\
\hline PWM Dead Time Compensation \(2^{(2)}\) & DTCMP2 & RPINR39 & DTCMP2R<6:0> \\
\hline PWM Dead Time Compensation \(3^{(2)}\) & DTCMP3 & RPINR39 & DTCMP3R<6:0> \\
\hline PWM Dead Time Compensation \(4^{(2)}\) & DTCMP4 & RPINR40 & DTCMP4R<6:0> \\
\hline PWM Dead Time Compensation \(5^{(2)}\) & DTCMP5 & RPINR40 & DTCMP5R<6:0> \\
\hline PWM Dead Time Compensation 6 \({ }^{(2)}\) & DTCMP6 & RPINR41 & DTCMP6R<6:0> \\
\hline PWM Dead Time Compensation \(7^{(2)}\) & DTCMP7 & RPINR41 & DTCMP7R<6:0> \\
\hline PWM Synch Input \(1^{(2)}\) & SYNCI1 & RPINR37 & SYNCI1R<6:0> \\
\hline PWM Synch Input \(\mathbf{2}^{(2)}\) & SYNCI2 & RPINR38 & SYNCI2R<6:0> \\
\hline
\end{tabular}

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.
2: This input source is available on dsPIC33EPXXXMU806/810/814 devices only.

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Peripheral Pin Select Input Register Value & Input/ Output & Pin Assignment & Peripheral Pin Select Input Register Value & Input/ Output & Pin Assignment \\
\hline 0000000 & I & Vss & 0101101 & I & RPI45 \\
\hline 0000001 & I & C1OUT \({ }^{(1)}\) & 0101110 & 1 & RPI46 \\
\hline 0000010 & 1 & C2OUT \({ }^{(1)}\) & 0101111 & 1 & RPI47 \\
\hline 0000011 & 1 & C3OUT \({ }^{(1)}\) & 0110000 & - & Reserved \\
\hline 0000100 & - & Reserved & 0110001 & I & RPI49 \\
\hline 0000101 & - & Reserved & 0110010 & 1 & RPI50 \\
\hline 0000110 & - & Reserved & 0110011 & 1 & RPI51 \\
\hline 0000111 & - & Reserved & 0110100 & I & RPI52 \\
\hline 0001000 & 1 & FINDX1 \({ }^{(1)}\) & 0110101 & - & Reserved \\
\hline 0001001 & I & FHOME1 \({ }^{(1)}\) & 0110110 & - & Reserved \\
\hline 0001010 & 1 & FINDX2 \({ }^{(1)}\) & 0110111 & - & Reserved \\
\hline 0001011 & 1 & FHOME2 \({ }^{(1)}\) & 0111000 & - & Reserved \\
\hline 0001100 & - & Reserved & 0111001 & - & Reserved \\
\hline 0001101 & - & Reserved & 0111010 & - & Reserved \\
\hline 0001110 & - & Reserved & 0111011 & - & Reserved \\
\hline 0001111 & - & Reserved & 0111100 & I & RPI60 \\
\hline 0010000 & I & RPI16 & 0111101 & 1 & RPI61 \\
\hline 0010001 & I & RPI17 & 0111110 & I & RPI62 \\
\hline 0010010 & I & RPI18 & 0111111 & - & Reserved \\
\hline 0010011 & I & RPI19 & 1000000 & I/O & RP64 \\
\hline 0010100 & I & RPI20 & 1000001 & I/O & RP65 \\
\hline 0010101 & I & RPI21 & 1000010 & I/O & RP66 \\
\hline 0010110 & 1 & RPI22 & 1000011 & I/O & RP67 \\
\hline 0010111 & I & RPI23 & 1000100 & I/O & RP68 \\
\hline 0011000 & - & Reserved & 1000101 & I/O & RP69 \\
\hline 0011001 & - & Reserved & 1000110 & I/O & RP70 \\
\hline 0011010 & - & Reserved & 1000111 & I/O & RP71 \\
\hline 0011011 & - & Reserved & 1001000 & I & RPI72 \\
\hline 0011100 & - & Reserved & 1001001 & I & RPI73 \\
\hline 0011101 & - & Reserved & 1001010 & I & RPI74 \\
\hline 0011110 & I & RPI30 & 1001011 & 1 & RPI75 \\
\hline 0011111 & 1 & RPI31 & 1001100 & I & RPI76 \\
\hline 0100000 & 1 & RPI32 & 1001101 & 1 & RPI77 \\
\hline 0100001 & 1 & RPI33 & 1001110 & I & RPI78 \\
\hline 0100010 & I & RPI34 & 1001111 & I/O & RP79 \\
\hline 0100011 & I & RPI35 & 1010000 & I/O & RP80 \\
\hline 0100100 & 1 & RPI36 & 1010001 & 1 & RPI81 \\
\hline 0100101 & I & RPI37 & 1010010 & 1/O & RP82 \\
\hline 0100110 & I & RPI38 & 1010011 & 1 & RP183 \\
\hline 0100111 & I & RPI39 & 1010100 & I/O & RP84 \\
\hline 0101000 & I & RPI40 & 1010101 & I/O & RP85 \\
\hline 0101001 & 1 & RPI41 & 1010110 & 1 & RPI86 \\
\hline 0101010 & 1 & RPI42 & 1010111 & I/O & RP87 \\
\hline 0101011 & I & RPI43 & 1011000 & I & RPI88 \\
\hline 0101100 & 1 & RPI44 & 1011001 & I & RPI89 \\
\hline
\end{tabular}

Note 1: See Section 11.4.3.3 "Virtual Connections" for more information on selecting this pin assignment.

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Peripheral Pin Select Input Register Value & Input/ Output & Pin Assignment & Peripheral Pin Select Input Register Value & Input/ Output & Pin Assignment \\
\hline 1011010 & - & Reserved & 1101101 & I/O & RP109 \\
\hline 1011011 & - & Reserved & 1101110 & - & Reserved \\
\hline 1011100 & - & Reserved & 1101111 & - & Reserved \\
\hline 1011101 & - & Reserved & 1110000 & I/O & RP112 \\
\hline 1011110 & - & Reserved & 1110001 & I/O & RP113 \\
\hline 1011111 & - & Reserved & 1110010 & - & Reserved \\
\hline 1100000 & I/O & RP96 & 1110011 & - & Reserved \\
\hline 1100001 & I/O & RP97 & 1110100 & - & Reserved \\
\hline 1100010 & I/O & RP98 & 1110101 & - & Reserved \\
\hline 1100011 & I/O & RP99 & 1110110 & I/O & RP118 \\
\hline 1100100 & I/O & RP100 & 1110111 & I & RPI119 \\
\hline 1100101 & I/O & RP101 & 1111000 & I/O & RP120 \\
\hline 1100110 & - & Reserved & 1111001 & 1 & RPI121 \\
\hline 1100111 & - & Reserved & 1111010 & - & Reserved \\
\hline 1101000 & I/O & RP104 & 1111011 & - & Reserved \\
\hline 1101001 & - & Reserved & 1111100 & 1 & RPI124 \\
\hline 1101010 & - & Reserved & 1111101 & I/O & RP125 \\
\hline 1101011 & - & Reserved & 1111110 & I/O & RP126 \\
\hline 1101100 & I/O & RP108 & 1111111 & I/O & RP127 \\
\hline
\end{tabular}

Note 1: See Section 11.4.3.3 "Virtual Connections" for more information on selecting this pin assignment.

\subsection*{11.4.3.2 Output Mapping}

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6 bit fields, with each set associated with one RPn pin (see Register 11-44 through Register 11-51). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register reset value of ' 0 '. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn


TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Function } & RPnR<5:0> & \\
\hline \hline DEFAULT PORT & 000000 & RPn tied to default pin \\
\hline U1TX & 000001 & RPn tied to UART1 transmit \\
\hline U1RTS & 000010 & RPn tied to UART1 ready to send \\
\hline U2TX & 000011 & RPn tied to UART2 transmit \\
\hline \hline U2RTS & 000100 & RPn tied to UART2 ready to send \\
\hline SDO1 & 000101 & RPn tied to SPI1 data output \\
\hline SCK1 & 000110 & RPn tied to SPI1 clock output \\
\hline SS1 & 000111 & RPn tied to SPI1 slave select \\
\hline \hline SS2 & 001010 & RPn tied to SPI2 slave select \\
\hline CSDO & 001011 & RPn tied to DCI data output \\
\hline CSCK & 001100 & RPn tied to DCI clock output \\
\hline COFS & 001101 & RPn tied to DCI FSYNC output \\
\hline C1TX & 001110 & RPn tied to CAN1 transmit \\
\hline C2TX & 001111 & RPn tied to CAN2 transmit \\
\hline OC1 & 010000 & RPn tied to Output Compare 1 output \\
\hline OC2 & 010001 & RPn tied to Output Compare 2 output \\
\hline OC3 & 010010 & RPn tied to Output Compare 3 output \\
\hline OC4 & 010011 & RPn tied to Output Compare 4 output \\
\hline OC5 & 010100 & RPn tied to Output Compare 5 output \\
\hline OC6 & 010101 & RPn tied to Output Compare 6 output \\
\hline OC7 & 010110 & RPn tied to Output Compare 7 output \\
\hline OC8 & 010111 & RPn tied to Output Compare 8 output \\
\hline C1OUT & 011000 & RPn tied to Comparator Output 1 \\
\hline C2OUT & 011001 & RPn tied to Comparator Output 2 \\
\hline C3OUT & 011010 & RPn tied to Comparator Output 3 \\
\hline U3TX & 011011 & RPn tied to UART3 transmit \\
\hline \hline U3RTS & 011100 & RPn tied to UART3 ready to send \\
\hline & & 0 \\
\hline
\end{tabular}

Note 1: This function is available in dsPIC33EPXXXMU806/810/814 devices only.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn) (CONTINUED)
\begin{tabular}{|c|c|c|}
\hline Function & RPnR<5:0> & Output Name \\
\hline U4TX & 011101 & RPn tied to UART4 transmit \\
\hline U4RTS & 011110 & RPn tied to UART4 ready to send \\
\hline SDO3 & 011111 & RPn tied to SPI3 data output \\
\hline SCK3 & 100000 & RPn tied to SPI3 clock output \\
\hline SS3 & 100001 & RPn tied to SPI3 slave select \\
\hline SDO4 & 100010 & RPn tied to SPI4 data output \\
\hline SCK4 & 100011 & RPn tied to SPI4 clock output \\
\hline \(\overline{\text { SS4 }}\) & 100100 & RPn tied to SPI4 slave select \\
\hline OC9 & 100101 & RPn tied to Output Compare 9 output \\
\hline OC10 & 100110 & RPn tied to Output Compare 10 output \\
\hline OC11 & 100111 & RPn tied to Output Compare 11 output \\
\hline OC12 & 101000 & RPn tied to Output Compare 12 output \\
\hline OC13 & 101001 & RPn tied to Output Compare 13 output \\
\hline OC14 & 101010 & RPn tied to Output Compare 14 output \\
\hline OC15 & 101011 & RPn tied to Output Compare 15 output \\
\hline OC16 & 101100 & RPn tied to Output Compare 16 output \\
\hline SYNCO1 \({ }^{(1)}\) & 101101 & RPn tied to PWM primary time base sync output \\
\hline SYNCO2 \({ }^{(1)}\) & 101110 & RPn tied to PWM secondary time base sync output \\
\hline QEI1CCMP \({ }^{(1)}\) & 101111 & RPn tied to QEI 1 counter comparator output \\
\hline QEI2CCMP \({ }^{(1)}\) & 110000 & RPn tied to QEI 2 counter comparator output \\
\hline REFCLK & 110001 & RPn tied to Reference Clock output \\
\hline
\end{tabular}

Note 1: This function is available in dsPIC33EPXXXMU806/810/814 devices only.

\subsection*{11.4.3.3 Virtual Connections}

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices support virtual (internal) connections to the output of the comparator modules CMP1OUT, CMP2OUT and CMP3OUT (see Figure 25-1 in Section 25.0 "Comparator Module"). In addition, dsPIC33EPXXXMU806/810/814 devices support virtual connections to the filtered QEI module inputs FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810) 814 Devices Only)".
Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of 'b0000001, the output of the Analog Comparator CMP1OUT will be connected to the PWM Fault 1 input, which allows the Analog Comparator to trigger PWM faults without the use of an actual physical pin on the device.

Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled, and its inputs must be connected to a physical RPn/RPIn pin. Example 11-1 illustrates how the input capture module can be connected to the QEI digital filter.

\subsection*{11.4.3.4 Mapping Limitations}

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardwareenforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn/RPIn pins is possible. This includes both many-to-one and one-tomany mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

EXAMPLE 11-1: CONNECTING IC1 TO THE HOME1 DIGITAL FILTER INPUT ON PIN 3 OF THE dsPIC33EP512MU810 DEVICE
```

RPINR15 = 0x5600; /* Connect the QEI1 HOME1 input to RP86 (pin 3) */
RPINR7 = 0x009; /* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000; /* Enable the QEI digital filter */
QEI1CON = 0x8000; /* Enable the QEI module */

```

\subsection*{11.5 Peripheral Pin Select Registers}

REGISTER 11-1: RPINRO: PERIPHERAL PIN SELECT INPUT REGISTER 0
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & INT1R<6:0> & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 7 & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15 & Unimplemented: Read as ' 0 ' \\
bit 14-8 & INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn/RPIn Pin bits \\
& (see Table 11-2 for input pin selection numbers) \\
& 1111111 = Input tied to RP127 \\
& - \\
& - \\
& 0000001 = Input tied to CMP1 \\
& 0000000 = Input tied to Vss \\
bit 7-0 & Unimplemented: Read as ' 0 '
\end{tabular}

\section*{REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1}


\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(R=\) Readable bit & W = Writable bit & \multicolumn{2}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(\mathrm{x}=\mathrm{B}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & INT3R<6:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & \(\cdot\) \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & INT2R<6:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & INT4R<6:0> & & & \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
```

bit 15-7 Unimplemented: Read as ' }0\mathrm{ '
bit 6-0 INT4R<6:0>: Assign External Interrupt 4 (INT4) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to Vss

```

\section*{REGISTER 11-4: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{T3CKR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{T2CKR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & T3CKR<6:0>: Assign Timer3 External Clock (T3CK) to the Corresponding RPn/RPIn pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn/RPIn pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-5: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{T5CKR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{T4CKR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & T5CKR<6:0>: Assign Timer5 External Clock (T5CK) to the Corresponding RPn/RPIn pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & T4CKR<6:0>: Assign Timer4 External Clock (T4CK) to the Corresponding RPn/RPIn pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

\section*{REGISTER 11-6: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{T7CKR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{T6CKR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 14-8} & T7CKR<6:0>: Assign Timer7 External Clock (T7CK) to the Corresponding RPn/RPIn pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 6-0} & T6CKR<6:0>: Assign Timer6 External Clock (T6CK) to the Corresponding RPn/RPIn pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 000001 - Input tied to CMP1 \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-7: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{T9CKR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{T8CKR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & T9CKR<6:0>: Assign Timer9 External Clock (T9CK) to the Corresponding RPn/RPIn pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & \(\cdot\) \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & T8CKR<6:0>: Assign Timer8 External Clock (T8CK) to the Corresponding RPn/RPIn pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

\section*{REGISTER 11-8: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7}


\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(R=\) Readable bit & W = Writable bit & \multicolumn{2}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(\mathrm{x}=\mathrm{B}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \({ }^{\text {c }}\) \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 6-0} & IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & . \\
\hline & put tied to \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-9: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC4R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC3R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & IC4R<6:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & -0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & IC3R<6:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-10: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC6R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC5R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 14-8} & IC6R<6:0>: Assign Input Capture 6 (IC6) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 00 \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 6-0} & IC5R<6:0>: Assign Input Capture 5 (IC5) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 Input tied \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-11: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemente & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & IC8R<6:0>: Assign Input Capture 8 (IC8) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & IC7R<6:0>: Assign Input Capture 7 (IC7) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-12: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{OCFBR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{OCFAR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15 Unimplemented: Read as ' 0 '
bit 14-8 OCFBR<6:0>: Assign Output Compare Fault B (OCFB) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
-
-
0000001 = Input tied to CMP1 0000000 = Input tied to Vss
bit \(7 \quad\) Unimplemented: Read as ' 0 '
bit 6-0 OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127
-
.
0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-13: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & FLT2R<6:0>(1) & & & \\
\hline bit 15 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & FLT1R<6:0>(1) & & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & FLT2R<6:0>: Assign PWM Fault 2 ( \(\overline{\mathrm{FLT2}}\) ) to the Corresponding RPn/RPIn Pin bits \({ }^{(\mathbf{1})}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & \[
0000001 \text { = Input tied to CMP1 }
\] \\
\hline & 0000000 = Input tied to VSs \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 6-0} & FLT1R<6:0>: Assign PWM Fault \(1(\overline{\text { FLT1 }})\) to the Corresponding RPn/RPIn Pin bits \({ }^{(1)}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & - 000001 Input \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

Note 1: These pins are available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 11-14: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & FLT4R<6:0>(1) & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & FLT3R<6:0>(1) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & FLT4R<6:0>: Assign PWM Fault 4 ( \(\overline{\text { FLT4 }}\) ) to the Corresponding RPn/RPIn Pin bits \({ }^{(\mathbf{1})}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & . \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & FLT3R<4:0>: Assign PWM Fault 3 ( \(\overline{\text { FLT3 }}\) ) to the Corresponding RPn/RPIn Pin bits \({ }^{(\mathbf{1})}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

Note 1: These pins are available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 11-15: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\begin{tabular}{|c|cccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & QEB1R<6:0> & & & \\
\hline bit 15 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & & QEA1R<6:0> & & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 14-8} & QEB1R<6:0>: Assign \(B\) (QEB) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0 \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 6-0} & QEA1R<6:0>: Assign A (QEA) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & - 000001 l \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-16: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & HOME1R<6:0>(1) & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & INDX1R<6:0>(1) & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & HOME1R<6:0>: Assign QEI1 HOME1 (HOME1) to the Corresponding RPn/RPIn Pin bits \({ }^{(\mathbf{1})}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & IND1XR<6:0>: Assign QEI1 INDEX1 (INDX1) to the Corresponding RPn/RPIn Pin bits \({ }^{(\mathbf{1})}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline &  \\
\hline & -0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

Note 1: These bits are available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 11-17: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & QEB2R<6:0>(1) & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & & QEA2R<6:0>(1) & & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & QEB2R<6:0>: Assign B (QEI2) to the Corresponding RPn/RPIn Pin bits \({ }^{(\mathbf{1})}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 6-0} & QEA2R<6:0>: Assign A (QEI2) to the Corresponding RPn/RPIn Pin bits \({ }^{(\mathbf{1})}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & - 000001 - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

Note 1: These bits are available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 11-18: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & HOME2R<6:0>(1) & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & \(I N D X 2 R<6: 0>(\mathbf{1 )}\) & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & HOME2R<6:0>: Assign QEI2 HOME2 (HOME2) to the Corresponding RPn/RPIn Pin bits \({ }^{(\mathbf{1})}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & INDX2R<6:0>: Assign QEI2 INDEX (INDX2) to the Corresponding RPn/RPIn Pin bits \({ }^{(\mathbf{1})}\) (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & \\
\hline & - \({ }^{\text {c }}\) \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

Note 1: These bits are available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 11-19: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{U1CTSR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{U1RXR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & U1CTSR<6:0>: Assign UART1 Clear to Send ( \(\overline{\mathrm{U1CTS}})\) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & . \\
\hline & \[
0000001 \text { = Input tied to CMP1 }
\] \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & -0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-20: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{U2CTSR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{U2RXR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 14-8} & U2CTSR<6:0>: Assign UART2 Clear to Send ( \(\overline{\text { U2CTS }}\) ) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 6-0} & U2RXR<6:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & - 000001 Input \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-21: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & SCK1R<6:0>: Assign SPI1 Clock Input (SCK1) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & -0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & SDI1R<6:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

\section*{REGISTER 11-22: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & \(S S 1 R<6: 0>\) & & & \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-0 SS1R<6:0>: Assign SPI1 Slave Select Input ( \(\overline{\mathrm{SS} 1})\) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
-
\(\cdot\)
0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-23: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & & \(S S 2 R<6: 0>\) & & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-0 SS2R<6:0>: Assign SPI2 Slave Select Input ( \(\overline{\mathrm{SS} 2}\) ) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
-
\(\cdot\)
0000001 = Input tied to CMP1
\(0000000=\) Input tied to Vss

REGISTER 11-24: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{CSCKR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{CSDIR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 14-8} & CSCKR<6:0>: Assign DCI Clock Input (CSCK) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 6-0} & CSDIR<6:0>: Assign DCI Data Input (CSDI) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & - 00001 Input tied CMP1 \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-25: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & COFSR<6:0> & & & \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-0 COFSR<6:0>: Assign DCI FSYNC Input (COFS) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
-
\(\cdot\)
0000001 = Input tied to CMP1
\(0000000=\) Input tied to Vss

REGISTER 11-26: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{C2RXR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{C1RXR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 14-8} & C2RXR<6:0>: Assign CAN2 RX Input (CRX2) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 6-0} & C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 Input tied to CMP1 \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-27: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{U3CTSR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{U3RXR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & U3CTSR<6:0>: Assign UART3 Clear to Send ( \(\overline{\text { U3CTS }}\) ) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & \[
0000001 \text { = Input tied to CMP1 }
\] \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & U3RXR<6:0>: Assign UART3 Receive (U3RX) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & -0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-28: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{U4CTSR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{U4RXR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 14-8} & U4CTSR<6:0>: Assign UART4 Clear to Send ( \(\overline{U 4 C T S}\) ) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 6-0} & U4RXR<6:0>: Assign UART4 Receive (U4RX) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & . \\
\hline & 0000001 Input tied \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-29: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{SCK3R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{SDI3R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & SCK3R<6:0>: Assign SPI3 Clock Input (SCK3) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & -0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & SDI3R<6:0>: Assign SPI3 Data Input (SDI3) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

\section*{REGISTER 11-30: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & SS3R<6:0> & & & \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-0 SS3R<6:0>: Assign SPI3 Slave Select Input ( \(\overline{\mathrm{SS} 3}\) ) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-31: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{SCK4R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{SDI4R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & SCK4R<6:0>: Assign SPI4 Clock Input (SCK4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & -0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-32: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|lllllll|}
\hline U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \\
\hline - &
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-0 SS4R<6:0>: Assign SPI4 Slave Select Input ( \(\overline{\mathrm{SS} 4})\) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
-
\(\cdot\)
0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-33: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & IC10R<6:0>: Assign Input Capture 10 (IC10) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & IC9R<6:0>: Assign Input Capture 9 (IC9) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-34: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC12R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC11R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' \(=\) Bit is set & ' 0 ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 14-8} & IC12R<6:0>: Assign Input Capture 12 (IC12) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 6-0} & IC11R<6:0>: Assign Input Capture 11 (IC11) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & - 00001 Input tied CMP1 \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-35: RPINR35: PERIPHERAL PIN SELECT INPUT REGISTER 35
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC14R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC13R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & IC14R<6:0>: Assign Input Capture 14 (IC14) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & \(\cdot\) \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & IC13R<6:0>: Assign Input Capture 13 (IC13) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-36: RPINR36: PERIPHERAL PIN SELECT INPUT REGISTER 36
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC16R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC15R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & IC16R<6:0>: Assign Input Capture 16 (IC16) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & \[
0000001 \text { = Input tied to CMP1 }
\] \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & IC15R<6:0>: Assign Input Capture 15 (IC15) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-37: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{SYNCI1R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{OCFCR<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 14-8} & SYNCI1R<6:0>: Assign PWM Synchronization Input 1 to the Corresponding RPn/RPIn Pin bits. (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & . \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 6-0} & OCFCR<6:0>: Assign Output Fault C (OCFC) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & \begin{tabular}{l}
0000001 = Input tied to CMP1 \\
0000000 = Input tied to Vss
\end{tabular} \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-38: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{DTCMP1R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{SYNCI2R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & \begin{tabular}{l}
DTCMP1R<6:0>: Assign PWM Dead Time Compensation Input 1 to the Corresponding RPn/RPIn Pin bits \\
(see Table 11-2 for input pin selection numbers)
\end{tabular} \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \({ }^{2}\) \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 6-0} & SYNCI2R<6:0>: Assign PWM Synchronization Input 2 to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & \begin{tabular}{l}
0000001 = Input tied to CMP1 \\
\(0000000=\) Input tied to Vss
\end{tabular} \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-39: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{DTCMP3R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{DTCMP2R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 14-8} & \begin{tabular}{l}
DTCMP3R<6:0>: Assign PWM Dead Time Compensation Input 3 to the Corresponding RPn/RPIn Pin bits \\
(see Table 11-2 for input pin selection numbers)
\end{tabular} \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline bit 6-0 & \begin{tabular}{l}
DTCMP2R<6:0>: Assign PWM Dead Time Compensation Input 2 to the Corresponding RPn/RPIn Pin bits \\
(see Table 11-2 for input pin selection numbers)
\end{tabular} \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-40: RPINR40: PERIPHERAL PIN SELECT INPUT REGISTER 40
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{DTCMP5R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{DTCMP4R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & \begin{tabular}{l}
DTCMP5R<6:0>: Assign PWM Dead Time Compensation Input 5 to the Corresponding RPn/RPIn Pin bits \\
(see Table 11-2 for input pin selection numbers)
\end{tabular} \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 6-0} & DTCMP4R<6:0>: Assign PWM Dead Time Compensation Input 4 to the Corresponding RPn/RPIn Pin bits \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-41: RPINR41: PERIPHERAL PIN SELECT INPUT REGISTER 41
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{DTCMP7R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{DTCMP6R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 14-8} & \begin{tabular}{l}
DTCMP7R<6:0>: Assign PWM Dead Time Compensation Input 7 to the Corresponding RPn/RPIn Pin bits \\
(see Table 11-2 for input pin selection numbers)
\end{tabular} \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline bit 6-0 & \begin{tabular}{l}
DTCMP6R<6:0>: Assign PWM Dead Time Compensation Input 6 to the Corresponding RPn/RPIn Pin bits \\
(see Table 11-2 for input pin selection numbers)
\end{tabular} \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-42: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{FLT6R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{FLT5R<6:0>} \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 14-8} & FLT6R<6:0>: Assign PWM Fault 6 to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & . \\
\hline & . \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & FLT5R<6:0>: Assign PWM Fault 5 to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111111 = Input tied to RP127 \\
\hline & - \\
\hline & \(\cdots{ }^{\text {c }}\) \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-43: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - &
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-0 FLT7R<6:0>: Assign PWM Fault 7 to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
-
-
0000001 = Input tied to CMP1
0000000 = Input tied to Vss

REGISTER 11-44: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & & \(R P 65 R<5: 0>\) & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP64R<5:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP65R<5:0>: Peripheral Output Function is Assigned to RP65 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP64R<5:0>: Peripheral Output Function is Assigned to RP64 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-45: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP67R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP66R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP67R<5:0>: Peripheral Output Function is Assigned to RP67 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP66R<5:0>: Peripheral Output Function is Assigned to RP66 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-46: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2
\begin{tabular}{|c|c|ccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{llll} 
\\
\hline- & - & & \(R P 69 R<5: 0>\) \\
\hline bit 15 & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) \\
\hline- & - & & \(R P 68 R<5: 0>\) & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP69R<5:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP68R<5:0>: Peripheral Output Function is Assigned to RP68 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-47: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP71R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP70R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP71R<5:0>: Peripheral Output Function is Assigned to RP71 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP70R<5:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-48: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4
\begin{tabular}{|c|c|ccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{lllll|}
\hline- & - & & \(R P 80 R<5: 0>\) & \\
\hline bit 15 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) \\
\hline- & - & & \(R P 79 R<5: 0>\) & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP80R<5:0>: Peripheral Output Function is Assigned to RP80 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP79R<5:0>: Peripheral Output Function is Assigned to RP79 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-49: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP84R<5:0>: Peripheral Output Function is Assigned to RP84 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP82R<5:0>: Peripheral Output Function is Assigned to RP82 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-50: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6
\begin{tabular}{|c|c|ccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{llll} 
\\
\hline- & - & & \(R P 87 R<5: 0>\) \\
\hline bit 15 & & & \\
bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) \\
\hline- & - & & \(R P 85 R<5: 0>\) & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP87R<5:0>: Peripheral Output Function is Assigned to RP87 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP85R<5:0>: Peripheral Output Function is Assigned to RP85 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-51: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP97R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP96R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP97R<5:0>: Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP96R<5:0>: Peripheral Output Function is Assigned to RP96 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-52: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8
\begin{tabular}{|c|c|ccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{lllll|}
\hline- & - & & \(R P 99 R<5: 0>\) & \\
\hline bit 15 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) \\
\hline- & - & & \(R P 98 R<5: 0>\) & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP99R<5:0>: Peripheral Output Function is Assigned to RP99 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP98R<5:0>: Peripheral Output Function is Assigned to RP98 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-53: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP101R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP100R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP101R<5:0>: Peripheral Output Function is Assigned to RP101Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP100R<5:0>: Peripheral Output Function is Assigned to RP100 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-54: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11
\begin{tabular}{|c|c|ccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{lllll|}
\hline- & - & & \(R P 108 R<5: 0>\) & \\
\hline bit 15 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) \\
\hline- & - & & \(R P 104 R<5: 0>\) & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP108R<5:0>: Peripheral Output Function is Assigned to RP108 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP104R<5:0>: Peripheral Output Function is Assigned to RP104 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-55: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP112R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP109R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as '0' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP112R<5:0>: Peripheral Output Function is Assigned to RP112 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP109R<5:0>: Peripheral Output Function is Assigned to RP109 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-56: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13
\begin{tabular}{|c|c|ccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{lllll|}
\hline- & - & & \(R P 118 R<5: 0>\) & \\
\hline bit 15 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cccccr|}
\hline \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline \hline- & - & & & \(\mathrm{RP} 113 \mathrm{R}<5: 0>\) & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-14 & \begin{tabular}{l} 
Unimplemented: Read as ' 0 ' \\
bit 13-8
\end{tabular} \\
\begin{tabular}{l} 
RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for \\
peripheral function numbers)
\end{tabular} \\
bit 7-6 & \begin{tabular}{l} 
Unimplemented: Read as ' 0 ' \\
bit 5-0
\end{tabular} \\
& \begin{tabular}{l} 
RP113R<5:0>: Peripheral Output Function is Assigned to RP113 Output Pin bits (see Table 11-3 for \\
peripheral function numbers)
\end{tabular}
\end{tabular}

REGISTER 11-57: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP125R<5:0>: Peripheral Output Function is Assigned to RP125 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP120R<5:0>: Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-58: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15
\begin{tabular}{|c|c|ccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{llll} 
\\
\hline- & - & & \(R P 127 R<5: 0>\) \\
\hline bit 15 & & & \\
bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) \\
\hline- & - & & \(R P 126 R<5: 0>\) & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP127R<5:0>: Peripheral Output Function is Assigned to RP127 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP126R<5:0>: Peripheral Output Function is Assigned to RP126 Output Pin bits (see Table 11-3 for peripheral function numbers)

\subsection*{12.0 TIMER1}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16 -bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.
The Timer1 module has the following unique features over other timers:
- Can be operated from the low-power 32 kHz crystal oscillator available on the device.
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

The unique features of Timer1 allow it to be used for Real Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:
- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.
The Timer modes are determined by the following bits:
- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Mode } & TCS & TGATE & TSYNC \\
\hline \hline Timer & 0 & 0 & x \\
\hline Gated timer & 0 & 1 & x \\
\hline \begin{tabular}{l} 
Synchronous \\
counter
\end{tabular} & 1 & x & 1 \\
\hline \begin{tabular}{l} 
Asynchronous \\
counter
\end{tabular} & 1 & x & 0 \\
\hline
\end{tabular}

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM


Note 1: FP is the peripheral clock.
2: See Section 9.0 "Oscillator Configuration" for information on enabling the Secondary Oscillator (Sosc).

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline TON \({ }^{(1)}\) & - & TSIDL & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & U-0 \\
\hline - & TGATE & TCK & & - & TSYNC \({ }^{(1)}\) & TCS \({ }^{(1)}\) & - \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15 TON: Timer1 On bit
1 = Starts 16-bit Timer1
0 = Stops 16-bit Timer1
bit 14 Unimplemented: Read as ' 0 '
bit 13 TSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ' 0 '
bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation enabled
\(0=\) Gated time accumulation disabled
bit 5-4 TCKPS<1:0> Timer1 Input Clock Prescale Select bits
\(11=1: 256\)
\(10=1: 64\)
\(01=1: 8\)
\(00=1: 1\)
bit 3 Unimplemented: Read as ' 0 '
bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit
When TCS = 1:
1 = Synchronize external clock input
0 = Do not synchronize external clock input
When TCS = 0 :
This bit is ignored.
bit 1 TCS: Timer1 Clock Source Select bit
1 = External clock from pin T1CK (on the rising edge)
0 = Internal clock (Fp)
bit \(0 \quad\) Unimplemented: Read as ' 0 ’

Note 1: When Timer1 is enabled in external synchronous counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register is ignored.

\subsection*{13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer \(4 / 5\), Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.
As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:
- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter

They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.
For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.
Note: For 32 -bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.
Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM ( \(x=2,4,6\), AND 8)


Note 1: FP is the peripheral clock.

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3, 5, 7, AND 9)


Note 1: FP is the peripheral clock.
2: The ADC trigger is available on TMR3 and TMR5 only.

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)


Note 1: THE ADC trigger is available only on the TMR3:TMR2 andTMR5:TMR4 32-bit timer pairs.
2: Timerx is a Type \(B\) timer \((x=2,4,6\) and 8\()\).
3: Timery is a Type \(C\) timer \((x=3,5,7\) and 9\()\).

\section*{REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline TON & - & TSIDL & - & - & - & - & - \\
\hline bit 15 & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & U-0 \\
\hline- & TGATE & TCKPS<1:0> & T32 & - & TCS \(^{(1)}\) & - \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{bit 15} & TON: Timerx On bit \\
\hline & When T32 = 1: \\
\hline & 1 = Starts 32-bit Timerx/y \\
\hline & 0 = Stops 32-bit Timerx/y \\
\hline & When T32 = 0: \\
\hline & 1 = Starts 16-bit Timerx \\
\hline & 0 = Stops 16-bit Timerx \\
\hline bit 14 & Unimplemented: Read as '0’ \\
\hline \multirow[t]{2}{*}{bit 13} & TSIDL: Stop in Idle Mode bit \\
\hline & \begin{tabular}{l}
1 = Discontinue module operation when device enters Idle mode \\
\(0=\) Continue module operation in Idle mode
\end{tabular} \\
\hline bit 12-7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6} & TGATE: Timerx Gated Time Accumulation Enable bit \\
\hline & When TCS = 1: \\
\hline & This bit is ignored. \\
\hline & When TCS = 0: \\
\hline & 1 = Gated time accumulation enabled \\
\hline & 0 = Gated time accumulation disabled \\
\hline \multirow[t]{5}{*}{bit 5-4} & TCKPS<1:0>: Timerx Input Clock Prescale Select bits \\
\hline & \(11=1: 256\) \\
\hline & \(10=1: 64\) \\
\hline & \(01=1: 8\) \\
\hline & \(00=1: 1\) \\
\hline \multirow[t]{3}{*}{bit 3} & T32: 32-bit Timer Mode Select bit \\
\hline & 1 = Timerx and Timery form a single 32-bit timer \\
\hline & 0 = Timerx and Timery act as two 16-bit timers \\
\hline bit 2 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 1} & TCS: Timerx Clock Source Select bit \({ }^{(1)}\) \\
\hline & 1 = External clock from pin TxCK (on the rising edge) \\
\hline & 0 = Internal clock (FP) \\
\hline bit 0 & Unimplemented: Read as '0' \\
\hline
\end{tabular}

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline TON \({ }^{(1)}\) & - & TSIDL \({ }^{(2)}\) & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15} \\
\hline U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & U-0 \\
\hline - & TGATE \({ }^{(1)}\) & TCKP & >(1) & - & - & TCS \({ }^{(1,3)}\) & - \\
\hline \multicolumn{8}{|l|}{bit 7} \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as '0' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15 TON: Timery On bit \({ }^{(1)}\)
1 = Starts 16-bit Timery
\(0=\) Stops 16 -bit Timery
bit \(14 \quad\) Unimplemented: Read as ' 0 '
bit 13 TSIDL: Stop in Idle Mode bit \({ }^{(2)}\)
1 = Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ' 0 '
bit \(6 \quad\) TGATE: Timery Gated Time Accumulation Enable bit \({ }^{(1)}\)
When TCS = 1:
This bit is ignored.
When TCS \(=0\) :
1 = Gated time accumulation enabled
\(0=\) Gated time accumulation disabled
bit 5-4 TCKPS<1:0>: Timery Input Clock Prescale Select bits \({ }^{(1)}\)
\(11=1: 256\)
\(10=1: 64\)
\(01=1: 8\)
\(00=1: 1\)
bit 3-2 Unimplemented: Read as '0'
bit 1 TCS: Timery Clock Source Select bit \({ }^{(1,3)}\)
1 = External clock from pin TyCK (on the rising edge)
0 = Internal clock (FP)
bit \(0 \quad\) Unimplemented: Read as ' 0 '
Note 1: When 32-bit operation is enabled ( \(\mathrm{T} 2 \mathrm{CON}<3>=1\) ), these bits have no effect on Timery operation; all timer functions are set through TxCON.
2: When 32-bit timer operation is enabled ( \(\mathrm{T} 32=1\) ) in the Timer Control register ( \(\mathrm{TxCON}<3>\) ), the TSIDL bit must be cleared to operate the 32 -bit timer in Idle mode.
3: The TyCK pin is not available on all timers. See "Pin Diagrams" section for the available pins.

NOTES:

\subsection*{14.0 INPUT CAPTURE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70352) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices support up to 16 input capture channels.
Key features of the Input Capture module include:
- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable trigger/sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

Note: Only IC1, IC2, IC3 and IC4 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to ' 1 ' ( \(\mathrm{ICl}<1: 0>=00\) )

FIGURE 14-1: INPUT CAPTURE MODULE BLOCK DIAGRAM


Note 1: The Trigger/Sync source is enabled by default and is set to Timer3 as a source. This timer must be enabled for proper ICx module operation or the Trigger/Sync source must be changed to another source option.

\subsection*{14.1 Input Capture Registers}

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 \\
\hline - & - & ICSIDL & \multicolumn{3}{|c|}{ICTSEL<2:0>} & - & - \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 & R/W-0 & R/HC/HS-0 & R/HC/HS-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & \multicolumn{2}{|c|}{ICI<1:0>} & ICOV & ICBNE & \multicolumn{3}{|c|}{ICM<2:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(H C=\) Cleared by Hardware & \(H S=\) Set by Hardware \(\quad\) ' 0 ' \(=\) Bit is cleared \\
\(-\mathrm{n}=\) Value at POR & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13 ICSIDL: Input Capture Stop in Idle Control bit
1 = Input capture will Halt in CPU Idle mode
\(0=\) Input capture will continue to operate in CPU Idle mode
bit 12-10 ICTSEL<12:10>: Input Capture Timer Select bits
111 = Peripheral clock (FP) is the clock source of the ICx
110 = Reserved
101 = Reserved
\(100=\) Clock source of Timer1 is the clock source of the ICx (only the synchronous clock is supported)
011 = Clock source of Timer5 is the clock source of the ICx
\(010=\) Clock source of Timer4 is the clock source of the ICx
001 = Clock source of Timer2 is the clock source of the ICx
\(000=\) Clock source of Timer3 is the clock source of the ICx
bit 9-7 Unimplemented: Read as ' 0 '
bit 6-5 ICI<1:0>: Number of Captures per Interrupt Select bits
(this field is not used if ICM<2:0> = 001 or 111)
11 = Interrupt on every fourth capture event
\(10=\) Interrupt on every third capture event
01 = Interrupt on every second capture event
\(00=\) Interrupt on every capture event
bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only)
1 = Input capture buffer overflow occurred
\(0=\) No input capture buffer overflow occurred
bit \(3 \quad\) ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
1 = Input capture buffer is not empty, at least one more capture value can be read
\(0=\) Input capture buffer is empty
bit 2-0 ICM<2:0>: Input Capture Mode Select bits
111 = Input capture functions as interrupt pin only in CPU Sleep and Idle mode (rising edge detect only, all other control bits are not applicable)
\(110=\) Unused (module disabled)
101 = Capture mode, every 16th rising edge (Prescaler Capture mode)
\(100=\) Capture mode, every 4th rising edge (Prescaler Capture mode)
011 = Capture mode, every rising edge (Simple Capture mode)
010 = Capture mode, every falling edge (Simple Capture mode)
\(001=\) Capture mode, every edge, rising and falling (Edge Detect mode ( \(\mathrm{ICl}<1: 0>\) ) is not used in this mode)
\(000=\) Input Capture module is turned off

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline- & - & - & - & - & - & - & IC32 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|ccccc|}
\hline R/W-0 & R/W/HS-0 & U-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-1 \\
\hline ICTRIG \({ }^{(2)}\) & TRIGSTAT \(^{(3)}\) & - & & & SYNCSEL<4:0> & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(H S=\) Set by Hardware & \(' 0\) ' \(=\) Bit is cleared \\
\(-n=\) Value at POR & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\hline
\end{tabular}
bit 15-9 Unimplemented: Read as ' 0 '
bit \(8 \quad\) IC32: 32-bit Timer Mode Select bit (Cascade mode)
1 = ODD IC and EVEN IC form a single 32-bit Input Capture module \({ }^{(1)}\)
0 = Cascade module operation disabled
bit 7 ICTRIG: Trigger Operation Select bit \({ }^{(2)}\)
1 = Input source used to trigger the input capture timer (Trigger mode)
\(0=\) Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)
bit \(6 \quad\) TRIGSTAT: Timer Trigger Status bit \({ }^{(3)}\)
\(1=1 C x T M R\) has been triggered and is running
\(0=\) ICxTMR has not been triggered and is being held clear
bit \(5 \quad\) Unimplemented: Read as ' 0 '

Note 1: The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.
2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
3: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set, and cleared in software.
4: Do not use the ICx module as its own sync or trigger source.
5: This option should only be selected as trigger source and not as a synchronization source.

\section*{REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)}
bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits \({ }^{(4)}\)
11111 = No sync or trigger source for ICx
11110 = No sync or trigger source for ICx
\(11101=\) No sync or trigger source for ICx
11100 = Reserved
\(11011=\) ADC1 module synchronizes or triggers ICx \({ }^{(5)}\)
\(11010=\) CMP3 module synchronizes or triggers ICx \({ }^{(5)}\)
\(11001=\) CMP2 module synchronizes or triggers ICx \({ }^{(5)}\)
\(11000=\) CMP1 module synchronizes or triggers ICx \({ }^{(5)}\)
10111 = IC8 module synchronizes or triggers ICx
10110 = IC7 module synchronizes or triggers ICx
10101 = IC6 module synchronizes or triggers ICx
10100 = IC5 module synchronizes or triggers ICx
10011 = IC4 module synchronizes or triggers ICx
10010 = IC3 module synchronizes or triggers ICx
10001 = IC2 module synchronizes or triggers ICx
10000 = IC1 module synchronizes or triggers ICx
01111 = Timer5 synchronizes or triggers ICx
01110 = Timer4 synchronizes or triggers ICx
01101 = Timer3 synchronizes or triggers ICx (default)
01100 = Timer2 synchronizes or triggers ICx
01011 = Timer1 synchronizes or triggers ICx
01010 = No sync or trigger source for ICx
01001 = OC9 module synchronizes or triggers ICx
01000 = OC8 module synchronizes or triggers ICx
00111 = OC7 module synchronizes or triggers ICx
00110 = OC6 module synchronizes or triggers ICx
\(00101=\) OC5 module synchronizes or triggers ICx
00100 = OC4 module synchronizes or triggers ICx
00011 = OC3 module synchronizes or triggers ICx
00010 = OC2 module synchronizes or triggers ICx
00001 = OC1 module synchronizes or triggers ICx
00000 = No sync or trigger source for ICx

Note 1: The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.
2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
3: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set, and cleared in software.
4: Do not use the ICx module as its own sync or trigger source.
5: This option should only be selected as trigger source and not as a synchronization source.

\subsection*{15.0 OUTPUT COMPARE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70358) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select one of eight available clock sources for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The output compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

Note 1: Only OC1, OC2, OC3 and OC4 can trigger a DMA data transfer.
2: See Section 13. "Output Compare" (DS70358) in the "dsPIC33E/PIC24E Family Reference Manual" for OCxR and OCxRS register restrictions.

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM


Note 1: The Trigger/Sync source is enabled by default and is set to Timer2 as a source. This timer must be enabled for proper OCx module operation or the Trigger/Sync source must be changed to another source option.

\section*{REGISTER 15-1: OCxCON1: OUTPUT COMPAREx CONTROL REGISTER 1}
\begin{tabular}{|c|c|c|ccc|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & OCSIDL & & OCTSEL<2:0> & & ENFLTC & ENFLTB \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|cc|ccc|}
\hline R/W-0 & R/W-0 HCS & R/W-0 HCS & R/W-0 HCS & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline ENFLTA & OCFLTC & OCFLTB & OCFLTA & TRIGMODE & & OCM<2:0> & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HCS = Hardware Clearable/Settable bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13 OCSIDL: Stop Output Compare x in Idle Mode Control bit
1 = Output Compare \(x\) halts in CPU Idle mode
\(0=\) Output Compare \(x\) continues to operate in CPU Idle mode
bit 12-10 OCTSEL<2:0>: Output Compare \(x\) Clock Select bits
111 = Peripheral clock (FP)
110 = Reserved
101 = Reserved
100 = Timer1 clock (only the synchronous clock is supported)
011 = Timer5 clock
010 = Timer4 clock
001 = Timer3 clock
000 = Timer2 clock
bit \(9 \quad\) ENFLTC: Fault C Input Enable bit
1 = Output Compare Fault C input (OCFC) is enabled
\(0=\) Output Compare Fault C input (OCFC) is disabled
bit 8 ENFLTB: Fault B Input Enable bit
1 = Output Compare Fault B input (OCFB) is enabled
\(0=\) Output Compare Fault \(B\) input (OCFB) is disabled
bit \(7 \quad\) ENFLTA: Fault A Input Enable bit
1 = Output Compare Fault A input (OCFA) is enabled
\(0=\) Output Compare Fault \(A\) input (OCFA) is disabled
bit \(6 \quad\) OCFLTC: PWM Fault C Condition Status bit
\(1=\) PWM Fault C condition on OCFC pin has occurred
\(0=\) No PWM Fault C condition on OCFC pin has occurred
bit \(5 \quad\) OCFLTB: PWM Fault B Condition Status bit
\(1=\mathrm{PWM}\) Fault B condition on OCFB pin has occurred
\(0=\) No PWM Fault B condition on OCFB pin has occurred
bit 4 OCFLTA: PWM Fault A Condition Status bit
1 = PWM Fault A condition on OCFA pin has occurred
\(0=\) No PWM Fault A condition on OCFA pin has occurred
bit 3 TRIGMODE: Trigger Status Mode Select bit
1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
\(0=\) TRIGSTAT is cleared only by software
Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

\section*{REGISTER 15-1: OCxCON1: OUTPUT COMPAREx CONTROL REGISTER 1 (CONTINUED)}
bit 2-0 OCM<2:0>: Output Compare Mode Select bits
111 = Center-Aligned PWM mode: Output set high when OCxTMR \(=\) OCxR and set low when OCxTMR = OCxRS \({ }^{(1)}\)
\(110=\) Edge-Aligned PWM mode: Output set high when OCxTMR \(=0\) and set low when OCxTMR = OCxR \({ }^{(1)}\)
101 = Double Compare Continuous Pulse mode: Initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS
100 = Double Compare Single-Shot mode: Initialize OCx pin low, toggle OCx state on matches of OCxR and OCxRS for one cycle
011 = Single Compare mode: Compare events with OCxR, continuously toggle OCx pin
010 = Single Compare Single-Shot mode: Initialize OCx pin high, compare event with OCxR, forces OCx pin low
001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event with OCxR, forces OCx pin high
\(000=\) Output compare channel is disabled
Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 \\
\hline FLTMD & FLTOUT & FLTTRIEN & OCINV & - & - & - & OC32 \\
\hline \multicolumn{2}{|l|}{bit 15} & & & & & & bit 8 \\
\hline & & & & & & & \\
\hline R/W-0 & R/W-0 HS & R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-0 \\
\hline OCTRIG & TRIGSTAT & OCTRIS & & & CSEL< & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{bit 7}} & & & & & & bit 0 \\
\hline & & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Legend: \\
\(\mathrm{R}=\) Readable bit \\
\(-n=\) Value at POR
\end{tabular}}} & \multicolumn{6}{|l|}{HS = Hardware Settable bit} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
W = Writable bit \\
' 1 ' = Bit is set
\end{tabular}}} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline & & & & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
bit 15 FLTMD: Fault Mode Select bit
1 = Fault mode is maintained until the Fault source is removed; the corresponding OCFLTx bit is cleared in software and a new PWM period starts
\(0=\) Fault mode is maintained until the Fault source is removed and a new PWM period starts
bit \(14 \quad\) FLTOUT: Fault Out bit
\(1=\mathrm{PWM}\) output is driven high on a Fault
\(0=\) PWM output is driven low on a Fault
bit 13 FLTTRIEN: Fault Output State Select bit
\(1=O C x\) pin is tri-stated on Fault condition
\(0=\) OCx pin I/O state defined by FLTOUT bit on Fault condition
bit 12
OCINV: OCMP Invert bit
\(1=\) OCx output is inverted
\(0=\) OCx output is not inverted
bit 11-9 Unimplemented: Read as ' 0 '
bit 8 OC32: Cascade Two OCx Modules Enable bit (32-bit operation)
1 = Cascade module operation enabled
\(0=\) Cascade module operation disabled
bit 7 OCTRIG: OCx Trigger/Sync Select bit
\(1=\) Trigger OCx from source designated by SYNCSELx bits
\(0=\) Synchronize OCx with source designated by SYNCSELx bits
bit 6 TRIGSTAT: Timer Trigger Status bit
\(1=\) Timer source has been triggered and is running
\(0=\) Timer source has not been triggered and is being held clear
bit 5 OCTRIS: OCx Output Pin Direction Select bit
1 = OCx is tri-stated
0 = Output compare module drives the OCx pin
Note 1: Do not use the OCx module as its own synchronization or trigger source.
2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module use the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

\section*{REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)}
bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
11111 = No sync or trigger source for OCx
11110 = INT2 pin synchronizes or triggers OCx
\(11101=\) INT1 pin synchronizes or triggers OCx
11100 = Reserved
11011 = ADC1 module synchronizes or triggers OCx
\(11010=\) CMP3 module synchronizes or triggers OCx
11001 = CMP2 module synchronizes or triggers OCx
11000 = CMP1 module synchronizes or triggers OCx
10111 = IC8 module synchronizes or triggers OCx
10110 = IC7 module synchronizes or triggers OCx
10101 = IC6 module synchronizes or triggers OCx
10100 = IC5 module synchronizes or triggers OCx
10011 = IC4 module synchronizes or triggers OCx
10010 = IC3 module synchronizes or triggers OCx
10001 = IC2 module synchronizes or triggers OCx
10000 = IC1 module synchronizes or triggers OCx
01111 = Timer5 synchronizes or triggers OCx
01110 = Timer4 synchronizes or triggers OCx
01101 = Timer3 synchronizes or triggers OCx
01100 = Timer2 synchronizes or triggers OCx (default)
01011 = Timer1 synchronizes or triggers OCx
\(01010=\) No sync or trigger source for OCx
\(01001=\) OC9 module synchronizes or triggers OCx \({ }^{(1,2)}\)
\(01000=\) OC8 module synchronizes or triggers OCx \({ }^{(1,2)}\)
\(00111=\) OC7 module synchronizes or triggers OCx \({ }^{(1,2)}\)
\(00110=\) OC6 module synchronizes or triggers OCx \({ }^{(1,2)}\)
\(00101=\) OC5 module synchronizes or triggers OCx \({ }^{(1,2)}\)
\(00100=\) OC4 module synchronizes or triggers OCx \({ }^{(1,2)}\)
\(00011=\) OC3 module synchronizes or triggers OCx \({ }^{(1,2)}\)
\(00010=\) OC2 module synchronizes or triggers OCx \({ }^{(1,2)}\)
\(00001=\) OC1 module synchronizes or triggers OCx \({ }^{(1,2)}\)
\(00000=\) No sync or trigger source for OCx
Note 1: Do not use the OCx module as its own synchronization or trigger source.
2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module use the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

NOTES:

\subsection*{16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "High-Speed PWM" (DS70645) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMU806/810/814 devices support a dedicated Pulse-Width Modulation (PWM) module with up to 14 outputs.
The High-Speed PWM module consists of the following major features:
- Two master time base modules with special event triggers
- PWM module input clock prescaler
- Two synchronization inputs
- Two synchronization outputs
- Up to seven PWM generators
- Two PWM outputs per generator (PWMxH and PWMxL)
- Individual period, duty cycle and phase shift for each PWM output
- Period, duty cycle, phase shift and dead-time resolution of 8.32 ns
- Immediate update mode for PWM period, duty cycle and phase shift
- Independent fault and current-limit inputs for each PWM
- Cycle by cycle and latched fault modes
- PWM time-base capture upon current limit
- Seven fault inputs and three comparator outputs available for faults and current-limits
- Programmable A/D trigger with interrupt for each PWM pair
- Complementary PWM outputs
- Push-Pull PWM outputs
- Redundant PWM outputs
- Edge-Aligned PWM mode
- Center-Aligned PWM mode
- Variable Phase PWM mode
- Multi-Phase PWM mode
- Fixed-Off Time PWM mode
- Current Limit PWM mode
- Current Reset PWM mode
- PWMxH and PWMxL output override control
- PWMxH and PWMxL output pin swapping
- Chopping mode (also known as Gated mode)
- Dead-time insertion
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB)
- 8 mA PWM pin output drive

Note: Duty cycle, dead-time, phase shift and frequency resolution is 16.64 ns in Center-Aligned PWM mode.
The High-Speed PWM module contains up to seven PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. Two master time base generators provide a synchronous signal as a common time base to synchronize the various PWM outputs. Each generator can operate independently or in synchronization with either of the two master time bases. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.
Each PWM can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the High-Speed PWM module also generates two Special Event Triggers to the ADC module based on the two master time bases.

The High-Speed PWM module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 and SYNCI2 pins are the input pins, which can synchronize the High-Speed PWM module with an external signal. The SYNCO1 and SYNCO2 pins are output pins that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the High-Speed PWM module and its interconnection with the CPU and other peripherals.

FIGURE 16-1: HIGH-SPEED PWM MODULE ARCHITECTURAL OVERVIEW


FIGURE 16-2: HIGH-SPEED PWM MODULE REGISTER INTERCONNECTION DIAGRAM


REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & HSC-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline PTEN & - & PTSIDL & SESTAT & SEIEN & EIPU \({ }^{(1)}\) & SYNCPOL \({ }^{(1)}\) & SYNCOEN \({ }^{(1)}\) \\
\hline \multicolumn{2}{|l|}{bit 15} & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline SYNCEN \({ }^{(1)}\) & \multicolumn{3}{|c|}{SYNCSRC<2:0> \({ }^{(1)}\)} & \multicolumn{4}{|c|}{SEVTPS<3:0> \({ }^{(1)}\)} \\
\hline \multicolumn{4}{|l|}{bit 7} & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HSC = Set or Cleared in Hardware \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 PTEN: PWM Module Enable bit
1 = PWM module is enabled
\(0=\) PWM module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 PTSIDL: PWM Time Base Stop in Idle Mode bit
1 = PWM time base halts in CPU Idle mode
0 = PWM time base runs in CPU Idle mode
bit 12 SESTAT: Special Event Interrupt Status bit
1 = Special Event Interrupt is pending
\(0=\) Special Event Interrupt is not pending
bit 11 SEIEN: Special Event Interrupt Enable bit
1 = Special Event Interrupt is enabled
0 = Special Event Interrupt is disabled
bit \(10 \quad\) EIPU: Enable Immediate Period Updates bit \({ }^{(1)}\)
1 = Active Period register is updated immediately
0 = Active Period register updates occur on PWM cycle boundaries
bit \(9 \quad\) SYNCPOL: Synchronize Input and Output Polarity bit \({ }^{(1)}\)
1 = SYNCIx/SYNCO polarity is inverted (active-low)
\(0=\) SYNCIx/SYNCO is active-high
bit 8 SYNCOEN: Primary Time Base Sync Enable bit \({ }^{(\mathbf{1})}\)
1 = SYNCO output is enabled
\(0=\) SYNCO output is disabled
bit 7 SYNCEN: External Time Base Synchronization Enable bit \({ }^{(\mathbf{1})}\)
1 = External synchronization of primary time base is enabled
\(0=\) External synchronization of primary time base is disabled
bit 6-4 SYNCSRC<2:0>: Synchronous Source Selection bits \({ }^{(1)}\)
111 = Reserved
-
-
-
\(010=\) Reserved
001 = SYNCI2
000 = SYNCI1

Note 1: These bits should be changed only when PTEN \(=0\). In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

\section*{REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)}
bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits \({ }^{(1)}\)
\(1111=1: 16\) Postscaler generates Special Event Trigger on every sixteenth compare match event
-
-
-
\(0001=1: 2\) Postscaler generates Special Event Trigger on every second compare match event \(0000=1: 1\) Postscaler generates Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN \(=0\). In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

\section*{REGISTER 16-2: PTCON2: PWM PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|cc|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \\
\hline - & - & - & - & - & & PCLKDIV<2:0>(1) & \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-3 Unimplemented: Read as ' 0 '
bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits \({ }^{(\mathbf{1})}\)
111 = Reserved
110 = Divide by 64, maximum PWM timing resolution
101 = Divide by 32, maximum PWM timing resolution
100 = Divide by 16, maximum PWM timing resolution
011 = Divide by 8, maximum PWM timing resolution
010 = Divide by 4, maximum PWM timing resolution
001 = Divide by 2, maximum PWM timing resolution
000 = Divide by 1 , maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN \(=0\). Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-3: PTPER: PRIMARY MASTER TIME BASE PERIOD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-1 & R/W-1 \\
\hline & & & PTPER<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-1 & R/W-1 & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R/W-0 & R/W-0 \\
\hline & & PTPER<7:0> & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-0
PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits

REGISTER 16-4: SEVTCMP: PWM PRIMARY SPECIAL EVENT COMPARE REGISTER
\begin{tabular}{|lllllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & SEVTCMP<15:8> & & & \\
\hline bit 15 & & & & & & \\
\hline & & & & & & \\
\hline R/W-0 0 & R/W-0 \\
\hline & & & SEVTCMP<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0
SEVTCMP<15:0>: Special Event Compare Count Value bits

REGISTER 16-5: STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER

\begin{tabular}{|lll|}
\hline Legend: & HSC \(=\) Set or Cleared in Hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-13 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 12} & SESTAT: Special Event Interrupt Status bit \\
\hline & \begin{tabular}{l}
1 = Secondary special event interrupt is pending \\
\(0=\) Secondary special event interrupt is not pending
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 11} & SEIEN: Special Event Interrupt Enable bit \\
\hline & 1 = Secondary special event interrupt is enabled \\
\hline & \(0=\) Secondary special event interrupt is disabled \\
\hline \multirow[t]{3}{*}{bit 10} & EIPU: Enable Immediate Period Updates bit \({ }^{(\mathbf{1})}\) \\
\hline & 1 = Active Secondary Period register is updated immediately. \\
\hline & 0 = Active Secondary Period register updates occur on PWM cycle boundaries \\
\hline \multirow[t]{2}{*}{bit 9} & SYNCPOL: Synchronize Input and Output Polarity bit \\
\hline & 1 = The falling edge of SYNCIN resets the SMTMR; SYNCO2 output is active-low \(0=\) The rising edge of SYNCIN resets the SMTMR; SYNCO2 output is active-high \\
\hline \multirow[t]{3}{*}{bit 8} & SYNCOEN: Secondary Master Time Base Sync Enable bit \\
\hline & 1 = SYNCO2 output is enabled \\
\hline & \(0=\) SYNCO2 output is disabled \\
\hline \multirow[t]{2}{*}{bit 7} & SYNCEN: External Secondary Master Time Base Synchronization Enable bit \\
\hline & \begin{tabular}{l}
1 = External synchronization of secondary time base is enabled \\
\(0=\) External synchronization of secondary time base is disabled
\end{tabular} \\
\hline \multirow[t]{8}{*}{bit 6-4} & SYNCSRC<2:0>: Secondary Time Base Sync Source Selection bits \\
\hline & 111 = Reserved \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 010 = Reserved \\
\hline & 001 = SYNCI2 \\
\hline & 000 = SYNCI1 \\
\hline \multirow[t]{7}{*}{bit 3-0} & SEVTPS<3:0>: PWM Secondary Special Event Trigger Output Postscaler Select bits \\
\hline & 1111 = 1:16 Postcale \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & \(0001=1: 2\) Postcale \\
\hline & \(0000=1: 1\) Postscale \\
\hline
\end{tabular}

Note 1: This bit only applies to the secondary master time base period.

REGISTER 16-6: STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|ccc|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & - & - & - & & PCLKDIV<2:0>(1) & \\
\hline bit 7 &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & 0 ' \(=\) Bit is cleared
\end{tabular}
bit 15-3 Unimplemented: Read as ' 0 '
bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits \({ }^{(1)}\)
111 = Reserved
110 = Divide by 64, maximum PWM timing resolution
101 = Divide by 32, maximum PWM timing resolution
\(100=\) Divide by 16 , maximum PWM timing resolution
011 = Divide by 8, maximum PWM timing resolution
010 = Divide by 4, maximum PWM timing resolution
001 = Divide by 2, maximum PWM timing resolution
000 = Divide by 1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN \(=0\). Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-7: STPER: SECONDARY MASTER TIME BASE PERIOD REGISTER \({ }^{(\mathbf{1})}\)
\begin{tabular}{|llllllll|}
\hline R/W-1 & R/W-1 \\
\hline & & STPER<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-1\) & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) \\
\hline & & STPER<7:0> & & & \\
\hline bit 7 & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 STPER<15:0>: Secondary Master Time Base (PMTMR) Period Value bits

REGISTER 16-8: SSEVTCMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{SSEVTCMP<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{SSEVTCMP<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
W = Writable bit
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
\(-n=\) Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 15-0 SSEVTCMP<15:0>: Special Event Compare Count Value bits
REGISTER 16-9: CHOP: PWM CHOP CLOCK GENERATOR REGISTER
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ R/W-0 } & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline CHPCLKEN & - & - & - & - & - & CHOP<9:8> \\
\hline bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & \(C H O P<7: 0>\) & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemente & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 CHPCLKEN: Enable Chop Clock Generator bit
1 = Chop clock generator is enabled
\(0=\) Chop clock generator is disabled
bit 14-10 Unimplemented: Read as ' 0 '
bit 9-0 CHOP<9:0>: Chop Clock Divider bits
The frequency of the chop clock signal is given by the following expression:
Chop Frequency \(=\mathrm{FPWm} /(\mathrm{CHOP}<9: 0>+1)\)
Where, FPWM is FP divided by value based on the PCLKDIV settings.

REGISTER 16-10: MDC: PWM MASTER DUTY CYCLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{MDC<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{MDC<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits

REGISTER 16-11: PWMCONx: PWM CONTROL REGISTER

\begin{tabular}{|lll|}
\hline Legend: & HSC = Set or Cleared in Hardware \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit \(15 \quad\) FLTSTAT: Fault Interrupt Status bit \({ }^{(\mathbf{1})}\)
1 = Fault interrupt is pending
\(0=\) No Fault interrupt is pending
This bit is cleared by setting FLTIEN \(=0\).
bit 14 CLSTAT: Current-Limit Interrupt Status bit \({ }^{(1)}\)
1 = Current-limit interrupt is pending
\(0=\) No current-limit interrupt is pending
This bit is cleared by setting CLIEN \(=0\).
bit 13 TRGSTAT: Trigger Interrupt Status bit
1 = Trigger interrupt is pending
\(0=\) No trigger interrupt is pending
This bit is cleared by setting TRGIEN \(=0\).
bit 12 FLTIEN: Fault Interrupt Enable bit
1 = Fault interrupt is enabled
0 = Fault interrupt is disabled and FLTSTAT bit is cleared
bit 11 CLIEN: Current-Limit Interrupt Enable bit
1 = Current-limit interrupt enabled
0 = Current-limit interrupt disabled and CLSTAT bit is cleared
bit 10 TRGIEN: Trigger Interrupt Enable bit
1 = A trigger event generates an interrupt request
\(0=\) Trigger event interrupts are disabled and TRGSTAT bit is cleared
bit 9
ITB: Independent Time Base Mode bit \({ }^{(2)}\)
1 = PHASEx/SPHASEx registers provide time base period for this PWM generator
0 = PTPER register provides timing for this PWM generator
bit \(8 \quad\) MDCS: Master Duty Cycle Register Select bit \({ }^{(\mathbf{2})}\)
\(1=\) MDC register provides duty cycle information for this PWM generator
\(0=\) PDCx and SDCx registers provide duty cycle information for this PWM generator

Note 1: Software must clear the interrupt status here and in the corresponding IFS bit in the interrupt controller.
2: These bits should not be changed after the PWM is enabled (PTEN = 1).
3: \(D T C<1: 0>=11\) for DTCP to be effective; otherwise, DTCP is ignored.
4: The Independent Time Base (ITB =1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
5: To operate in External Period Reset mode, the ITB bit must be ' 1 ' and the CLMOD bit in the FCLCONx register must be ' 0 '.

\section*{REGISTER 16-11: PWMCONx: PWM CONTROL REGISTER (CONTINUED)}
bit 7-6 DTC<1:0>: Dead-Time Control bits
11 = Dead-Time Compensation mode
\(10=\) Dead-time function is disabled
01 = Negative dead time actively applied for Complementary Output mode
\(00=\) Positive dead time actively applied for all output modes
bit 5 DTCP: Dead-Time Compensation Polarity bit \({ }^{(3)}\)
When set to ' 1 ':
If DTCMPx \(=0\), PWMLx is shortened and PWMHx is lengthened.
If DTCMPx \(=1\), PWMHx is shortened and PWMLx is lengthened.
When set to ' 0 ':
If DTCMPx \(=0\), PWMHx is shortened and PWMLx is lengthened.
If DTCMPx \(=1\), PWMLx is shortened and PWMHx is lengthened.
bit 4
Unimplemented: Read as ' 0 '
bit \(3 \quad\) MTBS: Master Time Base Select bit
\(1=\) PWM generator uses the secondary master time base for synchronization and as the clock source for the PWM generation logic (if secondary time base is available)
\(0=\) PWM generator uses the primary master time base for synchronization and as the clock source for the PWM generation logic
bit 2 CAM: Center-Aligned Mode Enable bit \({ }^{(2,4)}\)
1 = Center-Aligned mode is enabled
0 = Edge-Aligned mode is enabled
bit 1
XPRES: External PWM Reset Control bit \({ }^{(5)}\)
1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
\(0=\) External pins do not affect PWM time base
bit 0 IUE: Immediate Update Enable bit
1 = Updates to the active MDC/PDCx/SDCx registers are immediate
\(0=\) Updates to the active PDCx registers are synchronized to the PWM time base

Note 1: Software must clear the interrupt status here and in the corresponding IFS bit in the interrupt controller.
2: These bits should not be changed after the PWM is enabled (PTEN = 1).
3: \(D T C<1: 0>=11\) for DTCP to be effective; otherwise, DTCP is ignored.
4: The Independent Time Base (ITB =1) mode must be enabled to use Center-Aligned mode. If ITB \(=0\), the CAM bit is ignored.
5: To operate in External Period Reset mode, the ITB bit must be ' 1 ' and the CLMOD bit in the FCLCONx register must be ' 0 '.

REGISTER 16-12: PDCx: PWM GENERATOR DUTY CYCLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{PDCx<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{PDCx<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as '0' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-0 PDCx<15:0>: PWM Generator \# Duty Cycle Value bits

> Note: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL.

\section*{REGISTER 16-13: SDCx: PWM SECONDARY DUTY CYCLE REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{SDCx<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{SDCx<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 SDCx<15:0>: Secondary Duty Cycle bits for PWMxL Output Pin

Note: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.

REGISTER 16-14: PHASEx: PWM PRIMARY PHASE SHIFT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{PHASEx<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{PHASEx<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 PHASEx<15:0>: PWM Phase Shift Value or Independent Time Base Period bits for the PWM Generator

Note 1: If ITB (PWMCONx<9>) = 0 , the following applies based on the mode of operation:
- Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) \(=00,01\) or 10), PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs
- True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Phase shift value for PWMxH only
2: If ITB (PWMCON \(x<9>\) ) = 1, the following applies based on the mode of operation:
- Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL
- True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Independent time base period value for PWMxH only

REGISTER 16-15: SPHASEx: PWM SECONDARY PHASE SHIFT REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & SPHASEx<15:8> & & & \\
\hline bit 15 & & & & & \\
\hline & & & & & & \\
\hline R/W-0 & R/W-0 \\
\hline & & & SPHASEx<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
\(\mathrm{W}=\) Writable bit
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
\(-n=\) Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 15-0 SPHASEx<15:0>: Secondary Phase Offset bits for PWMxL Output Pin (used in Independent PWM mode only)

Note 1: If ITB (PWMCONx<9>) \(=0\), the following applies based on the mode of operation:
- Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) \(=00,01\) or 10), SPHASEx<15:0> = Not used
- True Independent Output mode (PMOD<1:0> (IOCON<11:10>) = 11), SPHASEx<15:0> = Phase shift value for PWMxL only
2: If ITB (PWMCON \(x<9>)=1\), the following applies based on the mode of operation:
- Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) 00, 01 or 10), SPHASEx<15:0> = Not used
- True Independent Output mode (PMOD<1:0> \((I O C O N<11: 10>)=11)\), SPHASEx<15:0> = Independent time base period value for PWMxL only

REGISTER 16-16: DTRx: PWM DEAD-TIME REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{DTRx<13:8>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{DTRx<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-0 DTRx<13:0>: Unsigned 14-bit Dead-Time Value bits for PWMx Dead-Time Unit

REGISTER 16-17: ALTDTRx: PWM ALTERNATE DEAD-TIME REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{ALTDTRx<13:8>} \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & ALTDTR \(x<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-0 ALTDTRx<13:0>: Unsigned 14-bit Dead-Time Value bits for PWMx Dead-Time Unit

REGISTER 16-18: TRGCONx: PWM TRIGGER CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 \\
\hline \multicolumn{4}{|c|}{TRGDIV<3:0>} & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{TRGSTRT<5:0>} \\
\hline \multicolumn{8}{|l|}{bit 7 bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-12 TRGDIV<3:0>: Trigger \# Output Divider bits
1111 = Trigger output for every 16th trigger event 1110 = Trigger output for every 15th trigger event 1101 = Trigger output for every 14th trigger event \(1100=\) Trigger output for every 13th trigger event 1011 = Trigger output for every 12th trigger event 1010 = Trigger output for every 11th trigger event 1001 = Trigger output for every 10th trigger event 1000 = Trigger output for every 9th trigger event 0111 = Trigger output for every 8th trigger event 0110 = Trigger output for every 7th trigger event 0101 = Trigger output for every 6th trigger event 0100 = Trigger output for every 5th trigger event 0011 = Trigger output for every 4th trigger event 0010 = Trigger output for every 3rd trigger event 0001 = Trigger output for every 2nd trigger event \(0000=\) Trigger output for every trigger event
bit 11-6 Unimplemented: Read as ' 0 '
bit 5-0 TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits
111111 = Wait 63 PWM cycles before generating the first trigger event after the module is enabled
-
-
-
000010 = Wait 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Wait 1 PWM cycles before generating the first trigger event after the module is enabled 000000 = Wait 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1: The secondary PWM generator cannot generate PWM trigger interrupts.

REGISTER 16-19: IOCONx: PWM I/O CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline PENH & PENL & POLH & POLL & PMOD<1:0> \\
\hline \multicolumn{1}{|l|}{} & & OVRENH & OVRENL \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline OVRDAT<1:0> & FLTDAT<1:0> & CLDAT \(<1: 0>\) & SWAP & OSYNC \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown

\section*{bit 15 PENH: PWMxH Output Pin Ownership bit}

1 = PWM module controls PWMxH pin
0 = GPIO module controls PWMxH pin
bit 14 PENL: PWMxL Output Pin Ownership bit
\(1=P W M\) module controls PWMxL pin
\(0=\) GPIO module controls PWMxL pin
bit \(13 \quad\) POLH: PWMxH Output Pin Polarity bit
\(1=\mathrm{PWMxH}\) pin is active-low
\(0=P W M x H\) pin is active-high
bit 12 POLL: PWMxL Output Pin Polarity bit
\(1=P W M x L\) pin is active-low
\(0=P W M x L\) pin is active-high
bit 11-10 PMOD<1:0>: PWM \# I/O Pin Mode bits \({ }^{(\mathbf{1})}\)
11 = PWM I/O pin pair is in the True Independent Output mode
\(10=\) PWM I/O pin pair is in the Push-Pull Output mode
\(01=\) PWM I/O pin pair is in the Redundant Output mode
\(00=\) PWM I/O pin pair is in the Complementary Output mode
bit 9 OVRENH: Override Enable for PWMxH Pin bit
1 = OVRDAT<1> controls output on PWMxH pin
0 = PWM generator controls PWMxH pin
bit 8 OVRENL: Override Enable for PWMxL Pin bit
1 = OVRDAT<0> controls output on PWMxL pin
\(0=\) PWM generator controls PWMxL pin
bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits
If OVERENH \(=1, \mathrm{PWMxH}\) is driven to the state specified by OVRDAT<1>.
If OVERENL \(=1, \mathrm{PWMxL}\) is driven to the state specified by OVRDAT<0>.
bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:
If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>.
If Fault is active, PWMxL is driven to the state specified by FLTDAT \(<0>\).
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:
If current-limit is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>.

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

\section*{REGISTER 16-19: IOCONx: PWM I/O CONTROL REGISTER (CONTINUED)}
bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:
If current-limit is active, PWMxH is driven to the state specified by CLDAT<1>. If current-limit is active, PWMxL is driven to the state specified by CLDAT<0>.
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:
The CLDAT<1:0> bits are ignored.
bit 1
SWAP: SWAP PWMxH and PWMxL Pins bit
\(1=\mathrm{PWMxH}\) output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
\(0=\) PWMxH and PWMxL pins are mapped to their respective pins
bit \(0 \quad\) OSYNC: Output Override Synchronization bit
1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
\(0=\) Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

REGISTER 16-20: TRIGx: PWM PRIMARY TRIGGER COMPARE VALUE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{TRGCMP<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{TRGCMP<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemente & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 TRGCMP<15:0>: Trigger Control Value bits
When the primary PWM functions in local time base, this register contains the compare values that can trigger the ADC module.

REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline IFLTMOD & \multicolumn{5}{|c|}{CLSRC<4:0> \({ }^{(2,3)}\)} & CLPOL \({ }^{(1)}\) & CLMOD \\
\hline \multicolumn{6}{|l|}{bit 15} & \multicolumn{2}{|r|}{bit 8} \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{5}{|c|}{FLTSRC<4:0> \({ }^{(2,3)}\)} & FLTPOL \({ }^{(1)}\) & \multicolumn{2}{|l|}{FLTMOD<1:0>} \\
\hline \multicolumn{5}{|l|}{bit 7} & & \multicolumn{2}{|r|}{bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15 IFLTMOD: Independent Fault Mode Enable bit
1 = Independent Fault mode: Current-limit input maps FLTDAT<1> to PWMxH output and Fault input maps FLTDAT \(<0>\) to PWMxL output. The CLDAT \(<1: 0>\) bits are not used for override functions.
\(0=\) Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL outputs. The PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs.
bit 14-10 CLSRC<4:0>: Current-Limit Control Signal Source Select bits for PWM Generator \#(2,3)
These bits also specify the source for the dead-time compensation input signal, DTCMPx.
11111 = Reserved
-
-

01001 = Reserved
01010 = Comparator 3
01001 = Comparator 2
01000 = Comparator 1
00111 = Reserved
00110 = Fault 7
00101 = Fault 6
00100 = Fault 5
00011 = Fault 4
00010 = Fault 3
00001 = Fault 2
00000 = Fault 1
bit 9 CLPOL: Current-Limit Polarity bit for PWM Generator \# \({ }^{(\mathbf{1 )}}\)
1 = The selected current-limit source is active-low
\(0=\) The selected current-limit source is active-high
bit 8 CLMOD: Current-Limit Mode Enable bit for PWM Generator \#
1 = Current-Limit mode is enabled
\(0=\) Current-Limit mode is disabled

Note 1: These bits should be changed only when PTEN \(=0\). Changing the clock selection during operation will yield unpredictable results.
2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.
3: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC \(<4: 0>\) ) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

\section*{REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)}
bit 7-3 FLTSRC<4:0>: Fault Control Signal Source Select bits for PWM Generator \# \({ }^{(2,3)}\)
11111 = Reserved
-
-
-
01011 = Reserved
01010 = Comparator 3
01001 = Comparator 2
01000 = Comparator 1
00111 = Reserved
00110 = Fault 7
\(00101=\) Fault 6
00100 = Fault 5
00011 = Fault 4
00010 = Fault 3
00001 = Fault 2
00000 = Fault 1
bit \(2 \quad\) FLTPOL: Fault Polarity bit for PWM Generator \#(1)
1 = The selected Fault source is active-low
\(0=\) The selected Fault source is active-high
bit 1-0 FLTMOD<1:0>: Fault Mode bits for PWM Generator \#
11 = Fault input is disabled
10 = Reserved
01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
\(00=\) The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)

Note 1: These bits should be changed only when PTEN \(=0\). Changing the clock selection during operation will yield unpredictable results.
2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.
3: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

REGISTER 16-22: LEBCONx: LEADING-EDGE BLANKING CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 \\
\hline PHR & PHF & PLR & PLF & FLTLEBEN & CLLEBEN & - & - \\
\hline \multicolumn{2}{|l|}{bit 15} & & & & & & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & BCH & BCL & BPHH & BPHL & BPLH & BPLL \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{R}=\) Readable bit} & \multicolumn{2}{|l|}{W = Writable bit} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline \multicolumn{2}{|l|}{\(-n=\) Value at POR} & \multicolumn{2}{|l|}{' 1 ' = Bit is set} & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & PHR: PWMxH Rising Edge Trigger Enable bit \\
\hline & \(1=\) Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH \\
\hline \multirow[t]{2}{*}{bit 14} & PHF: PWMxH Falling Edge Trigger Enable bit \\
\hline & 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH \\
\hline \multirow[t]{2}{*}{bit 13} & PLR: PWMxL Rising Edge Trigger Enable bit \\
\hline & \(1=\) Rising edge of PWMxL will trigger Leading-Edge Blanking counter \(0=\) Leading-Edge Blanking ignores rising edge of PWMxL \\
\hline \multirow[t]{2}{*}{bit 12} & PLF: PWMxL Falling Edge Trigger Enable bit \\
\hline & 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter \\
\hline \multirow[t]{3}{*}{bit 11} & FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit \\
\hline & 1 = Leading-Edge Blanking is applied to selected Fault input \\
\hline & 0 = Leading-Edge Blanking is not applied to selected Fault input \\
\hline \multirow[t]{3}{*}{bit 10} & CLLEBEN: Current-Limit Leading-Edge Blanking Enable bit \\
\hline & 1 = Leading-Edge Blanking is applied to selected current-limit input \\
\hline & 0 = Leading-Edge Blanking is not applied to selected current-limit input \\
\hline bit 9-6 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{2}{*}{bit 5} & BCH: Blanking in Selected Blanking Signal High Enable bit \({ }^{(\mathbf{1})}\) \\
\hline & 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high \(0=\) No blanking when selected blanking signal is high \\
\hline \multirow[t]{2}{*}{bit 4} & BCL: Blanking in Selected Blanking Signal Low Enable bit \({ }^{(1)}\) \\
\hline & 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low \(0=\) No blanking when selected blanking signal is low \\
\hline \multirow[t]{2}{*}{bit 3} & BPHH: Blanking in PWMxH High Enable bit \\
\hline & 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high \(0=\) No blanking when PWMxH output is high \\
\hline \multirow[t]{2}{*}{bit 2} & BPHL: Blanking in PWMxH Low Enable bit \\
\hline & 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low \(0=\) No blanking when PWMxH output is low \\
\hline \multirow[t]{2}{*}{bit 1} & BPLH: Blanking in PWMxL High Enable bit \\
\hline & 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high \(0=\) No blanking when PWMxL output is high \\
\hline \multirow[t]{2}{*}{bit 0} & BPLL: Blanking in PWMxL Low Enable bit \\
\hline & 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low \(0=\) No blanking when PWMxL output is low \\
\hline
\end{tabular}

Note 1: The blanking signal is selected via the BLANKSEL bits in the AUXCONx register.

REGISTER 16-23: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER
\begin{tabular}{|c|c|c|c|cccc|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & & LEB<11:8> & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & LEB \(<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
```

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR ' ' ' = Bit is set '0' = Bit is cleared

```
bit 15-12 Unimplemented: Read as ' 0 '
bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay bits for Current-Limit and Fault Inputs

REGISTER 16-24: AUXCONx: PWM AUXILIARY CONTROL REGISTER
\begin{tabular}{|l|c|c|c|cccc|}
\hline U-0 & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & & BLANKSEL<3:0> & \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|cccc|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & CHOPSEL<3:0> & & CHOPHEN & CHOPLEN \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15-12 & Unimplemented: Read as '0' \\
\hline \multirow[t]{12}{*}{bit 11-8} & BLANKSEL<3:0>: PWM State Blank Source Select bits \\
\hline & The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the \(B C H\) and \(B C L\) bits in the LEBCONx register). \\
\hline & 1001 = Reserved \\
\hline & 1000 = Reserved \\
\hline & 0111 = PWM7H selected as state blank source \\
\hline & \(0110=\) PWM6H selected as state blank source \\
\hline & 0101 = PWM5H selected as state blank source \\
\hline & \(0100=\) PWM4H selected as state blank source \\
\hline & \(0011=\) PWM3H selected as state blank source \\
\hline & \(0010=\) PWM2H selected as state blank source \\
\hline & \(0001=\) PWM1H selected as state blank source \\
\hline & 0000 = No state blanking \\
\hline bit 7-6 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{12}{*}{bit 5-2} & CHOPSEL<3:0>: PWM Chop Clock Source Select bits \\
\hline & The selected signal will enable and disable (CHOP) the selected PWM outputs. \\
\hline & 1001 = Reserved \\
\hline & 1000 = Reserved \\
\hline & 0111 = PWM7H selected as CHOP clock source \\
\hline & 0110 = PWM6H selected as CHOP clock source \\
\hline & 0101 = PWM5H selected as CHOP clock source \\
\hline & \(0100=\) PWM4H selected as CHOP clock source \\
\hline & 0011 = PWM3H selected as CHOP clock source \\
\hline & 0010 = PWM2H selected as CHOP clock source \\
\hline & 0001 = PWM1H selected as CHOP clock source \\
\hline & 0000 = Chop clock generator selected as CHOP clock source \\
\hline \multirow[t]{2}{*}{bit 1} & CHOPHEN: PWMxH Output Chopping Enable bit \\
\hline & \(1=\mathrm{PWMxH}\) chopping function is enabled \(0=\) PWMxH chopping function is disabled \\
\hline \multirow[t]{3}{*}{bit 0} & CHOPLEN: PWMxL Output Chopping Enable bit \\
\hline & \(1=P W M x L\) chopping function is enabled \\
\hline & \(0=P W M x L\) chopping function is disabled \\
\hline
\end{tabular}

REGISTER 16-25: PWMCAPx: PRIMARY PWM TIME BASE CAPTURE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R-0 & R-0 \\
\hline \multicolumn{8}{|c|}{PWMCAP<15:8>(1,2)} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R-0 & R-0 \\
\hline \multicolumn{8}{|c|}{PWMCAP<7:0>(1,2)} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 PWMCAP<15:0>: Captured PWM Time Base Value bits \({ }^{(1,2)}\)
The value in this register represents the captured PWM time base value when a leading edge is detected on the current-limit input.

Note 1: The capture feature is only available on primary output (PWMxH).
2: This feature is active only after LEB processing on the current-limit input signal is complete.

NOTES:

\subsection*{17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.
The operational features of the QEI module include:
- 32-bit position counter
- 32-bit Index pulse counter
- 32-bit Interval timer
- 16-bit velocity counter
- 32-bit Position Initialization/Capture/Compare High register
- 32-bit Position Compare Low register
- 4X Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.
Note: An ' \(x\) ' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number ( \(\mathrm{x}=1\) or 2 ).
FIGURE 17-1:


REGISTER 17-1: QEIxCON: QEI CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline QEIEN & - & QEISIDL & & \multicolumn{2}{|l|}{PIMOD<2:0>(1)} & \multicolumn{2}{|c|}{\(\mathrm{IMV}<1: 0{ }^{(2)}\)} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline- & INTDIV<2:0>(3) & CNTPOL & GATEN & CCM<1:0> \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit
1 = Module counters are enabled
\(0=\) Module counters are disabled, but SFRs can be read or written to
bit 14
Unimplemented: Read as ' 0 '
bit 13 QEISIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits \({ }^{(1)}\)
111 = Reserved
110 = Modulo count mode for position counter
101 = Resets the position counter when the position counter equals QEIxGEC register
\(100=\) Second index event after home event initializes position counter with contents of QEIxIC register
011 = First index event after home event initializes position counter with contents of QElxIC register
\(010=\) Next index input event initializes the position counter with contents of QEIxIC register
001 = Every Index input event resets the position counter
\(000=\) Index input event does not affect position counter
bit 9-8 IMV<1:0>: Index Match Value bits \({ }^{(2)}\)
\(11=\) Index match occurs when QEB \(=1\) and QEA \(=1\)
\(10=\) Index match occurs when QEB \(=1\) and QEA \(=0\)
\(01=\) Index match occurs when QEB \(=0\) and QEA \(=1\)
\(00=\) Index input event does not affect position counter
bit \(7 \quad\) Unimplemented: Read as ' 0 '
bit 6-4 INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) \({ }^{(3)}\)
\(111=1: 256\) prescale value
\(110=1: 64\) prescale value
\(101=1: 32\) prescale value
\(100=1: 16\) prescale value
\(011=1: 8\) prescale value
\(010=1: 4\) prescale value
\(001=1: 2\) prescale value
\(000=1: 1\) prescale value

Note 1: When \(C C M=10\) or \(C C M=11\), all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.
2: When CCM = 00 and QEA and QEB values match Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

\section*{REGISTER 17-1: QEIxCON: QEI CONTROL REGISTER (CONTINUED)}
bit 3 CNTPOL: Position and Index Counter/Timer Direction Select bit
1 = Counter direction is negative unless modified by external Up/Down signal \(0=\) Counter direction is positive unless modified by external Up/Down signal
bit 2
GATEN: External Count Gate Enable bit
1 = External gate signal controls position counter operation
\(0=\) External gate signal does not affect position counter/timer operation
bit 1-0 \(\quad \mathbf{C C M}<1: 0>\) : Counter Control Mode Selection bits
11 = Internal timer mode with optional external count is selected
\(10=\) External clock count with optional external count is selected
01 = External clock count with external up/down direction is selected
\(00=\) Quadrature Encoder Interface ( \(x 4\) mode) count mode is selected

Note 1: When \(C C M=10\) or \(C C M=11\), all of the QEI counters operate as timers and the \(\operatorname{PIMOD}<2: 0>\) bits are ignored.
2: When CCM = 00 and QEA and QEB values match Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

\section*{REGISTER 17-2: QEIxIOC: QEI I/O CONTROL REGISTER}
\begin{tabular}{|c|c|ccc|cc|c|}
\hline \multicolumn{1}{|c}{ R/W-0 } & R/W-0 \\
\hline QCAPEN & FLTREN & & QFDIV<2:0> & & OUTFNC<1:0> & SWPAB \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R-x & R-x & R-x & R-x \\
\hline HOMPOL & IDXPOL & QEBPOL & QEAPOL & HOME & INDEX & QEB & QEA \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared
\end{tabular}
bit 15 QCAPEN: Position Counter Input Capture Enable bit
1 = Positive edge detect of Home input triggers position capture function
\(0=\) HOMEx input event (positive edge) does not trigger a capture event
bit 14
FLTREN: QEAx/QEBx/INDXx/HOMEx Digital Filter Enable bit
1 = Input Pin Digital filter is enabled
\(0=\) Input Pin Digital filter is disabled (bypassed)
bit 13-11 QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits
\(111=1: 256\) clock divide
\(110=1: 64\) clock divide
\(101=1: 32\) clock divide
\(100=1: 16\) clock divide
011 = 1:8 clock divide
\(010=1: 4\) clock divide
\(001=1: 2\) clock divide
\(000=1: 1\) clock divide
bit 10-9 OUTFNC<1:0>: QEI Module Output Function Mode Select bits
11 = The CTNCMPx pin goes high when QEIxLEC \(\geq\) POSxCNT \(\geq\) QEIxGEC
\(10=\) The CTNCMPx pin goes high when POSxCNT \(\leq\) QEIxLEC
01 = The CTNCMPx pin goes high when POSxCNT \(\geq\) QEIxGEC
\(00=\) Output is disabled
bit 8 SWPAB: Swap QEA and QEB Inputs bit
\(1=\) QEAx and QEBx are swapped prior to quadrature decoder logic
0 = QEAx and QEBx are not swapped
bit 7 HOMPOL: HOMEx Input Polarity Select bit
1 = Input is inverted
\(0=\) Input is not inverted
bit 6 IDXPOL: HOMEx Input Polarity Select bit
1 = Input is inverted
\(0=\) Input is not inverted
bit \(5 \quad\) QEBPOL: QEBx Input Polarity Select bit
1 = Input is inverted
\(0=\) Input is not inverted
bit 4 QEAPOL: QEAx Input Polarity Select bit
1 = Input is inverted
\(0=\) Input is not inverted
bit 3 HOME: Status of HOMEx Input Pin After Polarity Control
\(1=\operatorname{Pin}\) is at logic ' 1 '
\(0=\) Pin is at logic ' 0 '

\section*{REGISTER 17-2: QEIxIOC: QEI I/O CONTROL REGISTER (CONTINUED)}
bit 2 INDEX: Status of INDXX Input Pin After Polarity Control
\(1=\operatorname{Pin}\) is at logic ' 1 '
\(0=\) Pin is at logic ' 0 ’
bit 1 QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping
\(1=\) Pin is at logic ' 1 '
\(0=\) Pin is at logic ' 0 ’
bit \(0 \quad\) QEA: Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping
\(1=\operatorname{Pin}\) is at logic ' 1 '
\(0=\) Pin is at logic ' 0 ’

REGISTER 17-3: QEIxSTAT: QEI STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|cc|c|r|}
\hline U-0 & U-0 & HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 \\
\hline- & - & PCHEQIRQ & PCHEQIEN & PCLEQIRQ & PCLEQIEN & POSOVIRQ & POSOVIEN \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 \\
\hline PCIIRQ \({ }^{(\mathbf{1})}\) & PCIIEN & VELOVIRQ & VELOVIEN & HOMIRQ & HOMIEN & IDXIRQ & IDXIEN \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by Hardware & \(\mathrm{C}=\) Cleared by Software \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13 PCHEQIRQ: Position Counter Greater Than or Equal Compare Status bit
1 = POSxCNT \(\geq\) QEIxGEC
0 = POSxCNT < QEIxGEC
bit 12 PCHEQIEN: Position Counter Greater Than or Equal Compare Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 11 PCLEQIRQ: Position Counter Less Than or Equal Compare Status bit
1 = POSxCNT \(\leq\) QEIxLEC
0 = POSxCNT > QEIxLEC
bit 10 PCLEQIEN: Position Counter Less Than or Equal Compare Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 9 POSOVIRQ: Position Counter Overflow Status bit
1 = Overflow has occurred
0 = No overflow has occurred
bit 8 POSOVIEN: Position Counter Overflow Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit \(7 \quad\) PCIIRQ: Position Counter (Homing) Initialization Process Complete Status bit \({ }^{(1)}\)
1 = POSxCNT was reinitialized
0 = POSxCNT was not reinitialized
bit 6 PCIIEN: Position Counter (Homing) Initialization Process Complete interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 5 VELOVIRQ: Velocity Counter Overflow Status bit
1 = Overflow has occurred
\(0=\) No overflow has not occurred
bit \(4 \quad\) VELOVIEN: Velocity Counter Overflow Interrupt Enable bit
\(1=\) Interrupt is enabled
\(0=\) Interrupt is disabled
bit 3 HOMIRQ: Status Flag for Home Event Status bit
1 = Home event has occurred
\(0=\) No Home event has occurred
bit 2 HOMIEN: Home Input Event Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes ' 011 ' and ' 100 '.

REGISTER 17-3: QEIxSTAT: QEI STATUS REGISTER (CONTINUED)
bit 1 IDXIRQ: Status Flag for Index Event Status bit
1 = Index event has occurred
0 = No Index event has occurred
bit \(0 \quad\) IDXIEN: Index Input Event Interrupt Enable bit
\(1=\) Interrupt is enabled
\(0=\) Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes ' 011 ' and ' 100 '.

REGISTER 17-4: POSxCNTH: POSITION COUNTER HIGH WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & POSCNT<31:24> & & & \\
\hline bit 15 & & & & & & \\
\hline & & & & & & \\
\hline R/W-0 & R/W-0 \\
\hline & & POSCNT<23:16> & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 POSCNT<31:16>: High word used to form 32-bit Position Counter Register (POSxCNT) bits

REGISTER 17-5: POSxCNTL: POSITION COUNTER LOW WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & POSCNT<15:8> & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & \(P O S C N T<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-0 Position Counter<15:0>: Low word used to form 32-bit Position Counter Register (POSxCNT) bits

REGISTER 17-6: POSxHLD: POSITION COUNTER HOLD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & POSHLD<15:8> & & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & POSHLD<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemente & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 POSHLD<15:0>: Hold register bits for reading and writing POSxCNTH

\section*{REGISTER 17-7: VELxCNT: VELOCITY COUNTER REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{VELCNT<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{VELCNT<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 VELCNT<15:0>: Velocity Counter bits

\section*{REGISTER 17-8: INDXxCNTH: INDEX COUNTER HIGH WORD REGISTER}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & INDXCNT<31:24> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & INDXCNT<23:16> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-0 INDXCNT<31:16>: High word used to form 32-bit Index Counter Register (INDXxCNT) bits

REGISTER 17-9: INDXxCNTL: INDEX COUNTER LOW WORD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INDXCNT<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INDXCNT<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0
INDXCNT<15:0>: Low word used to form 32-bit Index Counter Register (INDXxCNT) bits

REGISTER 17-10: INDXxHLD: INDEX COUNTER HOLD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & INDXHLD<15:8> & & & \\
\hline bit 15 & & & & & & \\
\hline & & & & & & \\
\hline R/W-0 & R/W-0 \\
\hline & & & INDXHLD<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 INDXHLD<15:0>: Hold register for reading and writing INDXxCNTH bits

\section*{REGISTER 17-11: QEIxICH: INITIALIZATION/CAPTURE HIGH WORD REGISTER}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIIC \(<31: 24>\) & & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIIC<23:16> & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-0 QEIIC<31:16>: High word used to form 32-bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-12: QEIxICL: INITIALIZATION/CAPTURE LOW WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIIC<15:8> & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & QEIIC \(<7: 0>\) & & & \\
\hline bit 7 & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 QEIIC<15:0>: Low word used to form 32-bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-13: QEIxLECH: LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{QEILEC<31:24>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{QEILEC<23:16>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
W = Writable bit
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
\(-n=\) Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 15-0 QEILEC<31:16>: High word used to form 32-bit Less Than or Equal Compare Register (QEIxLEC) bits

REGISTER 17-14: QEIxLECL: LESS THAN OR EQUAL COMPARE LOW WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & QEILEC<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEILEC \(<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 QEILEC<15:0>: Low word used to form 32-bit Less Than or Equal Compare Register (QElxLEC) bits

REGISTER 17-15: QEIxGECH: GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIGEC<31:24> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & QEIGEC<23:16> & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 QEIGEC<31:16>: High word used to form 32-bit Greater Than or Equal Compare Register (QEIxGEC) bits

REGISTER 17-16: QEIxGECL: GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIGEC<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIGEC \(<7: 0>\) & & & \\
\hline bit 7 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 QEIGEC<15:0>: Low word used to form 32-bit Greater Than or Equal Compare Register (QEIxGEC) bits

REGISTER 17-17: INTxTMRH: INTERVAL TIMER HIGH WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & INTTMR<31:24> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & INTTMR<23:16> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(\prime 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 INTTMR<31:16>: High word used to form 32-bit Interval Timer Register (INTxTMR) bits

REGISTER 17-18: INTxTMRL: INTERVAL TIMER LOW WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & INTTMR<15:8> & & \\
\hline bit 15 & & & & & & \\
\hline & & & & & & \\
\hline R/W-0 & R/W-0 \\
\hline & & & INTTMR<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
\(\mathrm{W}=\) Writable bit
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
\(-n=\) Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 15-0 INTTMR<15:0>: Low word used to form 32-bit Interval Timer Register (INTxTMR) bits

\section*{REGISTER 17-19: INTxHLDH: INTERVAL TIMER HOLD HIGH WORD REGISTER}

bit 15-0 INTHLD<31:16>: Hold register for reading and writing INTxTMRH bits

REGISTER 17-20: INTxHLDL: INTERVAL TIMER HOLD LOW WORD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INTHLD<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INTHLD<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) = Bit is cleared
\end{tabular}
bit 15-0
INTHLD<15:0>: Hold register for reading and writing INTxTMRL bits

\subsection*{18.0 SERIAL PERIPHERAL INTERFACE (SPI)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70569) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SPI module is compatible with Motorola's SPI and SIOP interfaces.

The
dsPIC33EPXXXMU806/810/814
and PIC24EPXXXGU810/814 device family offers four SPI modules on a single device. These modules, which are designated as SPI1, SPI2, SPI3 and SPI4, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2, SPI3 and SPI4. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1, SPI2, SPI3 or SPI4 module.
The SPlx serial interface consists of four pins, as follows:
- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- \(\overline{\text { SSx }} / F S Y N C x\) : Active-Low Slave Select or Frame Synchronization I/O Pulse
The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, \(\overline{\mathrm{SSx}}\) is not used. In 2-pin mode, neither SDOx nor \(\overline{S S x}\) is used.
Figure 18-1 illustrates the block diagram of the SPI module in Standard and Enhanced modes.

FIGURE 18-1: SPIx MODULE BLOCK DIAGRAM


Note 1: In Standard mode, the FIFO is only one level deep.

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline SPIEN & - & SPISIDL & - & - & \multicolumn{3}{|c|}{SPIBEC<2:0>} \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline R/W-0 & R/C-0, HS & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R-0, HS, HC & R-0, HS, HC \\
\hline SRMPT & SPIROV & SRXMPT & & EL<2:0> & & SPITBF & SPIRBF \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Clearable bit & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
HS = Set in Hardware bit & \(H C=\) Cleared in Hardware bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15 & SPIEN: SPIx Enable bit \\
1 = Enables the module and configures SCKx, SDOx, SDIx and \(\overline{\text { SSx }}\) as serial port pins \\
& \(0=\) Disables the module \\
bit 14 & \begin{tabular}{l} 
Unimplemented: Read as ' 0 ' \\
bit 13
\end{tabular} \\
\begin{tabular}{l} 
SPISIDL: Stop in Idle Mode bit \\
1 \\
0
\end{tabular} & \(=\) Discontinue the module operation when device enters Idle mode
\end{tabular}
bit 12-11 Unimplemented: Read as ' 0 '
bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)
Master mode:
Number of SPIx transfers are pending.
Slave mode:
Number of SPIx transfers are unread.
bit 7 SRMPT: Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)
1 = SPIx Shift register is empty and ready to send or receive the data
0 = SPIx Shift register is not empty
bit 6 SPIROV: Receive Overflow Flag bit
1 = A new byte/word is completely received and discarded. The user application has not read the previous data in the SPIxBUF register
\(0=\) No overflow has occurred
bit 5 SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode)
1 = RX FIFO is empty
\(0=\) RX FIFO is not empty
bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)
111 = Interrupt when the SPIx transmit buffer is full (SPIxTBF bit is set)
110 = Interrupt when last bit is shifted into SPIxSR, and as a result, the TX FIFO is empty
\(101=\) Interrupt when the last bit is shifted out of SPIxSR, and the transmit is complete
\(100=\) Interrupt when one data is shifted into the SPIxSR, and as a result, the TX FIFO has one open memory location
011 = Interrupt when the SPIx receive buffer is full (SPIxRBF bit set)
\(010=\) Interrupt when the SPIx receive buffer is \(3 / 4\) or more full
\(001=\) Interrupt when data is available in the receive buffer (SRMPT bit is set)
\(000=\) Interrupt when the last data in the receive buffer is read, as a result, the buffer is empty
(SRXMPT bit set)

\section*{REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)}
bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
1 = Transmit not yet started, SPIxTXB is full
\(0=\) Transmit started, SPIxTXB is empty
Standard Buffer Mode:
Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

\section*{Enhanced Buffer Mode:}

Automatically set in hardware when CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.
bit \(0 \quad\) SPIRBF: SPIx Receive Buffer Full Status bit
1 = Receive complete, SPIxRXB is full
\(0=\) Receive is incomplete, SPIxRXB is empty Standard Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads the SPIxBUF location, reading SPIxRXB.
Enhanced Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1
\(|\)\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & DISSCK & DISSDO & MODE16 & SMP & CKE \(^{(1)}\) \\
\hline bit 15 & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline SSEN \({ }^{(2)}\) & CKP & MSTEN & & SPRE<2:0> & & PPRE<1:0> \\
\hline bit 7 &
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-13 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 12} & DISSCK: Disable SCKx Pin bit (SPI Master modes only) \\
\hline & 1 = Internal SPI clock is disabled, pin functions as I/O \\
\hline & 0 = Internal SPI clock is enabled \\
\hline \multirow[t]{3}{*}{bit 11} & DISSDO: Disable SDOx Pin bit \\
\hline & 1 = SDOx pin is not used by the module; pin functions as I/O \\
\hline & \(0=\) SDOx pin is controlled by the module \\
\hline \multirow[t]{3}{*}{bit 10} & MODE16: Word/Byte Communication Select bit \\
\hline & 1 = Communication is word-wide (16 bits) \\
\hline & \(0=\) Communication is byte-wide ( 8 bits) \\
\hline \multirow[t]{6}{*}{bit 9} & SMP: SPIx Data Input Sample Phase bit \\
\hline & Master mode: \\
\hline & 1 = Input data is sampled at end of data output time \\
\hline & 0 = Input data is sampled at middle of data output time \\
\hline & Slave mode: \\
\hline & SMP must be cleared when SPIx is used in Slave mode. \\
\hline \multirow[t]{3}{*}{bit 8} & CKE: SPIx Clock Edge Select bit \({ }^{(1)}\) \\
\hline & 1 = Serial output data changes on transition from active clock state to idle clock state (refer to bit 6) \\
\hline & 0 = Serial output data changes on transition from idle clock state to active clock state (refer to bit 6) \\
\hline \multirow[t]{3}{*}{bit 7} & SSEN: Slave Select Enable bit (Slave mode) \({ }^{(2)}\) \\
\hline & \(1=\overline{\text { SSx }}\) pin is used for Slave mode \\
\hline & \(0=\overline{S S x}\) pin is not used by module. Pin is controlled by port function \\
\hline \multirow[t]{3}{*}{bit 6} & CKP: Clock Polarity Select bit \\
\hline & 1 = Idle state for clock is a high level; active state is a low level \\
\hline & 0 = Idle state for clock is a low level; active state is a high level \\
\hline \multirow[t]{3}{*}{bit 5} & MSTEN: Master Mode Enable bit \\
\hline & 1 = Master mode \\
\hline & 0 = Slave mode \\
\hline \multirow[t]{7}{*}{bit 4-2} & SPRE<2:0>: Secondary Prescale bits (Master mode) \\
\hline & 111 = Reserved \\
\hline & \(110=\) Secondary prescale 2:1 \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & \(000=\) Secondary prescale 8:1 \\
\hline
\end{tabular}

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ' 0 ' for Framed SPI modes (FRMEN = 1).
2: This bit must be cleared when FRMEN \(=1\).

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1 (CONTINUED)
bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)
11 = Reserved
\(10=\) Primary prescale 4:1
01 = Primary prescale 16:1
\(00=\) Primary prescale 64:1
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
2: This bit must be cleared when FRMEN \(=1\).

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline FRMEN & SPIFSD & FRMPOL & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 \\
\hline - & - & - & - & - & - & RRMDLY
\end{tabular} \\
\hline bit 7 & SPIBEN \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15 FRMEN: Framed SPIx Support bit
1 = Framed SPIx support is enabled ( \(\overline{\mathrm{SSx}}\) pin used as frame sync pulse input/output)
0 = Framed SPIx support is disabled
bit 14 SPIFSD: Frame Sync Pulse Direction Control bit
1 = Frame sync pulse input (slave)
0 = Frame sync pulse output (master)
bit \(13 \quad\) FRMPOL: Frame Sync Pulse Polarity bit
1 = Frame sync pulse is active-high
\(0=\) Frame sync pulse is active-low
bit 12-2 Unimplemented: Read as ' 0 '
bit \(1 \quad\) FRMDLY: Frame Sync Pulse Edge Select bit
1 = Frame sync pulse coincides with first bit clock
0 = Frame sync pulse precedes first bit clock
bit \(0 \quad\) SPIBEN: Enhanced Buffer Enable bit
1 = Enhanced Buffer is enabled
\(0=\) Enhanced Buffer is disabled (Standard mode)

\subsection*{19.0 INTER-INTEGRATED CIRCUITTM \({ }^{\text {( }} \mathbf{I}^{2} \mathbf{C}^{\text {TM }}\) )}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit \({ }^{\text {TM }}\left(\mathbf{I}^{2} \mathbf{C}^{\text {TM }}\right.\) )" (DS70330) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family of devices contain two Inter-Integrated Circuit ( \({ }^{2} \mathrm{C}\) ) modules: I2C1 and I2C2.
The \(I^{2} \mathrm{C}\) module provides complete hardware support for both Slave and Multi-Master modes of the \(I^{2} \mathrm{C}\) serial communication standard, with a 16-bit interface.
The \(I^{2} \mathrm{C}\) module has a 2-pin interface:
- The SCLx pin is clock.
- The SDAx pin is data.

The \(\mathrm{I}^{2} \mathrm{C}\) module offers the following key features:
- \(I^{2} C\) interface supporting both Master and Slave modes of operation.
- \(I^{2} \mathrm{C}\) Slave mode supports 7 and 10 -bit address.
- \(I^{2} C\) Master mode supports 7 and 10 -bit address.
- \(1^{2} \mathrm{C}\) port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for \(\mathrm{I}^{2} \mathrm{C}\) port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- \(I^{2} \mathrm{C}\) supports multi-master operation, detects bus collision and arbitrates accordingly.
- IPMI support
- SMBus support

FIGURE 19-1: \(\quad I^{2} C^{\text {TM }}\) BLOCK DIAGRAM ( \(x=1\) OR 2)


REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-1 HC & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline I2CEN & - & I2CSIDL & SCLREL & IPMIEN \(^{(1)}\) & A10M & DISSLW & SMEN \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 HC \\
\hline GCEN & STREN & ACKDT & ACKEN & RCEN & PEN & RSEN & SEN \\
\hline bit 7
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(U=\) Unimplemented bit, read as ' 0 ' & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(H S=\) Set in hardware & \(H C=\) Cleared in hardware \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 I2CEN: I2Cx Enable bit
1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins
\(0=\) Disables the I2Cx module. All \(1^{2} C^{\text {TM }}\) pins are controlled by port functions
bit 14 Unimplemented: Read as ' 0 '
bit 13 I2CSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters an Idle mode
\(0=\) Continue module operation in Idle mode
bit 12 SCLREL: SCLx Release Control bit (when operating as \(\mathrm{I}^{2} \mathrm{C}\) slave)
1 = Release SCLx clock
0 = Hold SCLx clock low (clock stretch)
If STREN = 1:
Bit is R/W (i.e., software can write ' 0 ' to initiate stretch and write ' 1 ' to release clock). Hardware clear at beginning of every slave data byte transmission. Hardware clear at end of every slave address byte reception. Hardware clear at end of every slave data byte reception.
If STREN = 0:
Bit is R/S (i.e., software can only write ' 1 ' to release clock). Hardware clear at beginning of every slave data byte transmission. Hardware clear at end of every slave address byte reception.
bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit \({ }^{(1)}\)
\(1=\) IPMI mode is enabled; all addresses Acknowledged
\(0=I P M I\) mode disabled
bit 10
A10M: 10-bit Slave Address bit
\(1=I 2 C x A D D\) is a 10 -bit slave address
\(0=12 C x A D D\) is a 7 -bit slave address
bit \(9 \quad\) DISSLW: Disable Slew Rate Control bit
1 = Slew rate control disabled
0 = Slew rate control enabled
bit 8 SMEN: SMBus Input Levels bit
1 = Enable I/O pin thresholds compliant with the SMBus specification
0 = Disable SMBus input thresholds
bit 7 GCEN: General Call Enable bit (when operating as \(I^{2} \mathrm{C}\) slave)
1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception)
\(0=\) General call address disabled

Note 1: When performing Master operations, ensure that the IPMIEN bit is ' 0 '.

\section*{REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)}
bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as \(I^{2} \mathrm{C}\) slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5 ACKDT: Acknowledge Data bit (when operating as \(I^{2} \mathrm{C}\) master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4 ACKEN: Acknowledge Sequence Enable bit (when operating as \(I^{2} \mathrm{C}\) master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. \(0=\) Acknowledge sequence not in progress
bit 3 RCEN: Receive Enable bit (when operating as \(I^{2} C\) master)
1 = Enables Receive mode for \(\mathrm{I}^{2} \mathrm{C}\). Hardware clear at end of eighth bit of master receive data byte. \(0=\) Receive sequence not in progress
bit 2 PEN: Stop Condition Enable bit (when operating as \(I^{2} \mathrm{C}\) master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1 RSEN: Repeated Start Condition Enable bit (when operating as \(\mathrm{I}^{2} \mathrm{C}\) master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
0 = Repeated Start condition not in progress
bit \(0 \quad\) SEN: Start Condition Enable bit (when operating as \(\mathrm{I}^{2} \mathrm{C}\) master)
1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. \(0=\) Start condition not in progress

Note 1: When performing Master operations, ensure that the IPMIEN bit is ' 0 '.

\section*{REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R-0 HSC & R-0 HSC & U-0 & U-0 & U-0 & R/C-0 HS & R-0 HSC & R-0 HSC \\
\hline ACKSTAT & TRSTAT & - & - & - & BCL & GCSTAT & ADD10 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/C-0 HS & R/C-0 HS & R-0 HSC & \multicolumn{1}{c}{ R/C-0 HSC } & R/C-0 HSC & R-0 HSC & R-0 HSC & R-0 HSC \\
\hline IWCOL & I2COV & D_A & P & S & R_W & RBF & TBF \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(U=\) Unimplemented bit, read as ' 0 ' & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(H S=\) Set in hardware & HSC = Hardware set/cleared \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(\prime 0\) ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & ACKSTAT: Acknowledge Status bit (when operating as \(\mathrm{I}^{2} \mathrm{C}^{\mathrm{TM}}\) master, applicable to master transmit operation) \\
\hline & \begin{tabular}{l}
1 = NACK received from slave \\
\(0=\) ACK received from slave \\
Hardware set or clear at end of slave Acknowledge.
\end{tabular} \\
\hline bit 14 & \begin{tabular}{l}
TRSTAT: Transmit Status bit (when operating as \(\mathrm{I}^{2} \mathrm{C}\) master, applicable to master transmit operation) \\
1 = Master transmit is in progress (8 bits + ACK) \\
\(0=\) Master transmit is not in progress \\
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
\end{tabular} \\
\hline bit 13-11 & Unimplemented: Read as '0' \\
\hline bit 10 & \begin{tabular}{l}
BCL: Master Bus Collision Detect bit \\
\(1=\mathrm{A}\) bus collision has been detected during a master operation \(0=\) No collision \\
Hardware set at detection of bus collision.
\end{tabular} \\
\hline bit 9 & \begin{tabular}{l}
GCSTAT: General Call Status bit \\
1 = General call address was received \\
\(0=\) General call address was not received \\
Hardware set when address matches general call address. Hardware clear at Stop detection.
\end{tabular} \\
\hline bit 8 & \begin{tabular}{l}
ADD10: 10-bit Address Status bit \\
1 = 10-bit address was matched \\
\(0=10\)-bit address was not matched \\
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
\end{tabular} \\
\hline bit 7 & \begin{tabular}{l}
IWCOL: Write Collision Detect bit \\
\(1=\) An attempt to write the I2CxTRN register failed because the \(I^{2} \mathrm{C}\) module is busy \\
\(0=\) No collision \\
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
\end{tabular} \\
\hline bit 6 & \begin{tabular}{l}
I2COV: Receive Overflow Flag bit \\
1 = A byte was received while the I2CxRCV register is still holding the previous byte \\
\(0=\) No overflow \\
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
\end{tabular} \\
\hline bit 5 & \begin{tabular}{l}
D_A: Data/Address bit (when operating as \({ }^{2} \mathrm{C}\) slave) \\
1 = Indicates that the last byte received was data \\
\(0=\) Indicates that the last byte received was device address \\
Hardware clear at device address match. Hardware set by reception of slave byte.
\end{tabular} \\
\hline bit 4 & \begin{tabular}{l}
P: Stop bit \\
1 = Indicates that a Stop bit has been detected last \\
\(0=\) Stop bit was not detected last \\
Hardware set or clear when Start, Repeated Start or Stop detected.
\end{tabular} \\
\hline
\end{tabular}

\section*{REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)}
bit \(3 \quad\) S: Start bit
1 = Indicates that a Start (or Repeated Start) bit has been detected last
0 = Start bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
bit \(2 \quad\) R_W: Read/Write Information bit (when operating as \(I^{2} \mathrm{C}\) slave)
\(1=\) Read - indicates data transfer is output from slave
\(0=\) Write - indicates data transfer is input to slave
Hardware set or clear after reception of \(I^{2} \mathrm{C}\) device address byte.
RBF: Receive Buffer Full Status bit
1 = Receive complete, I2CxRCV is full
\(0=\) Receive not complete, I2CxRCV is empty
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit \(0 \quad\) TBF: Transmit Buffer Full Status bit
1 = Transmit in progress, I2CxTRN is full
\(0=\) Transmit complete, I2CxTRN is empty
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & - & AMSK9 & AMSK8 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline AMSK7 & AMSK6 & AMSK5 & AMSK4 & AMSK3 & AMSK2 & AMSK1 & AMSK0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}

\begin{tabular}{ll} 
bit 15-10 & Unimplemented: Read as ' 0 ' \\
bit 9-0 & AMSKx: Mask for Address bit \(x\) Select bit \\
& For 10-bit Address:
\end{tabular}

1 = Enable masking for bit Ax of incoming message address; bit match is not required in this position
\(0=\) Disable masking for bit \(A x\); bit match is required in this position
For 7-bit Address (I2CxMSK<6:0> only):
\(1=\) Enable masking for bit \(A x+1\) of incoming message address; bit match is not required in this position
\(0=\) Disable masking for bit \(\mathrm{Ax}+1\); bit match is required in this position

NOTES:

\subsection*{20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70582) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family of devices contain four UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA \({ }^{\circledR}\) encoder and decoder.

The primary features of the UART module are:
- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with \(\overline{\mathrm{UxCTS}}\) and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 3.75 Mbps to 57 bps at \(16 x\) mode at 60 MIPS
- Baud rates ranging from 15 Mbps to 228 bps at 4 x mode at 60 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive interrupts
- A separate interrupt for all UART error conditions
- Loopback mode for diagnostic support
- Support for Sync and Break characters
- Support for automatic baud rate detection
- IrDA \({ }^{\circledR}\) encoder and decoder logic
- 16x baud clock output for IrDA support

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:
- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

\section*{FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM}


REGISTER 20-1: UxMODE: UARTx MODE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 \\
\hline UARTEN \({ }^{(1)}\) & - & USIDL & IREN \(^{(2)}\) & RTSMD & - & UEN<1:0> \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline R/W-0 HC & R/W-0 & R/W-0 HC & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \\
\hline WAKE & LPBACK & ABAUD & URXINV & BRGH & PDSEL<1:0> & STSEL \\
\hline bit 7 &
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(H C=\) Hardware cleared & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & UARTEN: UARTx Enable b \\
\hline & \begin{tabular}{l}
1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> \\
\(0=\) UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption minimal
\end{tabular} \\
\hline bit 14 & Unimplemented: Read as '0' \\
\hline bit 13 & \begin{tabular}{l}
USIDL: Stop in Idle Mode bit \\
1 = Discontinue module operation when device enters Idle mode \\
\(0=\) Continue module operation in Idle mode
\end{tabular} \\
\hline bit 12 & \begin{tabular}{l}
IREN: IrDA \({ }^{\circledR}\) Encoder and Decoder Enable bit \({ }^{(2)}\) \\
\(1=\) IrDA encoder and decoder enabled \\
\(0=\) IrDA encoder and decoder disabled
\end{tabular} \\
\hline bit 11 & \begin{tabular}{l}
RTSMD: Mode Selection for \(\overline{U x R T S}\) Pin bit \\
\(1=\overline{\text { UxRTS }}\) pin in Simplex mode \\
\(0=\overline{\text { UxRTS }}\) pin in Flow Control mode
\end{tabular} \\
\hline bit 10 & Unimplemented: Read as '0' \\
\hline bit 9-8 & \begin{tabular}{l}
UEN<1:0>: UARTx Pin Enable bits \\
\(11=\) UxTX, UxRX and BCLK pins are enabled and used; \(\overline{U x C T S}\) pin controlled by PORT latches \\
\(10=U x T X, U x R X, \overline{U x C T S}\) and \(\overline{U x R T S}\) pins are enabled and used \\
\(01=U x T X, U x R X\) and \(\overline{U x R T S}\) pins are enabled and used; UxCTS pin controlled by PORT latches \\
\(00=\) UxTX and UxRX pins are enabled and used; \(\overline{U x C T S}\) and \(\overline{U x R T S} / B C L K\) pins controlled by PORT latches
\end{tabular} \\
\hline bit 7 & \begin{tabular}{l}
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit \\
1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge \\
0 = No wake-up enabled
\end{tabular} \\
\hline bit 6 & \begin{tabular}{l}
LPBACK: UARTx Loopback Mode Select bit \\
1 = Enable Loopback mode \\
\(0=\) Loopback mode is disabled
\end{tabular} \\
\hline bit 5 & \begin{tabular}{l}
ABAUD: Auto-Baud Enable bit \\
1 = Enable baud rate measurement on the next character - requires reception of a Sync field (55h) before other data; cleared in hardware upon completion \\
\(0=\) Baud rate measurement disabled or completed
\end{tabular} \\
\hline
\end{tabular}

Note 1: Refer to Section 17. "UART" (DS70582) in the "dsPIC33E/PIC24E Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
2: This feature is only available for the \(16 x\) BRG mode ( \(\mathrm{BRGH}=0\) ).

\section*{REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)}
bit 4 URXINV: Receive Polarity Inversion bit
\(1=U x R X\) Idle state is ' 0 '
\(0=U \times R X\) Idle state is ' 1 '
bit 3 BRGH: High Baud Rate Enable bit
\(1=\) BRG generates 4 clocks per bit period ( \(4 x\) baud clock, High-Speed mode)
\(0=\) BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1 PDSEL<1:0>: Parity and Data Selection bits
11 = 9-bit data, no parity
\(10=8\)-bit data, odd parity
\(01=8\)-bit data, even parity
\(00=8\)-bit data, no parity
bit \(0 \quad\) STSEL: Stop Bit Selection bit
1 = Two Stop bits
\(0=\) One Stop bit

Note 1: Refer to Section 17. "UART" (DS70582) in the "dsPIC33E/PIC24E Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
2: This feature is only available for the \(16 x\) BRG mode ( \(B R G H=0\) ).

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 HC & R/W-0 & R-0 & R-1 \\
\hline UTXISEL1 & UTXINV & UTXISEL0 & - & UTXBRK & UTXEN \({ }^{(1)}\) & UTXBF & TRMT \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 & R/W-0 & R-1 & R-0 & R-0 & R/C-0 & R-0 \\
\hline \multicolumn{2}{|r|}{URXISEL<1:0>} & ADDEN & RIDLE & PERR & FERR & OERR & URXDA \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Hardware cleared & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits
11 = Reserved; do not use
10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty
01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
\(00=\) Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
bit 14 UTXINV: Transmit Polarity Inversion bit
If IREN \(=0\) :
1 = UxTX Idle state is ' 0 '
\(0=U \times T X\) Idle state is ' 1 '
If IREN = 1:
\(1=\operatorname{IrDA}\) encoded UxTX Idle state is ' 1 '
\(0=\) IrDA encoded UxTX Idle state is ' 0 '
bit 12 Unimplemented: Read as ' 0 '
bit 11 UTXBRK: Transmit Break bit
1 = Send Sync Break on next transmission - Start bit, followed by twelve ‘0’ bits, followed by Stop bit; cleared by hardware upon completion
\(0=\) Sync Break transmission disabled or completed
bit 10 UTXEN: Transmit Enable bit \({ }^{(1)}\)
1 = Transmit enabled, UxTX pin controlled by UARTx
\(0=\) Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port.
bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
1 = Transmit buffer is full
\(0=\) Transmit buffer is not full, at least one more character can be written
bit 8 TRMT: Transmit Shift Register Empty bit (read-only)
1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
\(0=\) Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits
11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)
\(10=\) Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)
\(0 x=\) Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters.

Note 1: Refer to Section 17. "UART" (DS70582) in the "dsPIC33E/PIC24E Family Reference Manual" for information on enabling the UART module for transmit operation.

\section*{REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)}
bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1)
1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.
\(0=\) Address Detect mode disabled
bit 4 RIDLE: Receiver Idle bit (read-only)
1 = Receiver is Idle
\(0=\) Receiver is active
bit 3 PERR: Parity Error Status bit (read-only)
1 = Parity error has been detected for the current character (character at the top of the receive FIFO)
\(0=\) Parity error has not been detected
bit 2 FERR: Framing Error Status bit (read-only)
\(1=\) Framing error has been detected for the current character (character at the top of the receive FIFO)
\(0=\) Framing error has not been detected
bit 1 OERR: Receive Buffer Overrun Error Status bit (read/clear only)
1 = Receive buffer has overflowed
\(0=\) Receive buffer has not overflowed. Clearing a previously set OERR bit ( \(1 \rightarrow 0\) transition) resets the receiver buffer and the UxRSR to the empty state.
bit \(0 \quad\) URXDA: Receive Buffer Data Available bit (read-only)
\(1=\) Receive buffer has data, at least one more character can be read
\(0=\) Receive buffer is empty

Note 1: Refer to Section 17. "UART" (DS70582) in the "dsPIC33E/PIC24E Family Reference Manual" for information on enabling the UART module for transmit operation.

NOTES:

\subsection*{21.0 ENHANCED CAN (ECAN \({ }^{\text {M }}\) ) MODULE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN \({ }^{\text {™ }}\) )" (DS70353) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

\subsection*{21.1 Overview}

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices contain two ECAN modules.
The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The ECAN module features are as follows:
- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to \(1 \mathrm{Mbit} / \mathrm{sec}\)
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet \({ }^{\text {TM }}\) addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to Input Capture module (IC2 for the ECAN1 and ECAN2 modules) for timestamping and network synchronization
- Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

FIGURE 21-1: ECAN \({ }^{\text {M }}\) MODULE BLOCK DIAGRAM


\subsection*{21.2 Modes of Operation}

The ECAN module can operate in one of several operation modes selected by the user. These modes include:
- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.
Refer to Section 21. "Enhanced Controller Area Network (ECAN \({ }^{\text {TM }}\) )" (DS70353) of the "dsPIC33E/ PIC24E Family Reference Manual" for more details on ECAN.

REGISTER 21-1: CiCTRL1: ECAN \({ }^{\text {™ }}\) CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|ccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-0 \\
\hline- & - & CSIDL & ABAT & CANCKS & & REQOP<2:0> & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|ccc|c|c|c|c|c|}
\hline R-1 & R-0 & R-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 \\
\hline & OPMODE<2:0> & - & CANCAP & - & - & WIN \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \(r=\) Bit is Reserved \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & ' 1 ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-14 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{2}{*}{bit 13} & CSIDL: Stop in Idle Mode bit \\
\hline & \begin{tabular}{l}
1 = Discontinue module operation when device enters Idle mode \\
\(0=\) Continue module operation in Idle mode
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 12} & ABAT: Abort All Pending Transmissions bit \\
\hline & \begin{tabular}{l}
1 = Signal all transmit buffers to abort transmission \\
\(0=\) Module will clear this bit when all transmissions are aborted
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 11} & CANCKS: ECAN Module Clock (FCAN) Source Select bit \\
\hline & \(1=\) FCAN is equal to twice FP \(0=\) FCAN is equal to Fp \\
\hline \multirow[t]{9}{*}{bit 10-8} & REQOP<2:0>: Request Operation Mode bits \\
\hline & 111 = Set Listen All Messages mode \\
\hline & 110 = Reserved \\
\hline & 101 = Reserved \\
\hline & \(100=\) Set Configuration mode \\
\hline & 011 = Set Listen Only Mode \\
\hline & 010 Set Loopback mode \\
\hline & 001 = Set Disable mode \\
\hline & \(000=\) Set Normal Operation mode \\
\hline \multirow[t]{9}{*}{bit 7-5} & OPMODE<2:0>: Operation Mode bits \\
\hline & \(111=\) Module is in Listen All Messages mode \\
\hline & 110 = Reserved \\
\hline & 101 = Reserved \\
\hline & \(100=\) Module is in Configuration mode \\
\hline & 011 = Module is in Listen Only mode \\
\hline & 010 = Module is in Loopback mode \\
\hline & \(001=\) Module is in Disable mode \\
\hline & \(000=\) Module is in Normal Operation mode \\
\hline bit 4 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 3} & CANCAP: CAN Message Receive Timer Capture Event Enable bit \\
\hline & 1 = Enable input capture based on CAN message receive \\
\hline & \\
\hline bit 2-1 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{3}{*}{bit 0} & WIN: SFR Map Window Select bit \\
\hline & 1 = Use filter window \\
\hline & 0 = Use buffer window \\
\hline
\end{tabular}

REGISTER 21-2: CiCTRL2: ECAN \({ }^{\text {M }}\) CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline - & - & - & \multicolumn{5}{|c|}{DNCNT<4:0>} \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-5 & Unimplemented: Read as ' 0 ' \\
bit 4-0 & DNCNT<4:0>: DeviceNet \({ }^{\text {TM }}\) Filter Bit Number bits \\
& \(10010-11111=\) Invalid selection \\
& 10001 = Compare up to data byte 3, bit 6 with EID<17> \\
& - \\
& - \\
& 00001 = Compare up to data byte 1, bit 7 with EID<0> \\
& \(00000=\) Do not compare data bytes
\end{tabular}

REGISTER 21-3: CiVEC: ECAN \({ }^{\text {TM }}\) INTERRUPT CODE REGISTER
\begin{tabular}{|c|c|c|ccccc|}
\hline U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & - & & FILHIT<4:0> & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R-1 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline - & \multicolumn{7}{|c|}{ICODE<6:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-13 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{8}{*}{bit 12-8} & FILHIT<4:0>: Filter Hit Number bits \\
\hline & 10000-11111 = Reserved \\
\hline & 01111 = Filter 15 \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 00001 = Filter 1 \\
\hline & 00000 = Filter 0 \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{25}{*}{bit 6-0} & ICODE<6:0>: Interrupt Flag Code bits \\
\hline & 1000101-1111111 = Reserved \\
\hline & 1000100 = FIFO almost full interrupt \\
\hline & 1000011 = Receiver overflow interrupt \\
\hline & \(1000010=\) Wake-up interrupt \\
\hline & 1000001 = Error interrupt \\
\hline & \(1000000=\) No interrupt \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 0010000-0111111 = Reserved \\
\hline & \(0001111=\) RB15 buffer Interrupt \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 0001001 = RB9 buffer interrupt \\
\hline & 0001000 = RB8 buffer interrupt \\
\hline & \(0000111=\) TRB7 buffer interrupt \\
\hline & \(0000110=\) TRB6 buffer interrupt \\
\hline & \(0000101=\) TRB5 buffer interrupt \\
\hline & \(0000100=\) TRB4 buffer interrupt \\
\hline & 0000011 = TRB3 buffer interrupt \\
\hline & \(0000010=\) TRB2 buffer interrupt \\
\hline & \(0000001=\) TRB1 buffer interrupt \\
\hline & 0000000 = TRB0 Buffer interrupt \\
\hline
\end{tabular}

REGISTER 21-4: CIFCTRL: ECAN \({ }^{\text {TM }}\) FIFO CONTROL REGISTER

\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad \mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
```

bit 15-13 DMABS<2:0>: DMA Buffer Size bits
111 = Reserved
110 = 32 buffers in DMA RAM
101 = 24 buffers in DMA RAM
100 = 16 buffers in DMA RAM
011 = 12 buffers in DMA RAM
010 = 8 buffers in DMA RAM
001 = 6 buffers in DMA RAM
000 = 4 buffers in DMA RAM
bit 12-5 Unimplemented: Read as '0'
bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits
11111 = Read buffer RB31
11110 = Read buffer RB30
•
•
-
00001 = TX/RX buffer TRB1
00000 = TX/RX buffer TRB0

```

REGISTER 21-5: CiFIFO: ECAN \({ }^{\text {TM }}\) FIFO STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline - & - & \multicolumn{6}{|c|}{FBP<5:0>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline - & - & \multicolumn{6}{|c|}{FNRB<5:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{C}=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
```

bit 15-14 Unimplemented: Read as '0'
bit 13-8 FBP<5:0>: FIFO Buffer Pointer bits
011111 = RB31 buffer
011110 = RB30 buffer
•
•
•
000001 = TRB1 buffer
000000 = TRB0 buffer
bit 7-6 Unimplemented: Read as '0'
bit 5-0 FNRB<5:0>: FIFO Next Read Buffer Pointer bits
011111 = RB31 buffer
011110 = RB30 buffer
\bullet
-
-
000001 = TRB1 buffer
000000 = TRB0 buffer

```

REGISTER 21-6: CiINTF: ECAN \({ }^{\text {M }}\) INTERRUPT FLAG REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & TXBO & TXBP & RXBP & TXWAR & RXWAR & EWARN \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 & R/C-0 & U-0 & R/C-0 & R/C-0 & R/C-0 & R/C-0 \\
\hline IVRIF & WAKIF & ERRIF & - & FIFOIF & RBOVIF & RBIF & TBIF \\
\hline \multicolumn{8}{|l|}{bit 7 bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13 TXBO: Transmitter in Error State Bus Off bit
1 = Transmitter is in Bus Off state
0 = Transmitter is not in Bus Off state
bit 12 TXBP: Transmitter in Error State Bus Passive bit
1 = Transmitter is in Bus Passive state
\(0=\) Transmitter is not in Bus Passive state
bit 11 RXBP: Receiver in Error State Bus Passive bit
1 = Receiver is in Bus Passive state
\(0=\) Receiver is not in Bus Passive state
bit 10 TXWAR: Transmitter in Error State Warning bit
1 = Transmitter is in Error Warning state
\(0=\) Transmitter is not in Error Warning state
bit 9 RXWAR: Receiver in Error State Warning bit
1 = Receiver is in Error Warning state
\(0=\) Receiver is not in Error Warning state
bit 8 EWARN: Transmitter or Receiver in Error State Warning bit
1 = Transmitter or Receiver is in Error State Warning state
\(0=\) Transmitter or Receiver is not in Error State Warning state
bit \(7 \quad\) IVRIF: Invalid Message Interrupt Flag bit
1 = Interrupt Request has occurred
0 = Interrupt Request has not occurred
bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CilNTF<13:8> register)
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit \(3 \quad\) FIFOIF: FIFO Almost Full Interrupt Flag bit
1 = Interrupt Request has occurred
0 = Interrupt Request has not occurred
bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit 1 RBIF: RX Buffer Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit \(0 \quad\) TBIF: TX Buffer Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred

REGISTER 21-7: CiINTE: ECAN \({ }^{\text {M }}\) INTERRUPT ENABLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline IVRIE & WAKIE & ERRIE & - & FIFOIE & RBOVIE & RBIE & TBIE \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{C}=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-8 & Unimplemented: Read as '0' \\
\hline bit 7 & \begin{tabular}{l}
IVRIE: Invalid Message Interrupt Enable bit 1 = Interrupt Request Enabled \\
0 = Interrupt Request not enabled
\end{tabular} \\
\hline bit 6 & \begin{tabular}{l}
WAKIE: Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request Enabled \\
0 = Interrupt Request not enabled
\end{tabular} \\
\hline bit 5 & ERRIE: Error Interrupt Enable bit
\[
\begin{aligned}
& 1=\text { Interrupt Request Enabled } \\
& 0=\text { Interrupt Request not enabled }
\end{aligned}
\] \\
\hline bit 4 & Unimplemented: Read as '0' \\
\hline bit 3 & \begin{tabular}{l}
FIFOIE: FIFO Almost Full Interrupt Enable bit \\
1 = Interrupt Request Enabled \\
\(0=\) Interrupt Request not enabled
\end{tabular} \\
\hline bit 2 & \begin{tabular}{l}
RBOVIE: RX Buffer Overflow Interrupt Enable bit 1 = Interrupt Request Enabled \\
\(0=\) Interrupt Request not enabled
\end{tabular} \\
\hline bit 1 & \begin{tabular}{l}
RBIE: RX Buffer Interrupt Enable bit 1 = Interrupt Request Enabled \\
0 = Interrupt Request not enabled
\end{tabular} \\
\hline bit 0 & \begin{tabular}{l}
TBIE: TX Buffer Interrupt Enable bit 1 = Interrupt Request Enabled \\
\(0=\) Interrupt Request not enabled
\end{tabular} \\
\hline
\end{tabular}

REGISTER 21-8: CiEC: ECAN \({ }^{\text {M }}\) TRANSMIT/RECEIVE ERROR COUNT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R-0 & R-0 \\
\hline \multicolumn{8}{|c|}{TERRCNT<7:0>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\(\left.\begin{array}{|lllllll|}\hline \text { R-0 } & \text { R-0 }\end{array}\right]\) R-0 \begin{tabular}{llll|}
\hline & & RERRCNT<7:0> & \\
\hline bit 7 & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { bit 15-8 } & \text { TERRCNT<7:0>: Transmit Error Count bits } \\
\text { bit 7-0 } & \text { RERRCNT<7:0>: Receive Error Count bits }
\end{array}
\]

REGISTER 21-9: CiCFG1: ECAN \({ }^{\text {M }}\) BAUD RATE CONFIGURATION REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{2}{|c|}{SJW<1:0>} & \multicolumn{6}{|c|}{BRP<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-6 SJW<1:0>: Synchronization Jump Width bits
\(11=\) Length is \(4 \times\) TQ
\(10=\) Length is \(3 \times\) TQ
\(01=\) Length is \(2 \times T Q\)
\(00=\) Length is \(1 \times\) TQ
bit 5-0 \(\quad B R P<5: 0>\) : Baud Rate Prescaler bits
\(111111=\mathrm{TQ}=2 \times 64 \times 1 /\) FCAN
-
-
-
\(000010=T Q=2 \times 3 \times 1 /\) FCAN
\(000001=T Q=2 \times 2 \times 1 /\) FCAN
\(000000=T Q=2 \times 1 \times 1 /\) FCAN

REGISTER 21-10: CiCFG2: ECAN \({ }^{\text {TM }}\) BAUD RATE CONFIGURATION REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|cc|}
\hline U-0 & R/W-x & U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x \\
\hline- & WAKFIL & - & - & - & & SEG2PH<2:0> & \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|ccc|cccc|}
\hline \multicolumn{1}{|c}{\(R / W-x\)} & \(R / W-x\) \\
\hline SEG2PHTS & SAM & & SEG1PH<2:0> & & PRSEG<2:0> & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
```

bit 15 Unimplemented: Read as '0'
bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit
1 = Use CAN bus line filter for wake-up
0 = CAN bus line filter is not used for wake-up
bit 13-11 Unimplemented: Read as '0'
bit 10-8 SEG2PH<2:0>: Phase Segment 2 bits
111 = Length is 8 x TQ
•
•
•
000 = Length is 1 x TQ
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit
1 = Freely programmable
0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater
bit }
SAM: Sample of the CAN bus Line bit
1 = Bus line is sampled three times at the sample point
0 = Bus line is sampled once at the sample point
bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits
111 = Length is 8 x TQ
•
•
-
000 = Length is 1 x TQ
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits
111 = Length is 8 x TQ
•
•
-
000 = Length is 1 x TQ

```

REGISTER 21-11: CiFEN1: ECAN \({ }^{\text {TM }}\) ACCEPTANCE FILTER ENABLE REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-1 & R/W-1 \\
\hline FLTEN15 & FLTEN14 & FLTEN13 & FLTEN12 & FLTEN11 & FLTEN10 & FLTEN9 & FLTEN8 \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-1 & R/W-1 \\
\hline FLTEN7 & FLTEN6 & FLTEN5 & FLTEN4 & FLTEN3 & FLTEN2 & FLTEN1 & FLTEN0 \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & ' 1 ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared \(\quad X=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 FLTENn: Enable Filter n to Accept Messages bits
1 = Enable Filter n
0 = Disable Filter n

REGISTER 21-12: CiBUFPNT1: ECAN \({ }^{\text {TM }}\) FILTER 0-3 BUFFER POINTER REGISTER 1

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F1BP<3:0>} & \multicolumn{4}{|c|}{FOBP<3:0>} \\
\hline \multicolumn{8}{|l|}{bit 7 bit} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-12 & F3BP<3:0>: RX Buffer mask for Filter 3 bits \\
& \(1111=\) Filter hits received in RX FIFO buffer \\
& - \(1110=\) Filter hits received in RX Buffer 14 \\
& - \\
& \(0001=\) Filter hits received in RX Buffer 1 \\
& \(0000=\) Filter hits received in RX Buffer 0 \\
bit 11-8 & F2BP<3:0>: RX Buffer mask for Filter 2 bits (same values as bit 15-12) \\
bit 7-4 & F1BP<3:0>: RX Buffer mask for Filter 1 bits (same values as bit 15-12) \\
bit 3-0 & F0BP<3:0>: RX Buffer mask for Filter 0 bits (same values as bit 15-12)
\end{tabular}

REGISTER 21-13: CiBUFPNT2: ECAN \({ }^{\text {TM }}\) FILTER 4-7 BUFFER POINTER REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F7BP<3:0>} & \multicolumn{4}{|c|}{F6BP<3:0>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F5BP<3:0>} & \multicolumn{4}{|c|}{F4BP<3:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-12 & \begin{tabular}{l}
F7BP<3:0>: RX Buffer mask for Filter 7 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 \\
0001 = Filter hits received in RX Buffer 1 \\
\(0000=\) Filter hits received in RX Buffer 0
\end{tabular} \\
\hline bit 11-8 & F6BP<3:0>: RX Buffer mask for Filter 6 bits (same values as bit 15-12) \\
\hline bit 7-4 & F5BP<3:0>: RX Buffer mask for Filter 5 bits (same values as bit 15-12) \\
\hline bit 3-0 & F4BP<3:0>: RX Buffer mask for Filter 4 bits (same values as bit 15-12) \\
\hline
\end{tabular}

REGISTER 21-14: CiBUFPNT3: ECAN \({ }^{\text {™ }}\) FILTER 8-11 BUFFER POINTER REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F11BP<3:0>} & \multicolumn{4}{|c|}{F10BP<3:0>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F9BP<3:0>} & \multicolumn{4}{|c|}{F8BP<3:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 bits
1111 = Filter hits received in RX FIFO buffer
\(1110=\) Filter hits received in RX Buffer 14
-
-
-
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0
bit 11-8 F10BP<3:0>: RX Buffer mask for Filter 10 bits (same values as bit 15-12)
bit 7-4 \(\quad\) F9BP<3:0>: RX Buffer mask for Filter 9 bits (same values as bit 15-12)
bit 3-0 \(\quad\) F8BP<3:0>: RX Buffer mask for Filter 8 bits (same values as bit 15-12)

REGISTER 21-15: CiBUFPNT4: ECAN \({ }^{\text {TM }}\) FILTER 12-15 BUFFER POINTER REGISTER 4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F15BP<3:0>} & \multicolumn{4}{|c|}{F14BP<3:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F13BP<3:0>} & \multicolumn{4}{|c|}{F12BP<3:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-12 F15BP<3:0>: RX Buffer mask for Filter 15 bits
1111 = Filter hits received in RX FIFO buffer
\(1110=\) Filter hits received in RX Buffer 14
-
-
-
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0
bit 11-8 F14BP<3:0>: RX Buffer mask for Filter 14 bits (same values as bit 15-12)
bit 7-4 F13BP<3:0>: RX Buffer mask for Filter 13 bits (same values as bit 15-12)
bit 3-0 F12BP<3:0>: RX Buffer mask for Filter 12 bits (same values as bit 15-12)

REGISTER 21-16: CiRXFnSID: ECAN \({ }^{\text {TM }}\) ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER \(\mathrm{n}(\mathrm{n}=0-15)\)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline SID10 & SID9 & SID8 & SID7 & SID6 & SID5 & SID4 & SID3 \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x & R/W-x & U-0 & R/W-x & U-0 & R/W-x & R/W-x \\
\hline SID2 & SID1 & SID0 & - & EXIDE & - & EID17 & EID16 \\
\hline bit 7 &
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-5 SID<10:0>: Standard Identifier bits
1 = Message address bit SIDx must be ' 1 ' to match filter
\(0=\) Message address bit SIDx must be ' 0 ' to match filter
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit 3 EXIDE: Extended Identifier Enable bit
If MIDE = 1 :
1 = Match only messages with extended identifier addresses
0 = Match only messages with standard identifier addresses
If MIDE \(=0\) :
Ignore EXIDE bit.
bit \(2 \quad\) Unimplemented: Read as ' 0 '
bit 1-0 EID<17:16>: Extended Identifier bits
1 = Message address bit EIDx must be ' 1 ' to match filter
0 = Message address bit EIDx must be ' 0 ' to match filter

REGISTER 21-17: CiRXFnEID: ECAN \({ }^{\text {™ }}\) ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER \(\mathrm{n}(\mathrm{n}=0-15)\)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID15 & EID14 & EID13 & EID12 & EID11 & EID10 & EID9 & EID8 \\
\hline bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID7 & EID6 & EID5 & EID4 & EID3 & EID2 & EID1 & EID0 \\
\hline bit 7 &
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{C}=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 EID<15:0>: Extended Identifier bits
1 = Message address bit EIDx must be ' 1 ' to match filter
\(0=\) Message address bit EIDx must be ' 0 ' to match filter

REGISTER 21-18: CiFMSKSEL1: ECAN \({ }^{\text {™ }}\) FILTER 7-0 MASK SELECTION REGISTER
\begin{tabular}{|c|c|c|c|c|}
\hline R/W-0 R/W-0 & R/W-0 R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline F7MSK<1:0> & F6MSK<1:0> & F5MSK<1:0> & F4MSK<1:0> \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline R/W-0 R/W-0 & R/W-0 R/W-0 & R/W-0 R/W-0 & R/W-0 & R/W-0 \\
\hline F3MSK<1:0> & F2MSK<1:0> & F1MSK<1:0> & FOMSK<1:0> \\
\hline bit 7 & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 F7MSK<1:0>: Mask Source for Filter 7 bit
11 = Reserved
10 = Acceptance Mask 2 registers contain mask
01 = Acceptance Mask 1 registers contain mask
00 = Acceptance Mask 0 registers contain mask
bit 13-12 F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
bit 11-10 F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
bit 9-8 F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
bit 7-6 F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
bit 5-4 F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
bit 3-2 F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
bit 1-0 FOMSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

REGISTER 21-19: CiFMSKSEL2: ECAN \({ }^{\text {TM }}\) FILTER 15-8 MASK SELECTION REGISTER
\begin{tabular}{|c|c|c|c|cc|}
\hline R/W-0 R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline F15MSK<1:0> & F14MSK<1:0> & F13MSK<1:0> & F12MSK<1:0> \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{2}{|c|}{F11MSK<1:0>} & \multicolumn{2}{|l|}{F10MSK<1:0>} & \multicolumn{2}{|r|}{F9MSK<1:0>} & \multicolumn{2}{|c|}{F8MSK<1:0>} \\
\hline \multicolumn{6}{|l|}{bit 7} & \multicolumn{2}{|r|}{bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-14 F15MSK<1:0>: Mask Source for Filter 15 bit
11 = Reserved
10 = Acceptance Mask 2 registers contain mask
01 = Acceptance Mask 1 registers contain mask
00 = Acceptance Mask 0 registers contain mask
bit 13-12 F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bit 15-14)
bit 11-10 F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bit 15-14)
bit 9-8 F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)
bit 7-6 F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bit 15-14)
bit 5-4 F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)
bit 3-2 F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)
bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

REGISTER 21-20: CiRXMnSID: ECAN \({ }^{\text {TM }}\) ACCEPTANCE FILTER MASK STANDARD IDENTIFIER REGISTER \(\mathrm{n}(\mathrm{n}=0-2)\)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline SID10 & SID9 & SID8 & SID7 & SID6 & SID5 & SID4 & SID3 \\
\hline bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x & R/W-x & U-0 & R/W-x & U-0 & R/W-x & R/W-x \\
\hline SID2 & SID1 & SID0 & - & MIDE & - & EID17 & EID16 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{C}=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(\prime 0\) ' = Bit is cleared \(\quad x=B\) it is unknown \\
\hline
\end{tabular}
bit 15-5 SID<10:0>: Standard Identifier bits
1 = Include bit SIDx in filter comparison
\(0=\) Bit SIDx is don't care in filter comparison
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit 3 MIDE: Identifier Receive Mode bit
1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter \(0=\) Match either standard or extended address message if filters match (i.e., if (Filter SID) \(=(\) Message SID \()\) or if (Filter SID/EID) \(=(\) Message SID/EID \()\) )
bit 2 Unimplemented: Read as ' 0 '
bit 1-0 EID<17:16>: Extended Identifier bits
1 = Include bit EIDx in filter comparison
\(0=\) Bit EIDx is don't care in filter comparison

REGISTER 21-21: CiRXMnEID: ECAN \({ }^{\text {TM }}\) ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER \(\mathrm{n}(\mathrm{n}=0-2)\)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID15 & EID14 & EID13 & EID12 & EID11 & EID10 & EID9 & EID8 \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID7 & EID6 & EID5 & EID4 & EID3 & EID2 & EID1 & EID0 \\
\hline bit 7 &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
R/W-x \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 EID<15:0>: Extended Identifier bits
1 = Include bit EIDx in filter comparison
\(0=\) Bit EIDx is don't care in filter comparison

REGISTER 21-22: CiRXFUL1: ECAN \({ }^{\text {M }}\) RECEIVE BUFFER FULL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXFUL15 & RXFUL14 & RXFUL13 & RXFUL12 & RXFUL11 & RXFUL10 & RXFUL9 & RXFUL8 \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXFUL7 & RXFUL6 & RXFUL5 & RXFUL4 & RXFUL3 & RXFUL2 & RXFUL1 & RXFUL0 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & ' 1 ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 RXFUL<15:0>: Receive Buffer \(n\) Full bits
1 = Buffer is full (set by module)
0 = Buffer is empty (cleared by user software)

\section*{REGISTER 21-23: CiRXFUL2: ECAN \({ }^{\text {™ }}\) RECEIVE BUFFER FULL REGISTER 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXFUL31 & RXFUL30 & RXFUL29 & RXFUL28 & RXFUL27 & RXFUL26 & RXFUL25 & RXFUL24 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXFUL23 & RXFUL22 & RXFUL21 & RXFUL20 & RXFUL19 & RXFUL18 & RXFUL17 & RXFUL16 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 RXFUL<31:16>: Receive Buffer \(n\) Full bits
1 = Buffer is full (set by module)
\(0=\) Buffer is empty (cleared by user software)

REGISTER 21-24: CiRXOVF1: ECAN \({ }^{\text {TM }}\) RECEIVE BUFFER OVERFLOW REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF15 & RXOVF14 & RXOVF13 & RXOVF12 & RXOVF11 & RXOVF10 & RXOVF9 & RXOVF8 \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF7 & RXOVF6 & RXOVF5 & RXOVF4 & RXOVF3 & RXOVF2 & RXOVF1 & RXOVF0 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & ' 1 ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared \(\quad X=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 RXOVF<15:0>: Receive Buffer \(n\) Overflow bits
1 = Module attempted to write to a full buffer (set by module)
\(0=\) No overflow condition (cleared by user software)

\section*{REGISTER 21-25: CiRXOVF2: ECAN \({ }^{\text {™ }}\) RECEIVE BUFFER OVERFLOW REGISTER 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF31 & RXOVF30 & RXOVF29 & RXOVF28 & RXOVF27 & RXOVF26 & RXOVF25 & RXOVF24 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF23 & RXOVF22 & RXOVF21 & RXOVF20 & RXOVF19 & RXOVF18 & RXOVF17 & RXOVF16 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits
1 = Module attempted to write to a full buffer (set by module)
\(0=\) No overflow condition (cleared by user software)

REGISTER 21-26: CiTRmnCON: ECAN \({ }^{\text {M }}\) TXIRX BUFFER m CONTROL REGISTER ( \(m=0,2,4,6 ; n=1,3,5,7\) )
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R-0 & R-0 & R-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline TXENn & TXABTn & TXLARBn & TXERRn & TXREQn & RTRENn & TXnPRI<1:0> \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R-0 & R-0 & R-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline TXENm & TXABTm \({ }^{(1)}\) & TXLARBm \({ }^{(1)}\) & TXERRm \({ }^{(1)}\) & TXREQm & RTRENm & TXm & :0> \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
bit 15-8 \\
bit 7
\end{tabular}} & See definition for bits 7-0, controls Buffer \(n\) \\
\hline & TXENm: TX/RX Buffer Selection bit \\
\hline & 1 = Buffer TRBn is a transmit buffer \(0=\) Buffer TRBn is a receive buffer \\
\hline \multirow[t]{3}{*}{bit 6} & TXABTm: Message Aborted bit \({ }^{(1)}\) \\
\hline & 1 = Message was aborted \\
\hline & 0 = Message completed transmission successfully \\
\hline \multirow[t]{2}{*}{bit 5} & TXLARBm: Message Lost Arbitration bit \({ }^{(1)}\) \\
\hline & \begin{tabular}{l}
1 = Message lost arbitration while being sent \\
\(0=\) Message did not lose arbitration while being sent
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 4} & TXERRm: Error Detected During Transmission bit \({ }^{(1)}\) \\
\hline & 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent \\
\hline \multirow[t]{2}{*}{bit 3} & TXREQm: Message Send Request bit \\
\hline & \begin{tabular}{l}
1 = Requests that a message be sent. The bit automatically clears when the message is successfully sent \\
\(0=\) Clearing the bit to ' 0 ' while set requests a message abort
\end{tabular} \\
\hline
\end{tabular}
bit 2 RTRENm: Auto-Remote Transmit Enable bit
\(1=\) When a remote transmit is received, TXREQ will be set
\(0=\) When a remote transmit is received, TXREQ will be unaffected
bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits
11 = Highest message priority
\(10=\) High intermediate message priority
01 = Low intermediate message priority
00 = Lowest message priority
Note 1: This bit is cleared when TXREQ is set.

Note: \(\quad\) The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

\subsection*{21.3 ECAN Message Buffers}

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN Special Function Registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

\section*{BUFFER 21-1: ECAN \({ }^{\text {™ }}\) MESSAGE BUFFER WORD 0}

bit 15-13 Unimplemented: Read as ' 0 '
bit 12-2 SID<10:0>: Standard Identifier bits
bit 1 SRR: Substitute Remote Request bit
When TXIDE \(=0\) :
1 = Message will request remote transmission
\(0=\) Normal message
When TXIDE = 1:
The SRR bit must be set to ' 1 '
bit \(0 \quad\) IDE: Extended Identifier bit
1 = Message will transmit extended identifier
\(0=\) Message will transmit standard identifier

BUFFER 21-2: ECAN \({ }^{\text {m }}\) MESSAGE BUFFER WORD 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline- & - & - & - & EID17 & EID16 & EID15 & EID14 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ R/W-x } \\
\hline EID13 & R/W-x \\
\hline bit 7 & EID11 & EID10 & EID9 & EID8 & EID7 & EID6 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-12 Unimplemented: Read as ' 0 '
bit 11-0 EID<17:6>: Extended Identifier bits

\section*{BUFFER 21-3: \(\quad E^{\text {ETM }}{ }^{\text {TM }}\) MESSAGE BUFFER WORD 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID5 & EID4 & EID3 & EID2 & EID1 & EID0 & RTR & RB1 \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|l|l|l|c|c|c|c|c|}
\hline U-x & U-x & U-x & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline- & - & - & RB0 & DLC3 & DLC2 & DLC1 & DLC0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15-10 & EID<5:0>: Extended Identifier bits \\
\hline \multirow[t]{5}{*}{bit 9} & RTR: Remote Transmission Request bit \\
\hline & When TXIDE = 1: \\
\hline & 1 = Message will request remote transmission \\
\hline & When TXIDE = 0 \\
\hline & The RTR bit is ignored. \\
\hline \multirow[t]{2}{*}{bit 8} & RB1: Reserved Bit 1 \\
\hline & User must set this bit to '0' per CAN protocol. \\
\hline bit 7-5 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 4} & RB0: Reserved Bit 0 \\
\hline & User must set this bit to '0' per CAN protocol. \\
\hline & \\
\hline
\end{tabular}

BUFFER 21-4: \(\quad E^{\text {2 }}{ }^{\text {TM }}\) MESSAGE BUFFER WORD 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 1} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 0} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & & W = Writable bit & & \(\mathrm{U}=\) Unimp & ed bit, r & as ' 0 ' & \\
\hline -n = Value at POR & & ' 1 ' = Bit is set & & ' 0 ' = Bit is & & \(x=B i t\) is & \\
\hline
\end{tabular}
bit 15-8 Byte \(1<15: 8>\) : ECAN \({ }^{\text {TM }}\) Message byte 0
bit 7-0 Byte 0<7:0>: ECAN Message byte 1

\section*{BUFFER 21-5: ECAN \({ }^{\text {M }}\) MESSAGE BUFFER WORD 4}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 3} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}

\(\begin{array}{ll}\text { bit 15-8 } & \text { Byte } \mathbf{3 < 1 5 : 8 >} \text { : ECAN }{ }^{\text {TM }} \text { Message byte } 3 \\ \text { bit 7-0 } & \text { Byte } 2<7: 0>\text { : ECAN Message byte } 2\end{array}\)

BUFFER 21-6: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 5
\begin{tabular}{|lccccccc|}
\hline\(R / W-x\) & \(R / W-x\) \\
\hline & & Byte 5 & & & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llccccc|}
\hline \multicolumn{1}{|c|}{\(R / W-x\)} & \(R / W-x\) & \(R / W-x\)
\end{tabular}
bit 15-8 \(\quad\) Byte \(5<15: 8>\) : ECAN \({ }^{\text {TM }}\) Message byte 5
bit 7-0 Byte 4<7:0>: ECAN Message byte 4

\section*{BUFFER 21-7: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 6}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 7} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}

\begin{tabular}{ll} 
bit 15-8 & Byte \(7<15: 8>\) : ECAN \({ }^{\text {TM }}\) Message byte 7 \\
bit 7-0 & Byte 6<7:0>: ECAN Message byte 6
\end{tabular}

BUFFER 21-8: ECAN \({ }^{\text {M }}\) MESSAGE BUFFER WORD 7
\begin{tabular}{|c|c|c|ccccc|}
\hline U-0 & U-0 & U-0 & R/W-x & \(R / W-x\) & \(R / W-x\) & \(R / W-x\) & \(R / W-x\) \\
\hline- & - & - & & FILHIT<4:0>(1) & & \\
\hline bit 15 & & & & bit 88 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-13 & Unimplemented: Read as ' 0 ' \\
bit 12-8 & FILHIT<4:0>: Filter Hit Code bits \({ }^{(\mathbf{1})}\) \\
& Encodes number of filter that resulted in writing this buffer. \\
bit 7-0 & Unimplemented: Read as ' 0 '
\end{tabular}

Note 1: Only written by module for receive buffers, unused for transmit buffers.

NOTES:

\subsection*{22.0 USB ON-THE-GO (OTG) MODULE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 25. "USB On-The-Go (OTG)" (DS70571) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

\subsection*{22.1 Overview}

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Universal Serial Bus (USB) On-The-Go (OTG) module includes the following features:
- USB full-speed support for host and device
- Low-speed host support
- USB On-The-Go support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Hardware performs transaction handshaking
- Endpoint buffering anywhere in system RAM
- Integrated DMA controller to access system RAM
- Support for all four transfer types:
- Control
- Interrupt
- Bulk data
- Isochronous
- Queueing of up to four endpoint transfers without servicing
- USB 5V charge pump controller

The USB module contains the analog and digital components to provide a USB 2.0 full-speed and lowspeed embedded host, full-speed device, or OTG implementation with a minimum of external components.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), pull-up and pull-down resistors, and the register interface. Figure 22-1 illustrates the block diagram of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Output Compare module.

The device auxiliary clock generator provides the 48 MHz clock required for USB communication. The voltage comparators monitor the voltage on the VBus pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the protocol for data transfers. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

Note: The implementation and use of the USB specifications and other third party specifications or technology may require a license from various entities, including, but not limited to USB Implementers Forum, Inc. (also referred to as USB-IF). It is your responsibility to obtain more information regarding any applicable licensing obligations.

\subsection*{22.1.1 Clearing USB OTG Interrupts}

Unlike device level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set-only bits. Additionally, these bits can only be cleared in software by writing a ' 1 ' to their locations (i.e., performing a BSET instruction). Writing a ' 0 ' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this section, a bit that can only be cleared by writing a ' 1 ' to its location is referred to as "Write ' 1 ' to clear bit". In register descriptions, this function is indicated by the descriptor, "K".

FIGURE 22-1: dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 FAMILY USB INTERFACE DIAGRAM


REGISTER 22-1: UxOTGSTAT: USB OTG STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R-0, HSC & U-0 & R-0, HSC & U-0 & R-0, HSC & R-0, HSC & U-0 & R-0, HSC \\
\hline ID & - & LSTATE & - & SESVD & SESEND & - & VBUSVD \\
\hline bit 7 &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
bit \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(R=\) Readable bit & \(W=\) Writable bit & \(H S C=\) Hardware Settable/Clearable bit \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as '0'
bit 7 ID: ID Pin State Indicator bit
1 = No cable is attached or a type B plug has been plugged into the USB receptacle
0 = A type A plug has been plugged into the USB receptacle
bit \(6 \quad\) Unimplemented: Read as ' 0 '
bit 5 LSTATE: Line State Stable Indicator bit
1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms
\(0=\) The USB line state has NOT been stable for the previous 1 ms
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit 3 SESVD: Session Valid Indicator bit
1 = The Vbus voltage is above Va_sess_vld (as defined in the USB OTG Specification) on the A or B device
\(0=\) The Vbus voltage is below Va_sess_vld on the A or B device
bit 2 SESEND: B-Session End Indicator bit
1 = The Vbus voltage is below Vb_sess_end (as defined in the USB OTG Specification) on the \(B\) device
\(0=\) The Vbus voltage is above Vb_sess_end on the \(B\) device
bit 1 Unimplemented: Read as ' 0 '
bit \(0 \quad\) VBUSVD: A-Vbus Valid Indicator bit
1 = The Vbus voltage is above Va_vbus_vld (as defined in the USB OTG Specification) on the A device
\(0=\) The Vbus voltage is below Va_vbus_vld on the A device

REGISTER 22-2: UxOTGCON: USB ON-THE-GO CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & - \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline DPPULUP & DMPULUP & DPPULDWN \({ }^{(1)}\) & DMPULDWN \({ }^{(1)}\) & VBUSON \({ }^{(1)}\) & OTGEN \({ }^{(1)}\) & VBUSCHG \({ }^{(1)}\) & VBUSDIS \({ }^{(1)}\) \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7 DPPULUP: D+ Pull-Up Enable bit
1 = D+ data line pull-up resistor enabled
0 = D+ data line pull-up resistor disabled
bit 6 DMPULUP: D- Pull-Up Enable bit
\(1=D\) - data line pull-up resistor enabled
0 = D- data line pull-up resistor disabled
bit 5 DPPULDWN: D+ Pull-Down Enable bit \({ }^{(1)}\)
\(1=\mathrm{D}+\) data line pull-down resistor enabled
\(0=D+\) data line pull-down resistor disabled
bit 4 DMPULDWN: D- Pull-Down Enable bit \({ }^{(1)}\)
1 = D- data line pull-down resistor enabled
\(0=\) D- data line pull-down resistor disabled
bit \(3 \quad\) VBUSON: VBUS Power-on bit \({ }^{(1)}\)
1 = Vbus line powered
\(0=\) VBus line not powered
bit 2 OTGEN: OTG Features Enable bit \({ }^{(1)}\)
1 = USB OTG enabled; all D+/D- pull-ups and pull-downs bits are enabled
\(0=\) USB OTG disabled; D+/D- pull-ups and pull-downs are controlled in hardware by the settings of the HOSTEN and USBEN bits ( \(\mathrm{UxCON}<3,0>\) )
bit 1 VBUSCHG: VBus Charge Selection bit \({ }^{(1)}\)
\(1=\) VBus line set to charge to 3.3 V
\(0=\) VBUS line set to charge to 5 V
bit \(0 \quad\) VBUSDIS: VBUS Discharge Enable bit \({ }^{(1)}\)
\(1=\) VBus line discharged through a resistor
\(0=\) VBUS line not discharged

Note 1: These bits are only used in Host mode; do not use in Device mode.

REGISTER 22-3: UxPWRC: USB POWER CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline HS, HC & U-0 & U-0 & R/W & U-0 & U-0 & R/W-0, HC & R/W-0 \\
\hline UACTPND & - & - & USLPGRD & - & - & USUSPND & USBPWR \({ }^{(1)}\) \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Hardware Settable bit & \(\mathrm{HC}=\) Hardware Clearable bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as '0'
bit \(7 \quad\) UACTPND: USB Activity Pending bit
1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set)
\(0=\) Module may be suspended or powered down
bit 6-5 Unimplemented: Read as '0’
bit 4 USLPGRD: Sleep Guard bit
1 = Indicate to the USB module that it is about to be suspended or powered down \(0=\) No suspend
bit 3-2 Unimplemented: Read as '0'
bit 1 USUSPND: USB Suspend Mode Enable bit
1 = USB OTG module is in Suspend mode
0 = Normal USB OTG operation
bit \(0 \quad\) USBPWR: USB Operation Enable bit \({ }^{(1)}\)
\(1=\) USB OTG module is enabled
\(0=\) USB OTG module is disabled

Note 1: Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (UxCON<3,0> and UxOTGCON<2>) are also cleared.

REGISTER 22-4: UxSTAT: USB STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R-0, HSC & U-0 & U-0 \\
\hline \multicolumn{4}{|c|}{ENDPT<3:0> \({ }^{(2)}\)} & DIR & PPBI \({ }^{(1)}\) & - & - \\
\hline \multicolumn{8}{|l|}{bit 7} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Legend: & \multicolumn{3}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as '0'} \\
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & HSC = Hardware & earable bit \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-4 ENDPT<3:0>: Number of the last endpoint activity (represents the number of the endpoint BDT updated by the last USB transfer) \({ }^{(2)}\)
1111 = Endpoint 15
1110 = Endpoint 14
-
-
-
0001 = Endpoint 1
0000 = Endpoint 0
bit 3 DIR: Last Buffer Descriptor Direction Indicator bit 1 = The last transaction was a transmit transfer (TX) \(0=\) The last transaction was a receive transfer (RX)
bit \(2 \quad\) PPBI: Ping-Pong Buffer Descriptor Pointer Indicator bit \({ }^{(1)}\)
1 = The last transaction was to the ODD buffer descriptor bank
\(0=\) The last transaction was to the EVEN buffer descriptor bank
bit 1-0 Unimplemented: Read as ' 0 '
Note 1: This bit is only valid for endpoints with available EVEN and ODD buffer descriptor registers.
2: In Host mode, all transactions are processed through Endpoint 0 and the Endpoint 0 BDTs. Therefore, ENDPT<3:0> will always read as ‘ 0000 ’.

REGISTER 22-5: UxCON: USB CONTROL REGISTER (DEVICE MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R-x, HSC & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & SE0 & PKTDIS & - & HOSTEN \(^{\mathbf{1})}\) & RESUME & PPBRST & USBEN \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{HSC}=\) Hardware Settable/Clearable bit \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-7 Unimplemented: Read as ' 0 '
bit 6 SEO: Live Single-Ended Zero Flag bit
1 = Single-ended zero active on the USB bus
\(0=\) No single-ended zero detected
bit \(5 \quad\) PKTDIS: Packet Transfer Disable bit
\(1=\) SIE token and packet processing disabled; automatically set when a SETUP token is received
\(0=\) SIE token and packet processing enabled
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit 3 HOSTEN: Host Mode Enable bit \({ }^{(1)}\)
\(1=\) USB host capability enabled; pull-downs on \(\mathrm{D}+\) and D - are activated in hardware
\(0=\) USB host capability disabled
bit 2 RESUME: Resume Signaling Enable bit
1 = Resume signaling activated
\(0=\) Resume signaling disabled
bit 1 PPBRST: Ping-Pong Buffers Reset bit
1 = Reset all Ping-Pong Buffer Pointers to the EVEN buffer descriptor banks
0 = Ping-Pong Buffer Pointers not reset
bit \(0 \quad\) USBEN: USB Module Enable bit
1 = USB module and supporting circuitry enabled (device attached); D+ pull-up is activated in hardware
\(0=\) USB module and supporting circuitry disabled (device detached)
Note 1: This bit should be ' 0 ' in Device mode.

REGISTER 22-6: UxCON: USB CONTROL REGISTER (HOST MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R-x, HSC & R-x, HSC & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline JSTATE & SE0 & TOKBUSY & USBRST & HOSTEN & RESUME & PPBRST & SOFEN \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Legend: & \multicolumn{3}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as '0'} \\
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & HSC = Hardware & earable bit \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-8 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 7} & JSTATE: Live Differential Receiver J State Flag bit \\
\hline & \(1=\mathrm{J}\) state (differential ' 0 ' in low-speed, differential ' 1 ' in full-speed) detected on the USB \(0=\) No J state detected \\
\hline \multirow[t]{2}{*}{bit 6} & SE0: Live Single-Ended Zero Flag bit \\
\hline & \begin{tabular}{l}
1 = Single-ended zero active on the USB bus \\
\(0=\) No single-ended zero detected
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 5} & TOKBUSY: Token Busy Status bit \\
\hline & \begin{tabular}{l}
\(1=\) Token being executed by the USB module in On-The-Go state \\
\(0=\) No token being executed
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 4} & USBRST: Module Reset bit \\
\hline & \begin{tabular}{l}
1 = USB Reset has been generated; for Software Reset, application must set this bit for 50 ms , and then clear it \\
\(0=\) USB Reset terminated
\end{tabular} \\
\hline
\end{tabular}
bit 3 HOSTEN: Host Mode Enable bit
1 = USB host capability enabled; pull-downs on D+ and D- are activated in hardware
0 = USB host capability disabled
bit 2 RESUME: Resume Signaling Enable bit
1 = Resume signaling activated; software must set bit for 10 ms , and then clear to enable remote wake-up
0 = Resume signaling disabled
bit 1 PPBRST: Ping-Pong Buffers Reset bit
1 = Reset all Ping-Pong Buffer Pointers to the EVEN buffer descriptor banks
0 = Ping-Pong Buffer Pointers not reset
bit \(0 \quad\) SOFEN: Start of Frame Enable bit
1 = Start of Frame token sent every one 1 ms
\(0=\) Start of Frame token disabled

REGISTER 22-7: UXADDR: USB ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|l|lllllll|}
\hline \multicolumn{1}{|c}{ R/W-0 } & R/W-0 & R/W-0 & R/W-0 & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) & R/W-0 \\
\hline LSPDEN \({ }^{(1)}\) & & & & DEVADDR<6:0> & & & \\
\hline bit 7 & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared
\end{tabular} \(\mathrm{x=} \mathrm{Bit} \mathrm{is} \mathrm{unknown}\)
bit 15-8 Unimplemented: Read as ' 0 '
bit \(7 \quad\) LSPDEN: Low-Speed Enable Indicator bit \({ }^{(1)}\)
1 = USB module operates at low-speed 0 = USB module operates at full-speed
bit 6-0 DEVADDR<6:0>: USB Device Address bits

Note 1: Host mode only. In Device mode, this bit is unimplemented.

REGISTER 22-8: UxTOK: USB TOKEN REGISTER (HOST MODE ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|lccccccc|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & \(\mathrm{PID}<3: 0 \gg^{(1)}\) & & \(\mathrm{EP}<3: 0>\) & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as '0' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(0 '=\) Bit is cleared
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-4 PID<3:0>: Token Type Identifier bits \({ }^{(1)}\)
1101 = SETUP (TX) token type transaction
\(1001=\operatorname{IN}(R X)\) token type transaction
0001 = OUT (TX) token type transaction
bit 3-0 EP<3:0>: Token Command Endpoint Address bits
This value must specify a valid endpoint on the attached device.

Note 1: All other combinations are reserved and are not to be used.

\section*{REGISTER 22-9: UxSOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER \\ (HOST MODE ONLY)}


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-0 CNT<7:0>: Start of Frame Count bits
Value represents \(10+\) (packet size of \(n\) bytes); for example:
\(01001010=64\)-byte packet
0010 1010 = 32-byte packet
\(00010010=8\)-byte packet

REGISTER 22-10: UxCNFG1: USB CONFIGURATION REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & bit 8 \\
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & U-0 & U-O & U-0 & U-0 & U-0 & U-0 \\
\hline UTEYE & UOEMON & - & USBSIDL & - & - & - & - \\
\hline bit 7
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemente & as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7 UTEYE: USB Eye Pattern Test Enable bit
1 = Eye pattern test enabled
0 = Eye pattern test disabled
bit 6 UOEMON: USB \(\overline{O E}\) Monitor Enable bit
\(1=\overline{\mathrm{OE}}\) signal active; it indicates intervals during which the \(\mathrm{D}+/ \mathrm{D}\) - lines are driving \(0=\overline{\mathrm{OE}}\) signal inactive \({ }^{(1)}\)
bit \(5 \quad\) Unimplemented: Read as ' 0 '
bit 4 USBSIDL: USB OTG Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
bit 3-0 Unimplemented: Read as ' 0 '

Note 1: When the UTRIS (UxCNFG2<0>) bit is set, the \(\overline{\mathrm{OE}}\) signal is active regardless of the setting of UOEMON.

REGISTER 22-11: UxCNFG2: USB CONFIGURATION REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & UVCMPSEL & PUVBUS & EXTI2CEN & UVBUSDIS \({ }^{(1)}\) & UVCMPDIS \({ }^{(1)}\) & UTRDIS \({ }^{(1)}\) \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-6 Unimplemented: Read as ' 0 '
bit 5 UVCMPSEL: External Comparator Input Mode Select bit When UVCMPDIS is set:
1 = Use 3 pin input for external comparators
0 = Use 2 pin input for external comparators
bit 4 PUVBUS: VBus Pull-up Enable bit
1 = Pull-up on Vbus pin enabled
\(0=\) Pull-up on Vbus pin disabled
bit 3 EXTI2CEN: \(I^{2} C^{\text {TM }}\) Interface For External Module Control Enable bit
1 = External module(s) controlled via \(I^{2} C\) interface
\(0=\) External module(s) controller via dedicated pins
bit \(2 \quad\) UVBUSDIS: On-Chip 5V Boost Regulator Builder Disable bit \({ }^{(1)}\)
1 = On-chip boost regulator builder disabled; digital output control interface enabled \(0=\) On-chip boost regulator builder active
bit 1 UVCMPDIS: On-Chip VBus Comparator Disable bit \({ }^{(1)}\)
1 = On-chip charge VBUS comparator disabled; digital input status interface enabled
\(0=\) On-chip charge Vbus comparator active
bit \(0 \quad\) UTRDIS: On-Chip Transceiver Disable bit \({ }^{(1)}\)
1 = On-chip transceiver disabled; digital transceiver interface enabled
\(0=\) On-chip transceiver active
Note 1: Do not change this bit while the USBPWR bit is set (UxPWRC<0> =1).

REGISTER 22-12: UxOTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - \\
\hline bit 15 & bit 8 \\
\hline R/K-0, HS & U-0 & R/K-0, HS \\
\hline IDIF & T1MSECIF & LSTATEIF & ACTVIF & SESVDIF & SESENDIF & - & VBUSVDIF \\
\hline bit 7 &
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(\mathrm{U}=\) = Unimplemented bit, read as ' 0 ' & \\
\(R=\) Readable bit & \(\mathrm{K}=\) Write ' 1 ' to clear bit & \(\mathrm{HS}=\) Hardware Settable bit & \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-8 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 7} & IDIF: ID State Change Indicator bit \\
\hline & 1 = Change in ID state detected \\
\hline & \(0=\) No ID state change \\
\hline \multirow[t]{3}{*}{bit 6} & T1MSECIF: 1 Millisecond Timer bit \\
\hline & 1 = The 1 millisecond timer has expired \\
\hline & \(0=\) The 1 millisecond timer has not expired \\
\hline \multirow[t]{3}{*}{bit 5} & LSTATEIF: Line State Stable Indicator bit \\
\hline & 1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms , but different from last time \\
\hline & \(0=\) USB line state has not been stable for 1 ms \\
\hline \multirow[t]{3}{*}{bit 4} & ACTVIF: Bus Activity Indicator bit \\
\hline & 1 = Activity on the D+/D- lines or Vbus detected \\
\hline & \(0=\) No activity on the D+/D- lines or VBUS detected \\
\hline \multirow[t]{3}{*}{bit 3} & SESVDIF: Session Valid Change Indicator bit \\
\hline & 1 = VBUS has crossed VA_SESS_VLD (as defined in the USB OTG Specification) \({ }^{(\mathbf{1})}\) \\
\hline & \(0=\) Vbus has not crossed VA_SESS_VLD \\
\hline \multirow[t]{3}{*}{bit 2} & SESENDIF: B-Device Vbus Change Indicator bit \\
\hline & 1 = VBus change on B-device detected; VBus has crossed VB_SESS_END (as defined in the USB OTG Specification) \({ }^{(1)}\) \\
\hline & \(0=\) VBus has not crossed VA_SESS_END \\
\hline bit 1 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 0} & VBUSVDIF: A-Device Vbus Change Indicator bit \\
\hline & 1 = VBus change on A-device detected; VBus has crossed VA_VBUs_VLD (as defined in the USB OTG Specification) \({ }^{(\mathbf{1})}\) \\
\hline & 0 = No Vbus change on A-device detected \\
\hline
\end{tabular}

Note 1: VBUS threshold crossings may be either rising or falling.

REGISTER 22-13: UxOTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 \\
\hline IDIE & T1MSECIE & LSTATEIE & ACTVIE & SESVDIE & SESENDIE & - & VBUSVDIE \\
\hline \multicolumn{8}{|l|}{bit 7 l 0} \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as '0' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-8 Unimplemented: Read as ' 0 '
bit \(7 \quad\) IDIE: ID Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 5 LSTATEIE: Line State Stable Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 4 ACTVIE: Bus Activity Interrupt Enable bit
\(1=\) Interrupt enabled
0 = Interrupt disabled
bit 3 SESVDIE: Session Valid Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 2 SESENDIE: B-Device Session End Interrupt Enable bit
1 = Interrupt enabled
\(0=\) Interrupt disabled
bit \(1 \quad\) Unimplemented: Read as ' 0 '
bit \(0 \quad\) VBUSVDIE: A-Device Vbus Valid Interrupt Enable bit
1 = Interrupt enabled
\(0=\) Interrupt disabled

REGISTER 22-14: UxIR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & \\
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/K-0, HS & U-0 & R/K-0, HS & R/K-0, HS & R/K-0, HS & R/K-0, HS & R-0 & R/K-0, HS \\
\hline STALLIF & - & RESUMEIF & IDLEIF & TRNIF & SOFIF & UERRIF & URSTIF \\
\hline bit 7 &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(\mathrm{U}=\) = Unimplemented bit, read as ' 0 ' & \\
\(R=\) Readable bit & \(\mathrm{K}=\) Write ' 1 ' to clear bit & \(\mathrm{HS}=\) Hardware Settable bit & \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-8 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 7} & STALLIF: STALL Handshake Interrupt bit \\
\hline & \begin{tabular}{l}
\(1=\) A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode \\
\(0=\) A STALL handshake has not been sent
\end{tabular} \\
\hline bit 6 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 5} & RESUMEIF: Resume Interrupt bit \\
\hline & ```
1 = A K-State is observed on the D+ or D- pin for 2.5 \mus (differential '1' for low-speed, differential ' 0' for
    full-speed)
0 = No K-State observed
``` \\
\hline \multirow[t]{2}{*}{bit 4} & IDLEIF: Idle Detect Interrupt bit \\
\hline & \begin{tabular}{l}
\(1=\) Idle condition detected (constant Idle state of 3 ms or more) \\
\(0=\) No Idle condition detected
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 3} & TRNIF: Token Processing Complete Interrupt bit \\
\hline & \begin{tabular}{l}
1 = Processing of current token is complete; read UxSTAT register for endpoint BDT information \\
\(0=\) Processing of current token not complete; clear UxSTAT register or load next token from STAT (Clearing this bit causes the STAT FIFO to advance.)
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 2} & SOFIF: Start of Frame Token Interrupt bit \\
\hline & \begin{tabular}{l}
1 = A Start of Frame token was received by the peripheral \\
0 = A Start of Frame token has not been received by the peripheral
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 1} & UERRIF: USB Error Condition Interrupt bit (read-only) \\
\hline & \begin{tabular}{l}
\(1=\) An unmasked error condition has occurred; only error states enabled in the UxEIE register can set this bit \\
\(0=\) No unmasked error condition has occurred
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 0} & URSTIF: USB Reset Interrupt bit \\
\hline & ```
1 = Valid USB Reset has occurred for at least \(2.5 \mu \mathrm{~s}\); Reset state must be cleared before this bit can
 be reasserted
0 = No USB Reset has occurred
``` \\
\hline
\end{tabular}
\(0=\) No USB Reset has occurred

REGISTER 22-15: UxIR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|c|c|c|c|c|c|}
\hline R/K-0, HS & R-0 & R/K-0, HS \\
\hline STALLIF & ATTACHIF & RESUMEIF & IDLEIF & TRNIF & SOFIF & UERRIF & DETACHIF \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' & \\
\(R=\) Readable bit & \(\mathrm{K}=\) Write ' 1 ' to clear bit & \(\mathrm{HS}=\) Hardware Settable bit & \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit \(7 \quad\) STALLIF: STALL Handshake Interrupt bit
1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode
\(0=\) A STALL handshake has not been sent
bit \(6 \quad\) ATTACHIF: Peripheral Attach Interrupt bit
1 = A peripheral attachment has been detected by the module; set if the bus state is not SE0 and there has been no bus activity for \(2.5 \mu \mathrm{~s}\)
\(0=\) No peripheral attachement detected
bit 5 RESUMEIF: Resume Interrupt bit
1 = A K-State is observed on the \(D+\) or \(D-\) pin for \(2.5 \mu \mathrm{~s}\) (differential ' 1 ' for low-speed, differential ' 0 ' for full-speed)
0 = No K-State observed
bit \(4 \quad\) IDLEIF: Idle Detect Interrupt bit
1 = Idle condition detected (constant Idle state of 3 ms or more)
\(0=\) No Idle condition detected
bit 3 TRNIF: Token Processing Complete Interrupt bit
1 = Processing of current token is complete; read USTAT register for endpoint BDT information
\(0=\) Processing of current token is not complete; clear USTAT register or load next token from STAT
bit 2 SOFIF: Start of Frame Token Interrupt bit
1 = Start of Frame threshold reached by the host
\(0=\) No Start of Frame token threshold reached
bit 1 UERRIF: USB Error Condition Interrupt bit
1 = An unmasked error condition has occurred; only error states enabled in the UxEIE register can set this bit
\(0=\) No unmasked error condition has occurred
bit 0 DETACHIF: Detach Interrupt bit
\(1=\) A peripheral detachment has been detected by the module
\(0=\) No peripheral detachment detected

\section*{REGISTER 22-16: UxIE: USB INTERRUPT ENABLE REGISTER (DEVICE MODE)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-O & U-0 & U-0 & U-0 & U-0 & U-O & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline STALLIE & - & RESUMEIE & IDLEIE & TRNIE & SOFIE & UERRIE & URSTIE \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-8 & Unimplemented: Read as '0' \\
\hline bit 7 & \begin{tabular}{l}
STALLIE: STALL Handshake Interrupt Enable bit \\
1 = Interrupt enabled \\
\(0=\) Interrupt disabled
\end{tabular} \\
\hline bit 6 & Unimplemented: Read as '0' \\
\hline bit 5 & \begin{tabular}{l}
RESUMEIE: Resume Interrupt bit \\
1 = Interrupt enabled \\
0 = Interrupt disabled
\end{tabular} \\
\hline bit 4 & \begin{tabular}{l}
IDLEIE: Idle Detect Interrupt bit \\
1 = Interrupt enabled \\
0 = Interrupt disabled
\end{tabular} \\
\hline bit 3 & \begin{tabular}{l}
TRNIE: Token Processing Complete Interrupt bit \\
1 = Interrupt enabled \\
0 = Interrupt disabled
\end{tabular} \\
\hline bit 2 & \begin{tabular}{l}
SOFIE: Start of Frame Token Interrupt bit \\
1 = Interrupt enabled \\
0 = Interrupt disabled
\end{tabular} \\
\hline bit 1 & \begin{tabular}{l}
UERRIE: USB Error Condition Interrupt bit \\
1 = Interrupt enabled \\
\(0=\) Interrupt disabled
\end{tabular} \\
\hline bit 0 & \begin{tabular}{l}
URSTIE: USB Reset Interrupt Enable bit \\
1 = Interrupt enabled \\
\(0=\) Interrupt disabled
\end{tabular} \\
\hline
\end{tabular}

\section*{REGISTER 22-17: UxIE: USB INTERRUPT ENABLE REGISTER (HOST MODE)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline STALLIE & ATTACHIE \(^{(\mathbf{1})}\) & RESUMEIE & IDLEIE & TRNIE & SOFIE & UERRIE & DETACHIE \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplement & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-8 & Unimplemented: Read as '0' \\
\hline bit 7 & \begin{tabular}{l}
STALLIE: STALL Handshake Interrupt Enable bit \\
1 = Interrupt enabled \\
\(0=\) Interrupt disabled
\end{tabular} \\
\hline bit 6 & \begin{tabular}{l}
ATTACHIE: Peripheral Attach Interrupt bit \({ }^{(1)}\) \\
1 = Interrupt enabled \\
0 = Interrupt disabled
\end{tabular} \\
\hline bit 5 & \begin{tabular}{l}
RESUMEIE: Resume Interrupt bit \\
1 = Interrupt enabled \\
\(0=\) Interrupt disabled
\end{tabular} \\
\hline bit 4 & \begin{tabular}{l}
IDLEIE: Idle Detect Interrupt bit \\
1 = Interrupt enabled \\
0 = Interrupt disabled
\end{tabular} \\
\hline bit 3 & \begin{tabular}{l}
TRNIE: Token Processing Complete Interrupt bit \\
1 = Interrupt enabled \\
\(0=\) Interrupt disabled
\end{tabular} \\
\hline bit 2 & \begin{tabular}{l}
SOFIE: Start of Frame Token Interrupt bit \\
1 = Interrupt enabled \\
0 = Interrupt disabled
\end{tabular} \\
\hline bit 1 & \begin{tabular}{l}
UERRIE: USB Error Condition Interrupt bit \\
1 = Interrupt enabled \\
\(0=\) Interrupt disabled
\end{tabular} \\
\hline bit 0 & \begin{tabular}{l}
DETACHIE: USB Detach Interrupt Enable bit \\
1 = Interrupt enabled \\
\(0=\) Interrupt disabled
\end{tabular} \\
\hline
\end{tabular}

Note 1: Unimplemented in OTG mode, read as ' 0 '.

\section*{REGISTER 22-18: UxEIR: USB ERROR INTERRUPT STATUS REGISTER (DEVICE MODE)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/K-0, HS & R/K-0,HS & R/K-0, HS \\
\hline BTSEF & BUSACCEF & DMAEF & BTOEF & DFN8EF & CRC16EF & CRC5EF & PIDEF \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' & \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{K}=\) Write ' 1 ' to clear bit & \(\mathrm{HS}=\) Hardware Settable bit & \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7 BTSEF: Bit Stuff Error Flag bit
1 = Bit stuff error has been detected
\(0=\) No bit stuff error
bit 6 BUSACCEF: Bus Access Error Flag bit
1 = Peripheral tried to access an unimplemented RAM location
\(0=\) RAM location access was successful
bit 5 DMAEF: DMA Error Flag bit
1 = A USB DMA error condition detected; the data size indicated by the buffer descriptor byte count field is less than the number of received bytes. The received data is truncated
\(0=\) No DMA error
bit 4 BTOEF: Bus Turnaround Time-out Error Flag bit
1 = Bus turnaround time-out has occurred
\(0=\) No bus turnaround time-out
bit 3 DFN8EF: Data Field Size Error Flag bit
1 = Data field was not an integral number of bytes
\(0=\) Data field was an integral number of bytes
bit 2 CRC16EF: CRC16 Failure Flag bit
1 = CRC16 failed
\(0=\) CRC16 passed
bit \(1 \quad\) CRC5EF: CRC5 Host Error Flag bit
1 = Token packet rejected due to CRC5 error
\(0=\) Token packet accepted (no CRC5 error)
bit \(0 \quad\) PIDEF: PID Check Failure Flag bit
1 = PID check failed
\(0=\) PID check passed

REGISTER 22-19: UxEIR: USB ERROR INTERRUPT STATUS REGISTER (HOST MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/K-0, HS & R/K-0,HS & \multicolumn{1}{c}{ R/K-0, HS } & \multicolumn{2}{c|}{ R/K-0, HS } & R/K-0, HS \\
\hline BTSEF & BUSACCEF & DMAEF & BTOEF & DFN8EF & CRC16EF & EOFEF & PIDEF \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' & \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{K}=\) Write '1' to clear bit & \(\mathrm{HS}=\) Hardware Settable bit & \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7 BTSEF: Bit Stuff Error Flag bit
1 = Bit stuff error has been detected
\(0=\) No bit stuff error
bit 6 BUSACCEF: Bus Access Error Flag bit
1 = Peripheral tried to access an unimplemented RAM location
\(0=\) RAM location access was successful
bit 5 DMAEF: DMA Error Flag bit
1 = A USB DMA error condition detected; the data size indicated by the buffer descriptor byte count field is less than the number of received bytes. The received data is truncated
\(0=\) No DMA error
bit 4 BTOEF: Bus Turnaround Time-out Error Flag bit
1 = Bus turnaround time-out has occurred
\(0=\) No bus turnaround time-out
bit 3 DFN8EF: Data Field Size Error Flag bit
1 = Data field was not an integral number of bytes
\(0=\) Data field was an integral number of bytes
bit 2 CRC16EF: CRC16 Failure Flag bit
1 = CRC16 failed
\(0=\) CRC16 passed
bit 1 EOFEF: End of Frame Error Flag bit
1 = End of Frame error has occurred
\(0=\) End of Frame interrupt disabled
bit \(0 \quad\) PIDEF: PID Check Failure Flag bit
1 = PID check failed
\(0=\) PID check passed

\section*{REGISTER 22-20: UxEIE: USB ERROR INTERRUPT ENABLE REGISTER (DEVICE MODE)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline BTSEE & BUSACCEE & DMAEE & BTOEE & DFN8EE & CRC16EE & CRC5EE & PIDEE \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplement & as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=B\) \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7 BTSEE: Bit Stuff Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 6 BUSACCEE: Bus Access Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 5 DMAEE: DMA Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 3 DFN8EE: Data Field Size Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit \(0 \quad\) PIDEE: PID Check Failure Interrupt Enable bit
1 = Interrupt enabled
\(0=\) Interrupt disabled

\section*{REGISTER 22-21: UxEIE: USB ERROR INTERRUPT ENABLE REGISTER (HOST MODE)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline BTSEE & BUSACCEE & DMAEE & BTOEE & DFN8EE & CRC16EE & EOFEE & PIDEE \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7 BTSEE: Bit Stuff Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 6 BUSACCEE: Bus Access Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 5 DMAEE: DMA Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 3 DFN8EE: Data Field Size Error Interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
1 = Interrupt enabled
\(0=\) Interrupt disabled
bit 1 EOFEE: End-Of-Frame Error interrupt Enable bit
1 = Interrupt enabled
0 = Interrupt disabled
bit \(0 \quad\) PIDEE: PID Check Failure Interrupt Enable bit
\(1=\) Interrupt enabled
\(0=\) Interrupt disabled

REGISTER 22-22: UxEPn: USB ENDPOINT n CONTROL REGISTERS ( \(\mathrm{n}=0\) TO 15)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline LSPD \(^{(\mathbf{1 )}}\) & RETRYDIS \\
\\
\hline \multicolumn{1}{|l|}{} & - & EPCONDIS & EPRXEN & EPTXEN & EPSTALL & EPHSHK \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-8 Unimplemented: Read as ' 0 '
bit 7 LSPD: Low-Speed Direct Connection Enable bit (UEPO only) \({ }^{\mathbf{( 1 )}}\)
1 = Direct connection to a low-speed device enabled
\(0=\) Direct connection to a low-speed device disabled
bit 6 RETRYDIS: Retry Disable bit (UEPO only) \({ }^{\mathbf{1})}\)
1 = Retry NAK transactions disabled
\(0=\) Retry NAK transactions enabled; retry done in hardware
bit \(5 \quad\) Unimplemented: Read as ' 0 '
bit 4 EPCONDIS: Bidirectional Endpoint Control bit If EPTXEN and EPRXEN = 1:
1 = Disable Endpoint n from control transfers; only \(T X\) and \(R X\) transfers are allowed
0 = Enable Endpoint \(n\) for control (SETUP) transfers; TX and RX transfers are also allowed
For all other combinations of EPTXEN and EPRXEN:
This bit is ignored.
bit 3 EPRXEN: Endpoint Receive Enable bit
1 = Endpoint \(n\) receive enabled
0 = Endpoint \(n\) receive disabled
bit 2 EPTXEN: Endpoint Transmit Enable bit
1 = Endpoint \(n\) transmit enabled
0 = Endpoint n transmit disabled
bit 1 EPSTALL: Endpoint Stall Status bit
1 = Endpoint n was stalled
0 = Endpoint \(n\) was not stalled
bit 0 EPHSHK: Endpoint Handshake Enable bit
1 = Endpoint handshake enabled
\(0=\) Endpoint handshake disabled (typically used for isochronous endpoints)
Note 1: These bits are available only for UxEP0, and only in Host mode. For all other UxEPn registers, these bits are always unimplemented and read as ' 0 '.

REGISTER 22-23: UxBDTP1: USB BUFFER DESCRIPTION TABLE REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|lllllll|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline
\end{tabular} \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-1 BDTPTRL<15:9>: Endpoint BDT Start Address bits
Defines bits 15-9 of the 32-bit endpoint buffer descriptor table start address.
bit \(0 \quad\) Unimplemented: Read as ' 0 ’

REGISTER 22-24: UxBDTP2: USB BUFFER DESCRIPTION TABLE REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|lllllll|} 
\\
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} \\
\hline R R/W-0 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 ’
bit 7-0 BDTPTRH<23:16>: Endpoint BDT Start Address bits
Defines bits 23-16 of the 32-bit endpoint buffer descriptor table start address.

REGISTER 22-25: UxBDTP3: USB BUFFER DESCRIPTION TABLE REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{BDTPTRU<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-0 BDTPTRU<31:24>: Endpoint BDT Start Address bits
Defines bits 31-24 of the 32-bit endpoint buffer descriptor table start address.

REGISTER 22-26: UxPWMCON: USB VBus PWM GENERATOR CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline PWMEN & - & - & - & - & - & PWMPOL & CNTEN \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 15 PWMEN: PWM Enable bit
\(1=P W M\) generator is enabled
\(0=\) PWM generator is disabled; output is held in Reset state specified by PWMPOL
bit 14-10
Unimplemented: Read as '0’
bit \(9 \quad\) PWMPOL: PWM Polarity bit
1 = PWM output is active-low and resets high
\(0=\) PWM output is active-high and resets low
bit 8 CNTEN: PWM Counter Enable bit
1 = Counter is enabled
0 = Counter is disabled
bit 7-0 Unimplemented: Read as ' 0 '

REGISTER 22-27: UxPWMRRS: DUTY CYCLE AND PWM PERIOD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{DC<7:0>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{PER<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown \begin{tabular}{l} 
\\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-8 & DC \(<7: 0>\) : Duty Cycle bits \\
& These bits select the PWM duty cycle. \\
bit 7-0 & PER<7:0>: PWM Period bits \\
& These bits select the PWM period.
\end{tabular}

REGISTER 22-28: UxFRMH: USB FRAME NUMBER HIGH REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|ccc|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 \\
\hline- & - & - & - & - & & FRM<10:8> & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(0 '=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-3 & Unimplemented: Read as ' 0 ' \\
bit 2-0 & FRM<10:8>: 11-bit Frame Number Upper 3 bits \\
& The register bits are updated with the current frame number whenever a SOF token is received.
\end{tabular}

REGISTER 22-29: UxFRML: USB FRAME NUMBER LOW REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R-0 & R-0 \\
\hline & & FRM<7:0> & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-8 & Unimplemented: Read as ' 0 ' \\
bit 7-0 & FRM<7:0>: 11-bit Frame Number Lower 8 bits \\
& The register bits are updated with the current frame number whenever a SOF token is received.
\end{tabular}

\subsection*{23.0 10-BIT/12-BIT ANALOG-TODIGITAL CONVERTER (ADC)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-toDigital Converter (ADC)" (DS70621) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices have two ADC modules, ADC1 and ADC2. The ADC1 module supports up to 32 analog input channels. The ADC2 module supports up to 16 analog input channels
On ADC1, the AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4 Sample and Hold (S\&H) ADC (default configuration) or a 12-bit, 1 S\&H ADC.

\section*{Note: The ADC1 module needs to be disabled before modifying the AD12B bit.}

The ADC2 module only supports 10-bit operation with 4 S\&H.

\subsection*{23.1 Key Features}

The 10-bit ADC configuration has the following key features:
- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:
- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S\&H amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated ANO through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

FIGURE 23-1: ADCx MODULE BLOCK DIAGRAM


FIGURE 23-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM


Note 1: See the ADC electrical characteristics for the exact \(R C\) clock value.
2: \(T P=1 / F P\).

\section*{REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline ADON & - & ADSIDL & ADDMABM & - & AD12B \({ }^{(\mathbf{1})}\) & FORM<1:0> \\
\hline bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|lcc|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & \multicolumn{1}{c}{ R/W-0 } & \multicolumn{2}{c|}{ R/W-0 } & \multicolumn{2}{c|}{ R/W-0, HSC } \\
\hline & R/C-0, HSC \\
\hline & SSRC \(<2: 0>\) & & SSRCG & SIMSAM & ASAM \(^{(3)}\) & SAMP & DONE \(^{(3)}\) \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HSC \(=\) Set or Cleared by Hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(\quad\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & ADON: ADC Operating Mode bit \\
\hline & \(1=\) ADC module is operating \(0=A D C\) is off \\
\hline bit 14 & Unimplemented: Read as '0' \\
\hline bit 13 & ADSIDL: Stop in Idle Mode bit \\
\hline & \begin{tabular}{l}
1 = Discontinue module operation when device enters Idle mode \\
0 = Continue module operation in Idle mode
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 12} & ADDMABM: DMA Buffer Build Mode bit \\
\hline & \begin{tabular}{l}
1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. \\
\(0=\) DMA buffers are written in Scatter/Gather mode. The module provides a Scatter/Gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.
\end{tabular} \\
\hline
\end{tabular}
bit 11 Unimplemented: Read as ' 0 '
bit 10 AD12B: 10-bit or 12 -bit Operation Mode bit \({ }^{(\mathbf{1})}\)
1 = 12-bit, 1-channel ADC operation
\(0=10\)-bit, 4-channel ADC operation
bit 9-8 FORM<1:0>: Data Output Format bits
For 10-bit operation:
11 = Signed fractional (Dout = sddd dddd dd00 0000, where \(s=\). NOT.d<9>)
\(10=\) Fractional (Dout = dddd dddd dd00 0000)
01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)
\(00=\operatorname{Integer}(\) Dout \(=0000\) 00dd dddd dddd)
For 12-bit operation:
11 = Signed fractional (Dout \(=\) sddd ddd dddd 0000, where \(s=. N O T . d<11>\) )
\(10=\) Fractional (Dout \(=\) dddd dddd dddd 0000)
01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>)
\(00=\) Integer (Dout \(=0000\) dddd dddd dddd)
Note 1: This bit is only available in the ADC1 module. In the ADC2 module, this bit is unimplemented and is read as ' 0 '.
2: This setting is available in dsPIC33EPXXXMU806/810/814 devices only.
3: Do not clear the DONE bit in software if ADC Sample Auto-Start is enabled (ASAM = 1).
```

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER }1\mathrm{ (CONTINUED)
bit 7-5 SSRC<2:0>: Sample Clock Source Select bits
If SSRCG = 1:
111 = Reserved
110 = PWM Generator }7\mathrm{ primary trigger compare ends sampling and starts conversion(2)
1 0 1 = ~ P W M ~ G e n e r a t o r ~ 6 ~ p r i m a r y ~ t r i g g e r ~ c o m p a r e ~ e n d s ~ s a m p l i n g ~ a n d ~ s t a r t s ~ c o n v e r s i o n (2) ~
100 = PWM Generator 5 primary trigger compare ends sampling and starts conversion (2)
011 = PWM Generator 4 primary trigger compare ends sampling and starts conversion (2)
010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion(2)
001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion(2)
000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion }\mp@subsup{}{}{(2)
If SSRCG = 0:
111 = Internal counter ends sampling and starts conversion (auto-convert)
110 = Reserved
101 = PWM secondary Special Event Trigger ends sampling and starts conversion(2)
100 = Timer5 compare ends sampling and starts conversion
011 = PWM primary Special Event Trigger ends sampling and starts conversion(2)
010 = Timer3 compare ends sampling and starts conversion
001 = Active transition on the INT0 pin ends sampling and starts conversion
000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4 SSRCG: Sample Clock Source Group bit
[See bits 7-5 for details.]
bit 3 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0'
1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or
Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)
0 = Samples multiple channels individually in sequence

```
bit 2 ASAM: ADC Sample Auto-Start bit \({ }^{(3)}\)
1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. \(0=\) Sampling begins when SAMP bit is set
SAMP: ADC Sample Enable bit
1 = ADC S\&H amplifiers are sampling
\(0=\) ADC S\&H amplifiers are holding
If ASAM \(=0\), software can write ' 1 ' to begin sampling. Automatically set by hardware if ASAM \(=1\). If SSRC \(=000\), software can write ' 0 ' to end sampling and start conversion. If SSRC \(\neq 000\), automatically cleared by hardware to end sampling and start conversion.
bit 0 DONE: ADC Conversion Status bit \({ }^{(3)}\)
1 = ADC conversion cycle is completed.
\(0=\) ADC conversion not started or in progress
Automatically set by hardware when A/D conversion is complete. Software can write ' 0 ' to clear DONE status (software not allowed to write ' 1 '). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

Note 1: This bit is only available in the ADC1 module. In the ADC2 module, this bit is unimplemented and is read as ' 0 '.
2: This setting is available in dsPIC33EPXXXMU806/810/814 devices only.
3: Do not clear the DONE bit in software if ADC Sample Auto-Start is enabled (ASAM =1).

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2
\begin{tabular}{|lcc|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & VCFG<2:0> & - & - & CSCNA & CHPS<1:0> \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|lllll|l|l|}
\hline \multicolumn{1}{|c}{\(\mathrm{R}-0\)} & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline BUFS & & \(\mathrm{SMPI}<4: 0>\) & & BUFM & ALTS \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits
\begin{tabular}{|c|c|c|}
\hline & VREFH & VREFL \\
\hline \hline 000 & AVDD & Avss \\
\hline 001 & External VREF+ & Avss \\
\hline 010 & AVDD & External VREF- \\
\hline 011 & External VREF+ & External VREF- \\
\hline \(1 x x\) & AVDD & Avss \\
\hline
\end{tabular}
bit 7 BUFS: Buffer Fill Status bit (only valid when BUFM = 1)
bit 12-11
bit 10
bit 9-8
bit 6-2

Unimplemented: Read as ' 0 '
CSCNA: Input Scan Select bit
1 = Scan inputs for \(\mathrm{CH} 0+\) during Sample A bit
0 = Do not scan inputs
CHPS<1:0>: Channel Select bits
When AD12B \(=1, \mathrm{CHPS}<1: 0>\) is: U-0, Unimplemented, Read as ' 0 '
\(1 x=\) Converts \(\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2\) and CH 3
01 = Converts CH 0 and CH 1
00 = Converts CH0
\(1=\) ADC is currently filling the second half of the buffer. The user application should access data in the first half of the buffer
\(0=\) ADC is currently filling the first half of the buffer. The user application should access data in the second half of the buffer.
```

SMPI<4:0>: Increment Rate bits
When ADDMAEN = 0:
01111 = Generates interrupt after completion of every 16th sample/conversion operation
01110 = Generates interrupt after completion of every 15th sample/conversion operation
•
•
•
00001 = Generates interrupt after completion of every 2nd sample/conversion operation
00000 = Generates interrupt after completion of every sample/conversion operation
When ADDMAEN = 1:
11111 = Increments the DMA address after completion of every 32nd sample/conversion operation
11110 = Increments the DMA address after completion of every 31st sample/conversion operation
•
•
•
00001 = Increments the DMA address after completion of every 2nd sample/conversion operation
00000 = Increments the DMA address after completion of every sample/conversion operation

```

\section*{REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)}

BUFM: Buffer Fill Mode Select bit
1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on next interrupt
\(0=\) Always starts filling the buffer from the start address.
bit 0
ALTS: Alternate Input Sample Mode Select bit
1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
\(0=\) Always uses channel input selects for Sample A

REGISTER 23-3: AD2CON2: ADC2 CONTROL REGISTER 2
\begin{tabular}{|lcc|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & VCFG<2:0> & - & - & CSCNA & CHPS<1:0> \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits
\begin{tabular}{|c|c|c|}
\hline & VREFH & VREFL \\
\hline \hline 000 & AVDD & Avss \\
\hline 001 & External VREF+ & Avss \\
\hline 010 & AVDD & External VREF- \\
\hline 011 & External VREF+ & External VREF- \\
\hline \(1 \times x\) & AVDD & Avss \\
\hline
\end{tabular}
bit 12-11 Unimplemented: Read as ' 0 '
CSCNA: Input Scan Select bit
1 = Scan inputs for \(\mathrm{CH} 0+\) during Sample A bit
0 = Do not scan inputs
bit 9-8 CHPS<1:0>: Channel Select bits
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ' 0 '
\(1 x=\) Converts \(\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2\) and CH 3
01 = Converts CH 0 and CH 1
00 = Converts CH0
bit \(7 \quad\) BUFS: Buffer Fill Status bit (only valid when BUFM = 1)
\(1=\) ADC is currently filling the second half of the buffer. The user application should access data in the first half of the buffer
\(0=\) ADC is currently filling the first half of the buffer. The user application should access data in the second half of the buffer.
bit 6-2 SMPI<3:0>: Increment Rate bits
When ADDMAEN \(=0\) :
1111 = Generates interrupt after completion of every 16th sample/conversion operation
\(1110=\) Generates interrupt after completion of every 15 th sample/conversion operation
-
-
.
0001 = Generates interrupt after completion of every 2nd sample/conversion operation 0000 = Generates interrupt after completion of every sample/conversion operation
```

When ADDMAEN = 1:
1111 = Increments the DMA address after completion of every 16th sample/conversion operation
1 1 1 0 ~ = ~ I n c r e m e n t s ~ t h e ~ D M A ~ a d d r e s s ~ a f t e r ~ c o m p l e t i o n ~ o f ~ e v e r y ~ 1 5 t h ~ s a m p l e / c o n v e r s i o n ~ o p e r a t i o n
•
•
-
0001 = Increments the DMA address after completion of every 2nd sample/conversion operation
0000 = Increments the DMA address after completion of every sample/conversion operation

```

\section*{REGISTER 23-3: AD2CON2: ADC2 CONTROL REGISTER 2 (CONTINUED)}

BUFM: Buffer Fill Mode Select bit
1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on next interrupt
\(0=\) Always starts filling the buffer from the start address.
bit 0
ALTS: Alternate Input Sample Mode Select bit
1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
\(0=\) Always uses channel input selects for Sample A

\section*{REGISTER 23-4: ADxCON3: ADCx CONTROL REGISTER 3}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline ADRC & - & - & \multicolumn{5}{|c|}{SAMC<4:0> \({ }^{(1)}\)} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{ADCS \(<7: 0>{ }^{(2,3)}\)} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 ADRC: ADC Conversion Clock Source bit
1 = ADC Internal RC Clock
0 = Clock Derived From System Clock
bit 14-13 Unimplemented: Read as ' 0 '
bit 12-8 SAMC<4:0>: Auto Sample Time bits \({ }^{(1)}\)
\(11111=31\) TAD
-
-
-
\(00001=1\) TAD
\[
00000=0 \text { TAD }
\]
bit 7-0 ADCS<7:0>: ADC Conversion Clock Select bits \({ }^{(2,3)}\)
\(11111111=\operatorname{TP} \cdot(\operatorname{ADCS}<7: 0>+1)=256 \cdot T C Y=\) TAD
-
-
-
\(00000010=T P \cdot(A D C S<7: 0>+1)=3 \cdot T C Y=\operatorname{TAD}\)
\(00000001=\mathrm{TP} \cdot(\operatorname{ADCS}<7: 0>+1)=2 \cdot T C Y=\) TAD
\(00000000=\mathrm{TP} \cdot(\operatorname{ADCS}<7: 0>+1)=1 \cdot \mathrm{TCY}=\operatorname{TAD}\)
Note 1: This bit is only used if \(A D x C O N 1<7: 5>(S S R C<2: 0>)=111\) and \(A D x C O N 1<4>(S S R C G)=0\).
2: This bit is not used if \(A D x C O N 3<15>(A D R C)=1\).
3: \(T P=1 / F P\).

\section*{REGISTER 23-5: ADxCON4: ADCx CONTROL REGISTER 4}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline- & - & - & - & - & - & - & ADDMAEN \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|cc|}
\hline \multicolumn{9}{|c|}{\(\mathrm{U}-0\)} & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline- & - & - & - & - & & DMABL<2:0> & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown

\section*{bit 15-7 Unimplemented: Read as ' 0 '}
bit 8 ADDMAEN: ADC DMA Enable bit
1 = Conversion results stored in ADCxBUF0 register, for transfer to RAM using DMA
0 = Conversion results stored in ADCxBUF0 through ADCxBUFF registers; DMA will not be used
bit 7-3
Unimplemented: Read as ' 0 '
bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits
111 = Allocates 128 words of buffer to each analog input
110 = Allocates 64 words of buffer to each analog input
101 = Allocates 32 words of buffer to each analog input
\(100=\) Allocates 16 words of buffer to each analog input
011 = Allocates 8 words of buffer to each analog input
\(010=\) Allocates 4 words of buffer to each analog input
001 = Allocates 2 words of buffer to each analog input
\(000=\) Allocates 1 word of buffer to each analog input

REGISTER 23-6: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-11 Unimplemented: Read as ' 0 '
bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits
When \(\mathrm{AD} 12 \mathrm{~B}=1, \mathrm{CHxNB}\) is: U-0, Unimplemented, Read as ' 0 '
\(11=\mathrm{CH} 1\) negative input is AN9, CH 2 negative input is \(\mathrm{AN} 10, \mathrm{CH} 3\) negative input is AN11
\(10=\mathrm{CH} 1\) negative input is AN6, CH 2 negative input is AN7, CH 3 negative input is AN8
\(0 x=\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3\) negative input is VREFL
bit \(8 \quad\) CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ' 0 '
\(1=\mathrm{CH} 1\) positive input is \(\mathrm{AN} 3, \mathrm{CH} 2\) positive input is \(\mathrm{AN} 4, \mathrm{CH} 3\) positive input is AN5
\(0=\mathrm{CH} 1\) positive input is \(\mathrm{AN} 0, \mathrm{CH} 2\) positive input is \(\mathrm{AN} 1, \mathrm{CH} 3\) positive input is AN2
bit 7-3 Unimplemented: Read as ' 0 '
bit 2-1 \(\quad \mathbf{C H 1 2 3 N A}<1: 0>\) : Channel 1, 2, 3 Negative Input Select for Sample A bits
When \(\mathrm{AD} 12 \mathrm{~B}=1\), CHxNA is: U-0, Unimplemented, Read as ' 0 '
\(11=\mathrm{CH} 1\) negative input is AN9, CH 2 negative input is AN10, CH3 negative input is AN11
\(10=\mathrm{CH} 1\) negative input is AN6, CH 2 negative input is \(\mathrm{AN} 7, \mathrm{CH} 3\) negative input is AN8
\(0 x=\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3\) negative input is VREFL
bit \(0 \quad\) CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ' 0 '
\(1=\mathrm{CH} 1\) positive input is \(\mathrm{AN} 3, \mathrm{CH} 2\) positive input is \(\mathrm{AN} 4, \mathrm{CH} 3\) positive input is AN5
\(0=\mathrm{CH} 1\) positive input is \(\mathrm{AN} 0, \mathrm{CH} 2\) positive input is \(\mathrm{AN} 1, \mathrm{CH} 3\) positive input is AN2

\section*{REGISTER 23-7: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER}
\begin{tabular}{|l|c|c|ccccc|}
\hline R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline CHONB & - & - & & \(C H 0 S B<4: 0>(\mathbf{1})\) & & \\
\hline bit 15 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|ccccc|}
\hline \multicolumn{1}{|c|}{\(\mathrm{R} / \mathrm{W}-0\)} & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline CHONA & - & - & & & \(\mathrm{CH} 0 \mathrm{SA}\langle 4: 0>\mathbf{( 1 )}\) & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15 CHONB: Channel 0 Negative Input Select for Sample B bit Same definition as bit 7.
bit 14-13 Unimplemented: Read as ' 0 '
bit 12-8 CHOSB<4:0>: Channel 0 Positive Input Select for Sample B bits \({ }^{(1)}\)
Same definition as bit<4:0>.
bit \(7 \quad\) CHONA: Channel 0 Negative Input Select for Sample A bit
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VREFL
bit 6-5 Unimplemented: Read as ' 0 '
bit 4-0 CHOSA<4:0>: Channel 0 Positive Input Select for Sample A bits \({ }^{(1)}\)
11111 = Channel 0 positive input is AN31
\(11110=\) Channel 0 positive input is AN30
-
-
-
00010 = Channel 0 positive input is AN2
00001 = Channel 0 positive input is AN1
\(00000=\) Channel 0 positive input is ANO
Note 1: The AN16 through AN31 pins are not available for the ADC2 module. The AN16 through AN23 pins are not available for dsPIC33EP256MU806 (64-pin) devices.

\section*{REGISTER 23-8: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH \({ }^{(1,2,3)}\)}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline R/W-0 & R/W-0 \\
\hline CSS31 & CSS30 & CSS29 & CSS28 & CSS27 & CSS26 & CSS25 & CSS24 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \multicolumn{9}{|c|}{ R/W-0 } \\
\hline \multicolumn{1}{l|}{ R/W-0 } & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline CSS23 & CSS22 & CSS21 & CSS20 & CSS19 & CSS18 & CSS17 & CSS16 \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 CSS<31:16>: ADC Input Scan Selection bits
1 = Select ANx for input scan
0 = Skip ANx for input scan
Note 1: On devices with less than 32 analog inputs, all ADxCSSH bits can be selected by user software. However, inputs selected for scan without a corresponding input on device convert VREFL.
2: \(\quad \operatorname{CSS} x=A N x\), where \(x=16-31\).
3: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 Input Scan Select register exists.

REGISTER 23-9: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW \({ }^{(\mathbf{1}, \mathbf{2})}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline CSS15 & CSS14 & CSS13 & CSS12 & CSS11 & CSS10 & CSS9 & CSS8 \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline CSS7 & CSS6 & CSS5 & CSS4 & CSS3 & CSS2 & CSS1 & CSS0 \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 CSS<15:0>: ADC Input Scan Selection bits
1 = Select ANx for input scan
0 = Skip ANx for input scan
Note 1: On devices with less than 16 analog inputs, all ADxCSSL bits can be selected by the user. However, inputs selected for scan without a corresponding input on device convert VREFL.
2: \(\operatorname{CSS} x=A N x\), where \(x=0-15\).

\subsection*{24.0 DATA CONVERTER INTERFACE (DCI) MODULE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 20. Data Converter Interface (DCI)" (DS70356) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

\subsection*{24.1 Module Introduction}

The Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/ decoders (Codecs), ADC and D/A converters. The following interfaces are supported:
- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound ( \(I^{2} \mathrm{~S}\) ) Interface
- AC-Link Compliant mode

The DCl module provides the following general features:
- Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

FIGURE 24-1: DCI MODULE BLOCK DIAGRAM


REGISTER 24-1: DCICON1: DCI CONTROL REGISTER 1
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline DCIEN & - & DCISIDL & - & DLOOP & CSCKD & CSCKE & COFSD \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0
\end{tabular} R/W-0 \\
\hline UNFM & CSDOM & DJST & - & - & - & COFSM<1:0> \\
\hline bit 7 &
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 DCIEN: DCI Module Enable bit
1 = Module is enabled
\(0=\) Module is disabled
bit 14 Reserved: Read as '0'
bit 13 DCISIDL: DCI Stop in Idle Control bit
1 = Module will halt in CPU Idle mode
0 = Module will continue to operate in CPU Idle mode
bit 12 Reserved: Read as '0'
bit 11 DLOOP: Digital Loopback Mode Control bit
1 = Digital Loopback mode is enabled. CSDI and CSDO pins internally connected.
\(0=\) Digital Loopback mode is disabled
bit 10 CSCKD: Sample Clock Direction Control bit
\(1=\) CSCK pin is an input when DCI module is enabled
\(0=\) CSCK pin is an output when DCI module is enabled
bit \(9 \quad\) CSCKE: Sample Clock Edge Control bit
1 = Data changes on serial clock falling edge, sampled on serial clock rising edge
\(0=\) Data changes on serial clock rising edge, sampled on serial clock falling edge
bit 8 COFSD: Frame Synchronization Direction Control bit
\(1=\) COFS pin is an input when DCI module is enabled
\(0=\) COFS pin is an output when DCI module is enabled
bit \(7 \quad\) UNFM: Underflow Mode bit
1 = Transmit last value written to the transmit registers on a transmit underflow
0 = Transmit '0’s on a transmit underflow
bit 6 CSDOM: Serial Data Output Mode bit
1 = CSDO pin will be tri-stated during disabled transmit time slots
0 = CSDO pin drives ' 0 ’s during disabled transmit time slots
bit 5 DJST: DCI Data Justification Control bit
1 = Data transmission/reception is begun during the same serial clock cycle as the frame synchronization pulse
\(0=\) Data transmission/reception is begun one serial clock cycle after frame synchronization pulse
bit 4-2 Reserved: Read as '0'
bit 1-0 COFSM<1:0>: Frame Sync Mode bits
\(11=20\)-bit AC-Link mode
\(10=16\)-bit AC-Link mode
\(01=I^{2}\) S Frame Sync mode
\(00=\) Multi-Channel Frame Sync mode

REGISTER 24-2: DCICON2: DCI CONTROL REGISTER 2


\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-12 & Reserved: Read as ' 0 ' \\
\hline \multirow[t]{2}{*}{bit 11-10} & BLEN<1:0>: Buffer Length Control bits \\
\hline & \begin{tabular}{l}
11 = Four data words will be buffered between interrupts \\
\(10=\) Three data words will be buffered between interrupts \\
01 = Two data words will be buffered between interrupts \\
\(00=\) One data word will be buffered between interrupts
\end{tabular} \\
\hline bit 9 & Reserved: Read as ' 0 ' \\
\hline \multirow[t]{8}{*}{bit 8-5} & COFSG<3:0>: Frame Sync Generator Control bits \\
\hline & 1111 = Data frame has 16 words \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & \(0010=\) Data frame has 3 words \\
\hline & \(0001=\) Data frame has 2 words \\
\hline & 0000 = Data frame has 1 word \\
\hline bit 4 & Reserved: Read as ' 0 ' \\
\hline \multirow[t]{10}{*}{bit 3-0} & WS<3:0>: DCI Data Word Size bits \\
\hline & 1111 = Data word size is 16 bits \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 0100 = Data word size is 5 bits \\
\hline & 0011 = Data word size is 4 bits \\
\hline & 0010 = Invalid Selection. Do not use. Unexpected results may occur. \\
\hline & 0001 = Invalid Selection. Do not use. Unexpected results may occur. \\
\hline & 0000 = Invalid Selection. Do not use. Unexpected results may occur. \\
\hline
\end{tabular}

REGISTER 24-3: DCICON3: DCI CONTROL REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & - & - & \multicolumn{4}{|c|}{BCG<11:8>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{BCG<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-12 Reserved: Read as ' 0 '
bit 11-0 BCG<11:0>: DCI bit Clock Generator Control bits

REGISTER 24-4: DCISTAT: DCI STATUS REGISTER
\begin{tabular}{|c|c|c|c|cccc|}
\hline U-0 & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & - & - & & SLOT<3:0> & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & - & - & ROV & RFUL & TUNF & TMPTY \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-12 Reserved: Read as ' 0 '
bit 11-8 SLOT<3:0>: DCI Slot Status bits
1111 = Slot 15 is currently active
-
-
-
\(0010=\) Slot 2 is currently active
\(0001=\) Slot 1 is currently active \(0000=\) Slot 0 is currently active
bit 7-4 Reserved: Read as ' 0 '
bit \(3 \quad\) ROV: Receive Overflow Status bit
\(1=\) A receive overflow has occurred for at least one receive register \(0=\) A receive overflow has not occurred
bit 2
RFUL: Receive Buffer Full Status bit
1 = New data is available in the receive registers
\(0=\) The receive registers have old data
bit 1
TUNF: Transmit Buffer Underflow Status bit
1 = A transmit underflow has occurred for at least one transmit register \(0=\) A transmit underflow has not occurred
bit 0
TMPTY: Transmit Buffer Empty Status bit
\(1=\) The transmit registers are empty
\(0=\) The transmit registers are not empty

REGISTER 24-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline RSE15 & RSE14 & RSE13 & RSE12 & RSE11 & RSE10 & RSE9 & RSE8 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ R/W-0 } & R/W-0 \\
\hline RSE7 & RSE6 & RSE5 & RSE4 & RSE3 & RSE2 & RSE1 & RSE0 \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\(R\) = Readable bit
\(W=\) Writable bit
' 1 ' \(=\) Bit is set
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
\(-n=\) Value at POR
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 15-0 RSE<15:0>: Receive Slot Enable bits
1 = CSDI data is received during the individual time slot \(n\)
\(0=\) CSDI data is ignored during the individual time slot \(n\)

REGISTER 24-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline TSE15 & TSE14 & TSE13 & TSE12 & TSE11 & TSE10 & TSE9 & TSE8 \\
\hline bit 15 & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline TSE7 & TSE6 & TSE5 & TSE4 & TSE3 & TSE2 & TSE1 & TSE0 \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0
TSE<15:0>: Transmit Slot Enable Control bits
\(1=\) Transmit buffer contents are sent during the individual time slot \(n\)
\(0=\) CSDO pin is tri-stated or driven to logic ' 0 ', during the individual time slot, depending on the state of the CSDOM bit

\subsection*{25.0 COMPARATOR MODULE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 26. "Op amp/ Comparator" (DS70357) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Comparator module provides three comparators that can be configured in different ways. As shown in Figure 25-1, individual comparator options are specified by the Comparator module's Special Function Register (SFR) control bits.
These options allow users to:
- Select the edge for trigger and interrupt generation
- Configure the comparator voltage reference and band gap
- Configure output blanking and masking

The comparator operating mode is determined by the input selections (i.e., whether the input voltage is compared to a second input voltage, to an internal voltage reference.

FIGURE 25-1: COMPARATOR I/O OPERATING MODES


Note 1: The ' \(x\) ' denotes Comparator 1, 2 , or 3.

FIGURE 25-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM


FIGURE 25-3:
USER PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM


FIGURE 25-4: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM


Note 1: See the Type C Timer Block Diagram (Figure 13-2).
2: See the Type B Timer Block Diagram (Figure 13-1).
3: \(\quad\) See the PWM Module Register Interconnect Diagram (Figure 16-2).
4: See the Oscillator System Diagram (Figure 9-1).

REGISTER 25-1: CMSTAT: COMPARATOR STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 \\
\hline CMSIDL & - & - & - & - & C3EVT & C2EVT & C1EVT \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ U-0 U-0 } & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 \\
\hline- & - & - & - & - & C3OUT & C2OUT & C1OUT \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
\begin{tabular}{ll} 
bit 15 & CMSIDL: Stop in Idle Mode bit \\
\(1=\) Discontinue operation of all comparators when device enters Idle mode
\end{tabular}
bit 14-11 Unimplemented: Read as ' 0 '
bit \(10 \quad\) C3EVT: Comparator 3 Event Status bit
1 = Comparator event occurred
0 = Comparator event did not occur
bit 9 C2EVT: Comparator 2 Event Status bit
1 = Comparator event occurred
0 = Comparator event did not occur
bit 8 C1EVT: Comparator 1 Event Status bit
1 = Comparator event occurred
0 = Comparator event did not occur
bit 7-3 Unimplemented: Read as ' 0 '
bit 2 C3OUT: Comparator 3 Output Status bit
When CPOL = 0:
\(1=\) VIN \(+>\) VIN -
\(0=\) VIN \(+<\) VIN-
When CPOL = 1:
\(1=\mathrm{VIN}+<\mathrm{VIN}-\)
0 = VIN+ > VIN-
bit 1 C2OUT: Comparator 2 Output Status bit
When CPOL = 0:
\(1=\) VIN \(+>\) VIN -
\(0=\mathrm{VIN}+<\mathrm{VIN}-\)
When CPOL = 1:
\(1=\mathrm{VIN}+<\mathrm{VIN}-\)
0 = VIN+ > VIN-
bit \(0 \quad\) C1OUT: Comparator 1 Output Status bit
When CPOL = 0:
\(1=\) VIN \(+>\) VIN -
\(0=\mathrm{VIN}+<\mathrm{VIN}-\)
When CPOL = 1 :
\(1=\mathrm{VIN}+<\mathrm{VIN}-\)
\(0=\) VIN \(+>\) VIN-

\section*{REGISTER 25-2: CMxCON: COMPARATOR CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline CON & COE & CPOL & - & - & - & CEVT & COUT \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|cc|c|c|c|c|c|c|}
\hline R/W-0 R/W-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline EVPOL<1:0> & - & CREF & - & - & CCH<1:0> \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{llll} 
L = Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & \begin{tabular}{l}
CON: Comparator Enable bit \\
1 = Comparator is enabled \\
0 = Comparator is disabled
\end{tabular} \\
\hline bit 14 & \begin{tabular}{l}
COE: Comparator Output Enable bit \\
1 = Comparator output is present on the CxOUT pin \\
0 = Comparator output is internal only
\end{tabular} \\
\hline bit 13 & \begin{tabular}{l}
CPOL: Comparator Output Polarity Select bit \\
1 = Comparator output is inverted \\
\(0=\) Comparator output is not inverted
\end{tabular} \\
\hline bit 12-10 & Unimplemented: Read as ' 0 ' \\
\hline bit 9 & \begin{tabular}{l}
CEVT: Comparator Event bit \\
1 = Comparator event according to EVPOL<1:0> settings occurred; disables future triggers and interrupts until the bit is cleared \\
\(0=\) Comparator event did not occur
\end{tabular} \\
\hline bit 8 & \begin{tabular}{l}
COUT: Comparator Output bit \\
When CPOL = 0 (non-inverted polarity):
\[
1=\mathrm{VIN}+>\operatorname{VIN}-
\]
\[
0 \text { = VIN+ < VIN- }
\] \\
When CPOL = 1 (inverted polarity):
\[
\begin{aligned}
& 1=\text { VIN }+<\text { VIN- } \\
& 0=\text { VIN }+>\text { VIN }-
\end{aligned}
\]
\end{tabular} \\
\hline bit 7-6 & \begin{tabular}{l}
EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits \\
11 = Trigger/Event/Interrupt generated on any change of the comparator output (while CEVT = 0) \\
\(10=\) Trigger/Event/Interrupt generated only on high to low transition of the polarity-selected comparator output (while CEVT = 0) \\
If CPOL \(=1\) (inverted polarity): \\
Low-to-high transition of the comparator output \\
If CPOL = 0 (non-inverted polarity): \\
High-to-low transition of the comparator output \\
01 = Trigger/Event/Interrupt generated only on low to high transition of the polarity-selected comparator output (while CEVT = 0) \\
If CPOL \(=1\) (inverted polarity): \\
High-to-low transition of the comparator output \\
If CPOL = 0 (non-inverted polarity): \\
Low-to-high transition of the comparator output \\
00 = Trigger/Event/Interrupt generation is disabled
\end{tabular} \\
\hline
\end{tabular}
bit \(5 \quad\) Unimplemented: Read as ' 0 '

REGISTER 25-2: CMxCON: COMPARATOR CONTROL REGISTER (CONTINUED)
bit 4 CREF: Comparator Reference Select bit (VIN+ input)
\(1=\) VIN+ input connects to internal CVREFIN voltage
\(0=\) VIN+ input connects to CxIN1+ pin
bit 3-2 Unimplemented: Read as ' 0 '
bit 1-0 \(\quad \mathbf{C C H}<1: 0>\) : Comparator Channel Select bits
\(11=\) VIN- input of comparator connects to INTREF
\(10=\) VIN- input of comparator connects to CxIN3- pin \(01=\) VIN- input of comparator connects to CXIN1- pin \(00=\) VIN- input of comparator connects to CXIN2- pin

\section*{REGISTER 25-3: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|cccc|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & RW-0 \\
\hline- & - & - & - & & SELSRCC \(<3: 0>\) & \\
\hline bit 15 & \multicolumn{7}{|c|}{} \\
\hline
\end{tabular}
\begin{tabular}{|cccccccc|}
\hline R/W-0 & R/W-0 \\
\hline & SELSRCB<3:0> & & & SELSRCA<3:0> & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-12 Unimplemented: Read as ' 0 '
bit 11-8 SELSRCC<3:0>: Mask C Input Select bits
\[
\begin{aligned}
& 1111=\text { FLT4 } \\
& 1110=\text { FLT2 } \\
& 1101=\text { PWM7H } \\
& 1100=\text { PWM7L } \\
& 1011=\text { PWM6H } \\
& 1010=\text { PWM6L } \\
& 1001=\text { PWM5H } \\
& 1000=\text { PWM5L } \\
& 0111=\text { PWM4H } \\
& 0110=\text { PWM4L } \\
& 0101=\text { PWM3H } \\
& 0100=\text { PWM3L } \\
& 0011=\text { PWM2H } \\
& 0010=\text { PWM2L } \\
& 0001=\text { PWM1H } \\
& 0000=\text { PWM1L }
\end{aligned}
\]
bit 7-4 SELSRCB<3:0>: Mask B Input Select bits
1111 = FLT4
\(1110=\) FLT2
\(1101=\) PWM7H
\(1100=\) PWM7L
1011 = PWM6H
\(1010=\) PWM6L
\(1001=\) PWM5H
1000 = PWM5L
0111 = PWM4H
0110 = PWM4L
\(0101=\) PWM3H
0100 = PWM3L
0011 = PWM2H
0010 = PWM2L
\(0001=\) PWM1H
\(0000=\) PWM1L

\section*{REGISTER 25-3: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)}
bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
\[
\begin{aligned}
& 1111=\text { FLT4 } \\
& 1110=\text { FLT2 } \\
& 1101=\text { PWM7H } \\
& 1100=\text { PWM7L } \\
& 1011=\text { PWM6H } \\
& 1010=\text { PWM6L } \\
& 1001=\text { PWM5H } \\
& 1000=\text { PWM5L } \\
& 0111=\text { PWM4H } \\
& 0110=\text { PWM4L } \\
& 0101=\text { PWM3H } \\
& 0100=\text { PWM3L } \\
& 0011=\text { PWM2H } \\
& 0010=\text { PWM2L } \\
& 0001=\text { PWM1H } \\
& 0000=\text { PWM1L }
\end{aligned}
\]

\section*{REGISTER 25-4: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline HLMS & - & OCEN & OCNEN & OBEN & OBNEN & OAEN & OANEN \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline NAGS & PAGS & ACEN & ACNEN & ABEN & ABNEN & AAEN & AANEN \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15 HLMS: High or Low-Level Masking Select bits
1 = The masking (blanking) function will prevent any asserted (' 0 ') comparator signal from propagating
\(0=\) The masking (blanking) function will prevent any asserted (' 1 ') comparator signal from propagating
Unimplemented: Read as '0'
bit 13 OCEN: OR Gate C Input Inverted Enable bit
\(1=\mathrm{MCl}\) is connected to OR gate
\(0=\mathrm{MCl}\) is not connected to OR gate
OCNEN: OR Gate C Input Inverted Enable bit
1 = Inverted MCl is connected to OR gate
\(0=\) Inverted MCl is not connected to OR gate
bit 5 ACEN: AND Gate A1 C Input Inverted Enable bit
\(1=\mathrm{MCl}\) is connected to AND gate
\(0=\mathrm{MCl}\) is not connected to AND gate
bit \(4 \quad\) ACNEN: AND Gate A1 C Input Inverted Enable bit
1 = Inverted MCI is connected to AND gate
\(0=\) Inverted MCI is not connected to AND gate

\section*{REGISTER 25-4: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER (CONTINUED)}
bit 3 ABEN: AND Gate A1 B Input Inverted Enable bit
\(1=\mathrm{MBI}\) is connected to AND gate
\(0=\mathrm{MBI}\) is not connected to AND gate
bit 2 ABNEN: AND Gate A1 B Input Inverted Enable bit
1 = Inverted MBI is connected to AND gate
\(0=\) Inverted MBI is not connected to AND gate
bit 1
bit 0
AAEN: AND Gate A1 A Input Enable bit
\(1=\) MAI is connected to AND gate
\(0=\) MAI is not connected to AND gate
AANEN: AND Gate A1 A Input Inverted Enable bit
1 = Inverted MAI is connected to AND gate
\(0=\) Inverted MAI is not connected to AND gate

REGISTER 25-5: CMxFLTR: COMPARATOR FILTER CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & I-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & \\
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & CFSEL<2:0> & CFLTREN & & CFDIV<2:0> & \\
\hline bit 7 &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-4 CFSEL<2:0>: Comparator Filter Input Clock Select bits
\(111=\) T5CLK \(^{(1)}\)
\(110=\) T4CLK \(^{(2)}\)
\(101=\) T3CLK \(^{(1)}\)
\(100=\) T2CLK \(^{(2)}\)
\(011=\) SYNCO2 \(^{(3)}\)
\(010=\) SYNCO1 \(^{(3)}\)
\(001=\) Fosc \(^{(4)}\)
\(000=\mathrm{Fp}^{(4)}\)
bit 3 CFLTREN: Comparator Filter Enable bit
1 = Digital filter enabled
0 = Digital filter disabled
bit 2-0 CFDIV<2:0>: Comparator Filter Clock Divide Select bits
111 = Clock Divide 1:128
\(110=\) Clock Divide 1:64
101 = Clock Divide 1:32
\(100=\) Clock Divide 1:16
011 = Clock Divide 1:8
010 = Clock Divide 1:4
001 = Clock Divide 1:2
000 = Clock Divide 1:1
Note 1: See the Type C Timer Block Diagram (Figure 13-2).
2: See the Type B Timer Block Diagram (Figure 13-1).
3: See the PWM Module Register Interconnect Diagram (Figure 16-2).
4: See the Oscillator System Diagram (Figure 9-1).

REGISTER 25-6: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & - & - & - & VREFSEL & BG & :0> \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline R/W-0 & R/W-0 \\
\hline CVREN & CVROE \({ }^{(1)}\) & CVRR & CVRSS & & CV & & \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-11
Unimplemented: Read as ' 0 '
bit \(10 \quad\) VREFSEL: Voltage Reference Select bit
1 = CVREFIN = VREF+
\(0=\) CVREFIN is generated by the resistor network
bit 9-8 BGSEL<1:0>: Band Gap Reference Source Select bits
\(11=\) INTREF \(=\) VREF \(+{ }^{(2)}\)
\(10=\) INTREF \(=0.197 \mathrm{~V}\) (nominal)
\(01=\) INTREF \(=0.59 \mathrm{~V}\) (nominal)
\(00=\) INTREF \(=1.18 \mathrm{~V}\) (nominal)
bit 7 CVREN: Comparator Voltage Reference Enable bit
1 = Comparator voltage reference circuit powered on
0 = Comparator voltage reference circuit powered down
bit \(6 \quad\) CVROE: Comparator Voltage Reference Output Enable bit \({ }^{(\mathbf{1})}\)
1 = Voltage level is output on CVREF pin
\(0=\) Voltage level is disconnected from CVREF pin
bit 5 CVRR: Comparator Voltage Reference Range Selection bit
1 = CVRSRC/24 step size
0 = CVRSRC/32 step size
bit 4 CVRSS: Comparator Voltage Reference Source Selection bit
\(1=\) Comparator voltage reference source, CVRSRC \(=(\) VREF +\()-(\text { VREF- })^{(2)}\)
0 = Comparator voltage reference source, CVRSRC = AVDD - AVSS
bit 3-0 CVR<3:0> Comparator Voltage Reference Value Selection \(0 \leq C V R<3: 0>15\) bits
When CVRR = 1 :
\(\overline{\text { CVREFIN }}=(\) CVR \(<3: 0>/ 24) ~ \bullet(C V R S R C)\)
When CVRR = 0:
CVREFIN \(=1 / 4 \bullet(C V R S R C)+(C V R<3: 0>/ 32) \bullet(C V R S R C)\)

Note 1: CVROE overrides the TRIS bit setting.
2: Selecting BGSEL<1:0> = 11 and CVRSS \(=1\) is invalid and will produce unpredictable results.

\subsection*{26.0 REAL-TIME CLOCK AND CALENDAR (RTCC)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS70584) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices, and its operation.

Some of the key features of this module are:
- Time: hours, minutes, and seconds
- 24-hour format (military time)
- Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- User calibration with auto-adjust
- Calibration range: \(\pm 2.64\) seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.
The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.
The hours are available in 24 -hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 26-1: RTCC BLOCK DIAGRAM


\subsection*{26.1 Writing to the RTCC Timer}

Note: To allow the RTCC module to be clocked by the secondary crystal oscillator, the Secondary Oscillator Enable (LPOSCEN) bit in the Oscillator Control (OSCCON<1>) register must be set. For further details, refer to Section 7. "Oscillator" (DS70580) in the 'dsPIC33E/PIC24E Family Reference Manual'.

The user application can configure the time and calendar by writing the desired seconds, minutes, hours, weekday, date, month, and year to the RTCC registers. Under normal operation, writes to the RTCC timer registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To write to the RTCC register, the RTCWREN bit (RCFGCAL<13>) must be set. Setting the RTCWREN bit allows writes to the RTCC registers. Conversely, clearing the RTCWREN bit prevents writes.

To set the RTCWREN bit, the following procedure must be executed. The RTCWREN bit can be cleared at any time:
1. Write \(0 \times 55\) to NVMKEY.
2. Write OxAA to NVMKEY.
3. Set the RTCWREN bit using a single cycle instruction.
The RTCC module is enabled by setting the RTCEN bit (RCFGCAL<15>). To set or clear the RTCEN bit, the RTCWREN bit (RCFGCAL<13>) must be set.
If the entire clock (hours, minutes, and seconds) needs to be corrected, it is recommended that the RTCC module should be disabled to avoid coincidental write operation when the timer increment. Therefore, it stops the clock from counting while writing to the RTCC Timer register.

\section*{REGISTER 26-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER}

\begin{tabular}{|c|c|}
\hline bit 15 & RTCEN: RTCC Enable bit \({ }^{(1)}\) \\
\hline & \begin{tabular}{l}
\(1=\) RTCC module is enabled \\
\(0=\) RTCC module is disabled
\end{tabular} \\
\hline bit 14 & Unimplemented: Read as ' 0 ' \\
\hline bit 13 & \begin{tabular}{l}
RTCWREN: RTCC Value Registers Write Enable bit \\
\(1=\) RTCVAL register can be written to by the user application \\
\(0=\) RTCVAL register is locked out from being written to by the user application
\end{tabular} \\
\hline bit 12 & \begin{tabular}{l}
RTCSYNC: RTCC Value Registers Read Synchronization bit \\
1 = A rollover is about to occur in 32 clock edges (approximately 1 ms ) \\
\(0=\) A rollover will not occur
\end{tabular} \\
\hline bit 11 & \begin{tabular}{l}
HALFSEC: Half-Second Status bit \({ }^{(2)}\) \\
1 = Second half period of a second \\
\(0=\) First half period of a second
\end{tabular} \\
\hline bit 10 & \begin{tabular}{l}
RTCOE: RTCC Output Enable bit \\
\(1=\) RTCC output is enabled \\
\(0=\) RTCC output is disabled
\end{tabular} \\
\hline bit 9-8 & \begin{tabular}{l}
RTCPTR<1:0>: RTCC Value Register Pointer bits \\
Points to the corresponding RTCC Value register when reading the RTCVAL register; the RTCPTR \(<1: 0>\) value decrements on every access of the RTCVAL register until it reaches ' 00 '.
\end{tabular} \\
\hline
\end{tabular}

Note 1: A write to the RTCEN bit is only allowed when RTCWREN \(=1\).
2: This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

Note: The RCFGCAL register is only affected by a POR.

\section*{REGISTER 26-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER (CONTINUED)}
bit 7-0 CAL<7:0>: RTCC Drift Calibration bits
01111111 = Maximum positive adjustment; adds 508 RTCC clock pulses every one minute
-
-
-
\(00000001=\) Minimum positive adjustment; adds four RTCC clock pulses every one minute \(00000000=\) No adjustment
11111111 = Minimum negative adjustment; subtracts four RTCC clock pulses every one minute
-
-
-
\(10000000=\) Maximum negative adjustment; subtracts 512 RTCC clock pulses every one minute

Note 1: A write to the RTCEN bit is only allowed when RTCWREN \(=1\).
2: This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

\footnotetext{
Note: The RCFGCAL register is only affected by a POR.
}

REGISTER 26-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & \multicolumn{2}{c|}{ R/W-0 } & R/W-0 \\
\hline- & - & - & - & - & - & RTSECSEL & (1) & PMPTTL \\
\hline bit 7 &
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-2 & Unimplemented: Read as ' 0 ' \\
bit 1 & RTSECSEL: RTCC Seconds Clock Output Select bit \({ }^{(1)}\) \\
& \begin{tabular}{l}
\(1=\) RTCC seconds clock is selected for the RTCC pin \\
\\
bit 0
\end{tabular} \\
& Not used by the RTCC module
\end{tabular}

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL) must be set.

REGISTER 26-3: ALCFGRPT: ALARM CONFIGURATION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline ALRMEN & CHIME & & \multicolumn{2}{|r|}{AMASK<3:0>} & & \multicolumn{2}{|l|}{ALRMPTR<1:0>} \\
\hline \multicolumn{6}{|l|}{bit 15} & \multicolumn{2}{|c|}{bit 8} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{ARPT<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & & W = Writa & & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline -n = Value at POR & & ' 1 ' = Bit is & & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & ALRMEN: Alarm Enable bit
\[
\begin{aligned}
& 1=\text { Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> }=0 \times 00 \text { and } \\
& \text { CHIME }=0 \text { ) } \\
& 0=\text { Alarm is disabled }
\end{aligned}
\] \\
\hline bit 14 & \begin{tabular}{l}
CHIME: Chime Enable bit \\
\(1=\) Chime is enabled; ARPT<7:0> bits are allowed to roll over from \(0 \times 00\) to \(0 \times F F\) \\
\(0=\) Chime is disabled; ARPT<7:0> bits stop once they reach \(0 \times 00\)
\end{tabular} \\
\hline bit 13-10 & \begin{tabular}{l}
AMASK<3:0>: Alarm Mask Configuration bits \\
0000 = Every half second \\
0001 = Every second \\
0010 = Every 10 seconds \\
0011 = Every minute \\
0100 = Every 10 minutes \\
0101 = Every hour \\
0110 = Once a day \\
0111 = Once a week \\
1000 = Once a month \\
1001 = Once a year (except when configured for February 29th, once every 4 years) \\
101x = Reserved - do not use \\
11xx = Reserved - do not use
\end{tabular} \\
\hline bit 9-8 & \begin{tabular}{l}
ALRMPTR<1:0>: Alarm Value Register Window Pointer bits \\
Points to the corresponding Alarm Value registers when reading the ALRMVAL register; the ALRMPTR<1:0> value decrements on every read or write of ALRMVAL until it reaches ' 00 '.
\end{tabular} \\
\hline bit 7-0 & \begin{tabular}{l}
ARPT<7:0>: Alarm Repeat Counter Value bits \\
11111111 = Alarm will repeat 255 more times \\
\(00000000=\) Alarm will not repeat \\
The counter decrements on any alarm event. The counter is prevented from rolling over from \(0 \times 00\) to \(0 x F F\) unless CHIME \(=1\).
\end{tabular} \\
\hline
\end{tabular}

REGISTER 26-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline R/W-x & R/W-x \\
\hline \multicolumn{4}{|c|}{YRTEN<3:0>} & \multicolumn{4}{|c|}{YRONE<3:0>} \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-4 YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9
bit 3-0 YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN \(=1\).

REGISTER 26-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER \({ }^{(\mathbf{1})}\)
\begin{tabular}{|c|c|c|c|cccc|}
\hline U-0 & U-0 & U-0 & R-x & R-x & R-x & R-x & R-x \\
\hline- & - & - & MTHTEN0 & & MTHONE<3:0> & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cccc|}
\hline U-0 & U-0 & \(R / W-x\) \\
\hline- & - & DAYTEN<1:0> & & DAYONE<3:0> & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-13 Unimplemented: Read as ' 0 '
bit 12 MTHTENO: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1 bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-4 DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3 bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN \(=1\).

\section*{REGISTER 26-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WEEKDAY AND HOURS VALUE REGISTER \({ }^{(1)}\)}


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-11 Unimplemented: Read as ' 0 '
bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN \(=1\).

\section*{REGISTER 26-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-x & R/W-x & \(R / W-x\) \\
\hline- & & MINTEN<2:0> & & MINONE<3:0> & \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|cccc|}
\hline U-0 & R/W-x & R/W-x & \(R / W-x\) \\
\hline- & & SECTEN<2:0> & & SECONE<3:0> & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemente & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 Unimplemented: Read as ' 0 '
bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit \(7 \quad\) Unimplemented: Read as ' 0 '
bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

\section*{REGISTER 26-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER \({ }^{(1)}\)}
\begin{tabular}{|c|c|c|cccccc|}
\hline U-0 & U-0 & U-0 & R/W-x & \(R / W-x\) & \(R / W-x\) & \(R / W-x\) & \(R / W-x\) \\
\hline- & - & - & MTHTEN0 & & MTHONE<3:0> & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & \(\mathrm{U}-0\) & \(R / W-x\) \\
\hline- & - & DAYTEN<1:0> & & DAYONE<3:0> & \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as '0' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared
\end{tabular}
bit 15-13 Unimplemented: Read as ' 0 '
bit 12 MTHTENO: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1 bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9 bit 7-6 Unimplemented: Read as ' 0 '
bit 5-4 DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN \(=1\).

REGISTER 26-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-x & \multicolumn{2}{c|}{ R/W-x } \\
\hline- & - & - & - & - & WDAY2 & WDAY1 & WDAY0 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & U-0 & \(R / W-x\) \\
\hline- & - & HRTEN<1:0> & & HRONE<3:0> & \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-11 Unimplemented: Read as ' 0 '
bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN \(=1\).

REGISTER 26-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x & \(R / W-x\) & \(R / W-x\) \\
\hline- & & MINTEN \(<2: 0>\) & & MINONE<3:0> & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-x & R/W-x & \(R / W-x\) \\
\hline- & & SECTEN<2:0> & & SECONE<3:0> & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 15 Unimplemented: Read as ' 0 '
bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7 Unimplemented: Read as '0'
bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

\subsection*{27.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "Programmable Cyclic Redundancy Check (CRC)" (DS70346) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:
- User-programmable (up to 32nd order) polynomial CRC equation
- Interrupt output
- Data FIFO

The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:
- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- Independent data and polynomial lengths
- Configurable Interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 27-1. A simple version of the CRC shift engine is shown in Figure 27-2.

FIGURE 27-1: CRC BLOCK DIAGRAM


FIGURE 27-2: CRC SHIFT ENGINE DETAIL


Note 1: Each XOR stage of the shift engine is programmable. See text for details.
2: Polynomial length \(n\) is determined by ([PLEN<4:0>] + 1 ).

\subsection*{27.1 Overview}

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).
The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16bit equation and the other a 32-bit equation:
\begin{tabular}{|c|}
\hline\(x 16+x 12+x 5+1\) \\
and \\
\(x 32+x 26+x 23+x 22+x 16+x 12+x 11+x 10+x 8+x 7\) \\
\(+x 5+x 4+x 2+x+1\)
\end{tabular}

To program these polynomials into the CRC generator, set the register bits as shown in Table 27-1.
Note that the appropriate positions are set to ' 1 ' to indicate that they are used in the equation (for example, X 26 and X 23 ). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N , it is assumed that the N th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32 , there is no 32 nd bit in the CRCxOR register.

TABLE 27-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL


REGISTER 27-1: CRCCON1: CRC CONTROL REGISTER 1
\begin{tabular}{|l|c|c|ccccc|}
\hline \multicolumn{1}{|c|}{ R/W-0 } & U-0 & R/W-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline CRCEN & - & CSIDL & & & VWORD<4:0> & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ R-0 } & R-1 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 \\
\hline CRCFUL & CRCMPT & CRCISEL & CRCGO & LENDIAN & - & - & - \\
\hline bit 7 & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 CRCEN: CRC Enable bit
\(1=\) CRC module is enabled
\(0=\) CRC module is disabled. All state machines, pointers, and CRCWDAT/CRCDAT are reset. Other SFRs are not reset.
bit 14 Unimplemented: Read as ' 0 '
bit 13 CSIDL: CRC Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
bit 12-8 VWORD<4:0>: Pointer Value bits
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN \(<4: 0 \gg 7\), or 16 when PLEN \(<4: 0>\leq 7\).
bit \(7 \quad\) CRCFUL: FIFO Full bit
\(1=\) FIFO is full
\(0=\) FIFO is not full
bit 6 CRCMPT: FIFO Empty Bit
1 = FIFO is empty
\(0=\) FIFO is not empty
bit \(5 \quad\) CRCISEL: CRC Interrupt Selection bit
1 = Interrupt on FIFO empty; final word of data is still shifting through CRC
0 = Interrupt on shift complete and CRCWDAT results ready
bit 4
CRCGO: Start CRC bit
1 = Start CRC serial shifter
\(0=\) CRC serial shifter is turned off
bit 3 LENDIAN: Data Word Little-Endian Configuration bit
1 = Data word is shifted into the CRC starting with the LSb (little endian)
\(0=\) Data word is shifted into the CRC starting with the MSb (big endian)
bit 2-0
Unimplemented: Read as ' 0 '

\section*{REGISTER 27-2: CRCCON2: CRC CONTROL REGISTER 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & - & \multicolumn{5}{|c|}{DWIDTH<4:0>} \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|ccccc|}
\hline \multicolumn{9}{|c|}{\(\mathrm{U}-0\)} & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & & & PLEN \(4: 0>\) & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-8 DWIDTH<4:0>: Data Width Select bits
These bits set the width of the data word (DWIDTH<4:0> + 1)
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 PLEN<4:0>: Polynomial Length Select bits
These bits set the length of the polynomial (Polynomial Length \(=\) PLEN<4:0> + 1)

\section*{REGISTER 27-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & \(X<31: 24>\) & & & \\
\hline bit 15 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & \(X<23: 16>\) & & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 \(\quad X<31: 16>\) : XOR of Polynomial Term \(X^{n}\) Enable bits

REGISTER 27-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & \(X<15: 8>\) & & & \\
\hline bit 15 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lcccccc|c|}
\hline R/W-0 & R/W-0 & R/W-0 & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) \\
\hline & & \(\mathrm{X}<7: 1>\) & & & & - \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-1 \(\quad X<15: 1>\) : XOR of Polynomial Term \(X^{n}\) Enable bits
bit \(0 \quad\) Unimplemented: Read as ' 0 '

NOTES:

\subsection*{28.0 PARALLEL MASTER PORT (PMP)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 28. "Parallel Master Port (PMP)" (DS70576) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8 -bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.
Key features of the PMP module include:
- Eight Data Lines
- Up to 16 Programmable Address Lines
- Up to two Chip Select Lines
- Programmable Strobe Options:
- Individual read and write strobes, or
- Read/Write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Support:
- Address support
- 4-byte deep auto-incrementing buffer
- Programmable Wait States

FIGURE 28-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES


REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER
\begin{tabular}{|l|l|c|cc|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline PMPEN & - & PSIDL & ADRMUX<1:0> & PTBEEN & PTWREN & PTRDEN \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at Reset & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{bit 15} & PMPEN: Parallel Master Port Enable bit \\
\hline & 1 = PMP module is enabled \\
\hline & 0 = PMP module is disabled, no off-chip access performed \\
\hline bit 14 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 13} & PSIDL: Stop in Idle Mode bit \\
\hline & 1 = Discontinue module operation when device enters Idle mode \\
\hline & \(0=\) Continue module operation in Idle mode \\
\hline \multirow[t]{4}{*}{bit 12-11} & ADRMUX<1:0>: Address/Data Multiplexing Selection bits \\
\hline & 11 = Reserved \\
\hline & \(10=\) All 16 bits of address are multiplexed on PMD<7:0> pins \\
\hline & 01 = Lower eight bits of address are multiplexed on PMD<7:0> pins, upper eight bits are on PMA<15:8> \(00=\) Address and data appear on separate pins \\
\hline \multirow[t]{3}{*}{bit 10} & PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) \\
\hline & 1 = PMBE port is enabled \\
\hline & 0 = PMBE port is disabled \\
\hline \multirow[t]{3}{*}{bit 9} & PTWREN: Write Enable Strobe Port Enable bit \\
\hline & 1 = PMWR/PMENB port is enabled \\
\hline & 0 = PMWR/PMENB port is disabled \\
\hline \multirow[t]{3}{*}{bit 8} & PTRDEN: Read/Write Strobe Port Enable bit \\
\hline & \(1=\mathrm{PMRD} / \overline{\mathrm{PMWR}}\) port is enabled \\
\hline & \(0=\mathrm{PMRD} / \overline{\text { PMWR }}\) port is disabled \\
\hline \multirow[t]{5}{*}{bit 7-6} & CSF<1:0>: Chip Select Function bits \\
\hline & 11 = Reserved \\
\hline & \(10=\) PMCS1 and PMCS2 function as Chip Select \\
\hline & 01 = PMCS2 functions as Chip Select, PMCS1 functions as address bit 14 \\
\hline & \(00=\) PMCS1 and PMCS2 function as address bits 15 and 14 \\
\hline \multirow[t]{3}{*}{bit 5} & ALP: Address Latch Polarity bit \({ }^{(1)}\) \\
\hline & 1 = Active-high (PMALL and PMALH) \\
\hline & 0 = Active-low ( \(\overline{\text { PMALL }}\) and \(\overline{\text { PMALH }}\) ) \\
\hline \multirow[t]{3}{*}{bit 4} & CS2P: Chip Select 1 Polarity bit \({ }^{(1)}\) \\
\hline & \[
1 \text { = Active-high (PMCS2) }
\] \\
\hline & 0 = Active-low ( \(\overline{\text { PMCS2 }}\) ) \\
\hline
\end{tabular}

Note 1: These bits have no effect when their corresponding pins are used as address lines.
2: PMCS1 applies to Master mode and PMCS applies to Slave mode.

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER (CONTINUED)
```

bit 3 CS1P: Chip Select 0 Polarity bit (1)
1 = Active-high (PMCS1/PMCS)}\mp@subsup{)}{}{(\mathbf{2}
0 = Active-low (\overline{PMCS1/PMCS)}
bit 2 BEP: Byte Enable Polarity bit
1 = Byte enable active-high (PMBE)
0 = Byte enable active-low (\overline{PMBE})
bit }
WRSP: Write Strobe Polarity bit
For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):
1 = Write strobe active-high (PMWR)
0 = Write strobe active-low (PMWR)
For Master Mode 1 (PMMODE<9:8> = 11):
1 = Enable strobe active-high (PMENB)
0 = Enable strobe active-low (PMENB)
bit 0 RDSP: Read Strobe Polarity bit
For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):
1 = Read strobe active-high (PMRD)
0 = Read strobe active-low (PMRD)
For Master Mode 1 (PMMODE<9:8> = 11):
1 = Enable strobe active-high (PMRD/\MWWR)
0 = Enable strobe active-low (PMRD/PMWR)

```

Note 1: These bits have no effect when their corresponding pins are used as address lines.
2: PMCS1 applies to Master mode and PMCS applies to Slave mode.

\section*{REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER}



\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at Reset & ' 1 ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 BUSY: Busy bit (Master mode only)
1 = Port is busy
\(0=\) Port is not busy
bit 14-13 IRQM<1:0>: Interrupt Request Mode bits
11 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode),
or on a read/write operation when PMA<1:0> = 11 (Addressable PSP mode only)
\(10=\) Reserved
01 = Interrupt generated at the end of the read/write cycle
\(00=\) No Interrupt generated
bit 12-11 INCM<1:0>: Increment Mode bits
\(11=\) PSP read and write buffers auto-increment (Legacy PSP mode only)
\(10=\) Decrement ADDR by 1 every read/write cycle
\(01=\) Increment ADDR by 1 every read/write cycle
\(00=\) No increment or decrement of address
bit 10 MODE16: 8/16-bit Mode bit
\(1=16\)-bit mode: data register is 16 bits, a read/write to the data register invokes two 8 -bit transfers \(0=8\)-bit mode: data register is 8 bits, a read/write to the data register invokes one 8 -bit transfer
bit 9-8
MODE<1:0>: Parallel Port Mode Select bits
11 = Master Mode 1 (PMCSx, PMRD/PMWR, PMENB, PMBE, PMA<x:0>, and PMD<7:0>)
\(10=\) Master Mode 2 (PMCSx, PMRD, PMWR, PMBE, PMA<x:0>, and PMD<7:0>)
01 = Enhanced PSP, control signals (PMRD, PMWR, PMCSx, PMD<7:0>, and PMA<1:0>)
00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCSx, and PMD<7:0>)
bit 7-6 WAITB<1:0>: Data Setup to Read/Write/Address Phase Wait State Configuration bits \({ }^{(\mathbf{1}, \mathbf{2}, \mathbf{3})}\)
11 = Data wait of 4 Tp (demultiplexed/multiplexed); address phase of 4 Tp (multiplexed)
\(10=\) Data wait of 3 Tp (demultiplexed/multiplexed); address phase of 3 Tp (multiplexed)
01 = Data wait of \(2 \operatorname{Tp}\) (demultiplexed/multiplexed); address phase of 2 TP (multiplexed)
\(00=\) Data wait of 1 TP (demultiplexed/multiplexed); address phase of 1 TP (multiplexed)
bit 5-2 WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits 1111 = Wait of additional 15 TP
-
\(\stackrel{\rightharpoonup}{-}\)
0001 = Wait of additional 1 TP
0000 = No additional Wait cycles (operation forced into one TP)
bit 1-0 WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits \({ }^{(1,2,3)}\)
\(11=\) Wait of 4 Tp
\(10=\) Wait of 3 TP
01 = Wait of 2 Tp
00 = Wait of 1 TP
Note 1: The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See 28.4.1.8 "Wait States" in Section 28. "Parallel Master Port (PMP)" (DS70576) in the "dsPIC33E/ PIC24E Family Reference Manual" for more information.
2: WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> \(=0000\).
3: \(T P=1 / \mathrm{FP}\).

\section*{REGISTER 28-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER (MASTER MODES} ONLY) \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline CS2 & CS1 & \multicolumn{6}{|c|}{ADDR<13:8>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{ADDR<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at Reset & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
```

bit 15 CS2: Chip Select 2 bit
If PMCON<7:6> = 10 or 01:
1 = Chip Select 2 is active
0 = Chip Select 2 is inactive
If PMCON<7:6> = 11 or 00:
Bit functions as ADDR<15>.
bit 14 CS1: Chip Select 1 bit
If PMCON<7:6> = 10:
1 = Chip Select 1 is active
0 = Chip Select 1 is inactive
If PMCON<7:6> = 11 or 0x:
Bit functions as ADDR<14>.
bit 13-0 ADDR<13:0>: Destination Address bits

```

Note 1: In Enhanced Slave mode, PMADDR functions as PMDOUT1, one of the two data buffer registers.

REGISTER 28-4: PMAEN: PARALLEL MASTER PORT ADDRESS ENABLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline PTEN15 & PTEN14 & PTEN13 & PTEN12 & PTEN11 & PTEN10 & PTEN9 & PTEN8 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline PTEN7 & PTEN6 & PTEN5 & PTEN4 & PTEN3 & PTEN2 & PTEN1 & PTEN0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at Reset & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 PTEN15: PMCS2 Strobe Enable bit
1 = PMA15 functions as either PMA<15> or PMCS2
0 = PMA15 functions as port I/O
bit 14
bit 13-2
PTEN14: PMCS1 Strobe Enable bit
1 = PMA14 functions as either PMA<14> or PMCS1
0 = PMA14 functions as port I/O
PTEN<13:2>: PMP Address Port Enable bits
\(1=P M A<13: 2>\) function as PMP address lines
\(0=\mathrm{PMA}<13: 2>\) function as port I/O
bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits
1 = PMA1 and PMA0 function as either PMA <1:0> or PMALH and PMALL
\(0=\) PMA1 and PMA0 function as port I/O

REGISTER 28-5: PMSTAT: PARALLEL MASTER PORT STATUS REGISTER (SLAVE MODE ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R-0 & R/W-0 HS & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 \\
\hline IBF & IBOV & - & - & IB3F & IB2F & IB1F & IB0F \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline R-1 & R/W-0 HS & U-0 & U-0 & R-1 & R-1 & R-1 \\
\hline OBE & OBUF & - & - & OB3E & OB2E & OB1E \\
\hline bit 7 & OB0E \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Hardware Set & HC = Hardware Cleared \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at Reset & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 IBF: Input Buffer Full Status bit
1 = All writable input buffer registers are full
\(0=\) Some or all of the writable input buffer registers are empty
bit 14 IBOV: Input Buffer Overflow Status bit
1 = A write attempt to a full input byte register occurred (must be cleared in software)
0 = No overflow occurred
bit 13-12 Unimplemented: Read as ' 0 '
bit 11-8 IBxF: Input Buffer x Status Full bit
1 = Input buffer contains data that has not been read (reading buffer will clear this bit)
0 = Input buffer does not contain any unread data
bit 7 OBE: Output Buffer Empty Status bit
1 = All readable output buffer registers are empty
\(0=\) Some or all of the readable output buffer registers are full
bit 6 OBUF: Output Buffer Underflow Status bit
1 = A read occurred from an empty output byte register (must be cleared in software)
\(0=\) No underflow occurred
bit 5-4 Unimplemented: Read as ' 0 '
bit 3-0 OBxE: Output Buffer x Status Empty bit
1 = Output buffer is empty (writing data to the buffer will clear this bit)
\(0=\) Output buffer contains data that has not been transmitted

\section*{REGISTER 28-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ U-0 } & U-0 & U-0 & U-0 & U-0 & U-0 & \multicolumn{2}{c|}{ R/W-0 } & R/W-0 \\
\hline- & - & - & - & - & - & RTSECSEL & PMPTTL \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
bit 15-2 Unimplemented: Read as ' 0 '
bit \(1 \quad\) Not used by the PMP module.
bit \(0 \quad\) PMPTTL: PMP Module TTL Input Buffer Select bit
\(1=\) PMP module uses TTL input buffers
\(0=\) PMP module uses Schmitt Trigger input buffers

\subsection*{29.0 SPECIAL FEATURES}

Note: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
dsPIC33EPXXXMU806/810/814
and PIC24EPXXXGU810/814 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:
- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard \({ }^{\text {TM }}\) Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming \({ }^{\text {TM }}\) (ICSP \({ }^{\text {TM }}\) )
- In-Circuit emulation

\subsection*{29.1 Configuration Bits}

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices provide nonvolatile memory implementation for device Configuration bits. Refer to Section 30. "Device Configuration" (DS70618) of the "dsPIC33E/PIC24E Family Reference Manual" for more information on this implementation.
The Configuration bits can be programmed (read as ' 0 '), or left unprogrammed (read as ' 1 '), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.
The individual Configuration bit descriptions for the Configuration registers are shown in Table 29-2.
Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space ( \(0 \times 800000-0 x F F F F F F\) ), which can only be accessed using table reads and table writes.
To prevent inadvertent configuration changes during code execution, some programmable Configuration bits are write-once. For such bits, changing a device configuration requires that the device be Reset. For other Configuration bits, the device configuration changes immediately after an RTSP operation. The RTSP Effect column in Table 29-2 indicates when the device configuration changes after a bit is modified using RTSP.
The Device Configuration register map is shown in Table 29-1.

TABLE 29-1: DEVICE CONFIGURATION REGISTER MAP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Address & Name & Bit 7 & Bit 6 & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 \\
\hline 0xF80000 & Reserved & - & - & - & - & - & - & - & - \\
\hline 0xF80002 & Reserved & - & - & - & - & - & - & - & - \\
\hline 0xF80004 & FGS & - & - & \multicolumn{2}{|r|}{GSSK<1:0>} & - & - & GSS & GWRP \\
\hline 0xF80006 & FOSCSEL & IESO & - & - & - & - & \multicolumn{3}{|c|}{FNOSC<2:0>} \\
\hline 0xF80008 & FOSC & \multicolumn{2}{|l|}{FCKSM<1:0>} & IOL1WAY & - & - & OSCIOFNC & POSC & \(D<1: 0>\) \\
\hline 0xF8000A & FWDT & FWDTEN & WINDIS & PLLKEN & WDTPRE & \multicolumn{4}{|c|}{WDTPOST<3:0>} \\
\hline 0xF8000C & FPOR & - & - & ALTI2C2 \({ }^{(2)}\) & ALTI2C1 & BOREN \({ }^{(3)}\) & \multicolumn{3}{|c|}{FPWRT<2:0>} \\
\hline 0xF8000E & FICD & \multicolumn{2}{|l|}{Reserved \({ }^{(1)}\)} & JTAGEN & Reserved \({ }^{(1)}\) & - & RSTPRI & \multicolumn{2}{|r|}{ICS<1:0>} \\
\hline 0xF80010 & FAS & - & - & \multicolumn{2}{|r|}{APLK<1:0>} & - & - & APL & AWRP \\
\hline 0xF80012 & FUID0 & \multicolumn{8}{|c|}{User Unit ID Byte 0} \\
\hline
\end{tabular}

Legend: - = unimplemented bit, read as ' 0 '
Note 1: These bits are reserved for use by development tools and must be programmed as ' 1 '.
2: These bits are reserved on dsPIC33EP256MU806 (64-pin) devices and always read as ' 1 '.
3: \(B O R\) should always be enabled for proper operation (BOREN \(=1\) ).

\section*{TABLE 29-2: CONFIGURATION BITS DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline Bit Field & Register & RTSP Effect & Description \\
\hline GSSK<1:0> & FGS & Immediate & \begin{tabular}{l}
General Segment Key bits. \\
These bits must be set to ' 00 ' if GWRP \(=1\) and GSS \(=1\). \\
These bits must be set to ' 11 ' for any other value of the GWRP and GSS bits. \\
Any mismatch between either the GWRP or GSS bits, and the GSSK bits (as described above), will result in code protection getting enabled for the General Segment. A Flash bulk erase will be required to unlock the device.
\end{tabular} \\
\hline GSS & FGS & Immediate & \begin{tabular}{l}
General Segment Code-Protect bit \\
1 = User program memory is not code-protected \\
\(0=\) User program memory is code-protected
\end{tabular} \\
\hline GWRP & FGS & Immediate & \begin{tabular}{l}
General Segment Write-Protect bit \\
1 = User program memory is not write-protected \\
0 = User program memory is write-protected
\end{tabular} \\
\hline IESO & FOSCSEL & Immediate & \begin{tabular}{l}
Two-speed Oscillator Start-up Enable bit \\
1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready \\
0 = Start-up device with user-selected oscillator source
\end{tabular} \\
\hline FNOSC<2:0> & FOSCSEL & If clock switch is enabled, the RTSP effect is on any device Reset; otherwise, immediate & \begin{tabular}{l}
Initial Oscillator Source Selection bits \\
111 = Internal Fast RC (FRC) Oscillator with postscaler \\
\(110=\) Internal Fast RC (FRC) Oscillator with divide-by-16 \\
101 = LPRC Oscillator \\
100 = Secondary (LP) Oscillator \\
011 = Primary (XT, HS, EC) Oscillator with PLL \\
010 = Primary (XT, HS, EC) Oscillator \\
001 = Internal Fast RC (FRC) Oscillator with PLL \\
000 = FRC Oscillator
\end{tabular} \\
\hline FCKSM<1:0> & FOSC & Immediate & \begin{tabular}{l}
Clock Switching Mode bits \\
\(1 \mathrm{x}=\) Clock switching is disabled, Fail-Safe Clock Monitor is disabled \\
\(01=\) Clock switching is enabled, Fail-Safe Clock Monitor is disabled \\
\(00=\) Clock switching is enabled, Fail-Safe Clock Monitor is enabled
\end{tabular} \\
\hline IOL1WAY & FOSC & Immediate & \begin{tabular}{l}
Peripheral pin select configuration \\
1 = Allow only one reconfiguration \\
\(0=\) Allow multiple reconfigurations
\end{tabular} \\
\hline OSCIOFNC & FOSC & Immediate & \begin{tabular}{l}
OSC2 Pin Function bit (except in XT and HS modes) \\
1 = OSC2 is clock output \\
\(0=\) OSC2 is general purpose digital I/O pin
\end{tabular} \\
\hline POSCMD<1:0> & FOSC & Immediate & \begin{tabular}{l}
Primary Oscillator Mode Select bits \\
11 = Primary Oscillator disabled \\
10 = HS Crystal Oscillator mode \\
01 = XT Crystal Oscillator mode \\
\(00=\) EC (External Clock) mode
\end{tabular} \\
\hline FWDTEN & FWDT & Immediate & \begin{tabular}{l}
Watchdog Timer Enable bit \\
1 = Watchdog Timer always enabled (LPRC Oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) \\
\(0=\) Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
\end{tabular} \\
\hline WINDIS & FWDT & Immediate & \begin{tabular}{l}
Watchdog Timer Window Enable bit \\
1 = Watchdog Timer in Non-Window mode \\
\(0=\) Watchdog Timer in Window mode
\end{tabular} \\
\hline
\end{tabular}

Note 1: This bit is not available on dsPIC33EP256MU806 (64-pin) devices.
2: \(\quad B O R\) should always be enabled for proper operation \((B O R E N=1)\).

TABLE 29-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)
\begin{tabular}{|c|c|c|c|}
\hline Bit Field & Register & RTSP Effect & Description \\
\hline PLLKEN & FWDT & Immediate & \begin{tabular}{l}
PLL Lock Wait Enable bit \\
1 = Clock switches to the PLL source will wait until the PLL lock signal is valid \\
\(0=\) Clock switch will not wait for PLL lock
\end{tabular} \\
\hline WDTPRE & FWDT & Immediate & Watchdog Timer Prescaler bit
\[
\begin{aligned}
& 1=1: 128 \\
& 0=1: 32
\end{aligned}
\] \\
\hline APLK<1:0> & FAS & Immediate & \begin{tabular}{l}
Auxiliary Segment Key bits \\
These bits must be set to ' 00 ' if AWRP \(=1\) and APL = 1 . \\
These bits must be set to ' 11 ' for any other value of the AWRP and APL bits. \\
Any mismatch between either the AWRP or APL bits, and the APLK bits (as described above), will result in a code protection getting enabled for the Auxiliary Segment. A Flash bulk erase will be required to unlock the device.
\end{tabular} \\
\hline APL & FAS & Immediate & \begin{tabular}{l}
Auxiliary Segment Code-protect bit \\
1 = Auxiliary program memory is not code-protected \\
0 = Auxiliary program memory is code-protected
\end{tabular} \\
\hline AWRP & FAS & Immediate & \begin{tabular}{l}
Auxiliary Segment Write-protect bit \\
1 = Auxiliary program memory is not write-protected \\
0 = Auxiliary program memory is write-protected
\end{tabular} \\
\hline WDTPOST<3:0> & FWDT & Immediate & Watchdog Timer Postscaler bits
\[
\begin{aligned}
& 1111=1: 32,768 \\
& 1110=1: 16,384
\end{aligned}
\]
\[
\begin{aligned}
& 0001=1: 2 \\
& 0000=1: 1
\end{aligned}
\] \\
\hline FPWRT<2:0> & FPOR & Immediate & \begin{tabular}{l}
Power-on Reset Timer Value Select bits \\
\(111=\) PWRT \(=128 \mathrm{~ms}\) \\
\(110=\) PWRT \(=64 \mathrm{~ms}\) \\
\(101=\) PWRT \(=32 \mathrm{~ms}\) \\
\(100=\) PWRT \(=16 \mathrm{~ms}\) \\
011 = PWRT \(=8 \mathrm{~ms}\) \\
\(010=\) PWRT \(=4 \mathrm{~ms}\) \\
\(001=\) PWRT \(=2 \mathrm{~ms}\) \\
000 = PWRT = Disabled
\end{tabular} \\
\hline BOREN \({ }^{(2)}\) & FPOR & Immediate & \begin{tabular}{l}
Brown-out Reset (BOR) Detection Enable bit \(1=\mathrm{BOR}\) is enabled \\
\(0=B O R\) is disabled
\end{tabular} \\
\hline ALTI2C2 \({ }^{(1)}\) & FPOR & Immediate & \begin{tabular}{l}
Alternate \(\mathrm{I}^{2} \mathrm{C}^{\text {TM }}\) pins for I2C2 \\
1 = I2C2 mapped to SDA2/SCL2 pins \\
\(0=12 \mathrm{C} 2\) mapped to ASDA2/ASCL2 pins
\end{tabular} \\
\hline ALTI2C1 & FPOR & Immediate & \[
\begin{array}{|l|}
\hline \text { Alternate } \mathrm{I}^{2} \mathrm{C} \text { pins for } \mathrm{I} 2 \mathrm{C} 1 \\
1=\mathrm{I} 2 \mathrm{C} 1 \text { mapped to SDA1/SCL1 pins } \\
0=\mathrm{I} C 1 \text { mapped to ASDA1/ASCL1 pins } \\
\hline
\end{array}
\] \\
\hline JTAGEN & FICD & Immediate & \begin{tabular}{l}
JTAG Enable bit \\
1 = JTAG enabled \\
\(0=\) JTAG disabled
\end{tabular} \\
\hline
\end{tabular}

Note 1: This bit is not available on dsPIC33EP256MU806 (64-pin) devices.
2: BOR should always be enabled for proper operation (BOREN \(=1\) ).

TABLE 29-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)
\begin{tabular}{|c|c|c|l|}
\hline Bit Field & Register & RTSP Effect & \multicolumn{1}{c|}{ Description } \\
\hline \hline RSTPRI & FICD & \begin{tabular}{c} 
On any device \\
Reset
\end{tabular} & \begin{tabular}{l} 
Reset Target Vector Select bit \\
\(1=\) Device will reset to Primary Flash Reset location \\
\\
\end{tabular} \\
& & = Device will reset to Auxiliary Flash Reset location
\end{tabular}

Note 1: This bit is not available on dsPIC33EP256MU806 (64-pin) devices.
2: \(\quad B O R\) should always be enabled for proper operation (BOREN \(=1\) ).

\subsection*{29.2 On-Chip Voltage Regulator}

All of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices power their core digital logic at a nominal 1.8 V . This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3 V . To simplify system design, all devices in the dsPIC33EPXXXMU806/810/ 814 and PIC24EPXXXGU810/814 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.
The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 32-13 located in Section 32.0 "Electrical Characteristics".

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR \({ }^{(1,2,3)}\)


Note 1: These are typical operating voltages. Refer to Section TABLE 32-13: "Internal Voltage Regulator Specifications" located in Section 32.1 "DC Characteristics" for the full operating ranges of VDD and VCAP.
2: It is important for the low-ESR capacitor to be placed as close as possible to the Vcap pin.
3: Typical VcAP pin voltage is 1.8 V when VDD \(\geq\) VDDMIN.

\subsection*{29.3 BOR: Brown-out Reset (BOR)}

The Brown-out Reset module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brownout condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).
A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).
If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit ( \(\mathrm{OSCCON}<5>\) ) is ' 1 '.
Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to parameter SY35 in Table 32-22 of Section 32.0 "Electrical Characteristics" for specific TFSCM values.

The BOR Status bit ( \(\mathrm{RCON}<1>\) ) is set to indicate that a BOR has occurred. The BOR circuit, continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

\subsection*{29.4 Watchdog Timer (WDT)}

For dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.

\subsection*{29.4.1 PRESCALER/POSTSCALER}

The nominal WDT clock source from LPRC is 32 kHz . This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5 -bit mode, or 4 ms in 7-bit mode.
A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from \(1: 1\) to \(1: 32,768\). Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.
The WDT, prescaler and postscaler are reset:
- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

\subsection*{29.4.2 SLEEP AND IDLE MODES}

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits ( \(\mathrm{RCON}<3,2>\) ) needs to be cleared in software after the device wakes up.

\subsection*{29.4.3 ENABLING WDT}

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.
The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to ' 0 '. The WDT is enabled in software by setting the SWDTEN control bit ( \(\mathrm{RCON}<5>\) ). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last \(1 / 4\) of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

FIGURE 29-2: WDT BLOCK DIAGRAM


\subsection*{29.5 JTAG Interface}

\section*{dsPIC33EPXXXMU806/810/814}
and
PIC24EPXXXGU810/814 devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.
\begin{tabular}{ll} 
Note: & Refer to Section 24. "Programming and \\
& Diagnostics" (DS70608) of the \\
& "dsPIC33E/PIC24E Family Reference \\
& Manual" for further information on usage, \\
configuration and operation of the JTAG \\
interface.
\end{tabular}

\subsection*{29.6 In-Circuit Serial Programming}

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification" (DS70619) for details about In-Circuit Serial Programming (ICSP).
Any of the three pairs of programming clock/data pins can be used:
- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

\subsection*{29.7 In-Circuit Debugger}

When MPLAB \({ }^{\circledR}\) ICD 3 or REAL ICE \({ }^{\text {TM }}\) is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/ Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.
Any of the three pairs of debugging clock/data pins can be used:
- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, Vss, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

\subsection*{29.8 Code Protection and CodeGuard \({ }^{\text {TM }}\) Security}

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property in collaborative system designs.
When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33E implemented. The following sections provide an overview of these features.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices do not support Boot Segment (BS), Secure Segment (SS), and RAM protection.

\section*{Note: Refer to Section 23. "CodeGuard \({ }^{\text {TM }}\)} Security" (DS70634) of the "dsPIC33E/ PIC24E Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

NOTES:

\subsection*{30.0 INSTRUCTION SET SUMMARY}

Note: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.
Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.
Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:
- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 30-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 30-2 lists all the instructions, along with the status flags affected by each instruction.
Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:
- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:
- The file register specified by the value ' \(f\) '
- The destination, which could be either the file register ' \(f\) ' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:
- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or ' \(f\) ')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:
- A literal value to be loaded into a W register or file register (specified by ' \(k\) ')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')
However, literal instructions that involve arithmetic or logical operations use some of the following operands:
- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:
- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The \(X\) and \(Y\) address space prefetch operations
- The \(X\) and \(Y\) address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:
- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value
The control instructions can use some of the following operands:
- A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are ' 0 's. If this second word is executed as an instruction (by itself), it executes as a NOP.
The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction, or a PSV or table read is performed. In these cases, the execution takes multiple instruction cycles
with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

> Note: For more details on the instruction set, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

TABLE 30-1: SYMBOLS USED IN OPCODE DESCRIPTIONS
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline \#text & Means literal defined by "text" \\
\hline (text) & Means "content of text" \\
\hline [text] & Means "the location addressed by text" \\
\hline \{\} & Optional field or operation \\
\hline \(a \in\{b, c, d\}\) & \(a\) is selected from the set of values b, c, d \\
\hline <n:m> & Register bit field \\
\hline .b & Byte mode selection \\
\hline .d & Double-Word mode selection \\
\hline . S & Shadow register select \\
\hline .w & Word mode selection (default) \\
\hline Acc & One of two accumulators \(\{\mathrm{A}, \mathrm{B}\}\) \\
\hline AWB & Accumulator write back destination address register \(\in\{\) W13, [W13]+ = 2\} \\
\hline bit4 & 4-bit bit selection field (used in word addressed instructions) \(\in\{0 . .15\}\) \\
\hline C, DC, N, OV, Z & MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero \\
\hline Expr & Absolute address, label or expression (resolved by the linker) \\
\hline f & File register address \(\in\{0 \times 0000 \ldots 0 \times 1\) FFF \(\}\) \\
\hline lit1 & 1-bit unsigned literal \(\in\{0,1\}\) \\
\hline lit4 & 4-bit unsigned literal \(\in\{0 . .15\}\) \\
\hline lit5 & 5 -bit unsigned literal \(\in\{0 . .31\}\) \\
\hline lit8 & 8 -bit unsigned literal \(\in\{0 . .255\}\) \\
\hline lit10 & 10-bit unsigned literal \(\in\{0 \ldots 255\}\) for Byte mode, \(\{0: 1023\}\) for Word mode \\
\hline lit14 & 14-bit unsigned literal \(\in\{0 . .16384\}\) \\
\hline lit16 & 16-bit unsigned literal \(\in\{0 \ldots 65535\}\) \\
\hline lit23 & 23 -bit unsigned literal \(\in\{0 \ldots . .8388608\}\); LSb must be ' 0 ' \\
\hline None & Field does not require an entry, can be blank \\
\hline OA, OB, SA, SB & DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate \\
\hline PC & Program Counter \\
\hline Slit10 & 10-bit signed literal \(\in\{-512 \ldots 511\}\) \\
\hline Slit16 & 16-bit signed literal \(\in\{-32768 . . .32767\}\) \\
\hline Slit6 & 6 -bit signed literal \(\in\{-16 . . .16\}\) \\
\hline Wb & Base W register \(\in\{\) W0...W15\} \\
\hline Wd & Destination W register \(\in\left\{\begin{array}{l}\text { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }\}\end{array}\right.\) \\
\hline Wdo & \begin{tabular}{l}
Destination W register \(\in\) \\
\{Wnd, [Wnd], [Wnd++], [Wnd---], [++Wnd], [--Wnd], [Wnd+Wb] \}
\end{tabular} \\
\hline Wm, Wn & Dividend, Divisor working register pair (direct addressing) \\
\hline
\end{tabular}

TABLE 30-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Wm*Wm & Multiplicand and Multiplier working register pair for Square instructions \(\in\) \{W4 * W4,W5 * W5,W6 * W6,W7 * W7\} \\
\hline Wm*Wn & Multiplicand and Multiplier working register pair for DSP instructions \(\in\) \{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7\} \\
\hline Wn & One of 16 working registers \(\in\{W 0 . . . W 15\}\) \\
\hline Wnd & One of 16 destination working registers \(\in\{W 0 . . . W 15\}\) \\
\hline Wns & One of 16 source working registers \(\in\{W 0 . . . W 15\}\) \\
\hline WREG & W0 (working register used in file register instructions) \\
\hline Ws & Source W register \(\in\{\mathrm{Ws},[\mathrm{Ws}],[\mathrm{Ws++}\) ], [Ws--], [++Ws], [--Ws] \(\}\) \\
\hline Wso & \begin{tabular}{l}
Source W register \(\in\) \\
\{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] \}
\end{tabular} \\
\hline Wx & X data space prefetch address register for DSP instructions
\[
\begin{aligned}
& \in \quad[\mathrm{W} 8]+=6,[\mathrm{~W} 8]+=4,[\mathrm{~W} 8]+=2,[\mathrm{~W} 8],[\mathrm{W} 8]-=6,[\mathrm{~W} 8]-=4,[\mathrm{~W} 8]-=2, \\
& \\
& \\
& \\
& \\
& \\
& {[W 99+=6,[\mathrm{~W} 9]+=4,[\mathrm{~W} 9]+=2,[\mathrm{~W} 9],[\mathrm{W} 9]-=6,[\mathrm{~W} 9]-=4,[\mathrm{~W} 9]-=2,} \\
& \hline
\end{aligned}
\] \\
\hline Wxd & X data space prefetch destination register for DSP instructions \(\in\{W 4 . . . W 7\}\) \\
\hline Wy & \[
\begin{aligned}
& \text { Y data space prefetch address register for DSP instructions } \\
& \in\{[\mathrm{W} 10]+=6,[\mathrm{~W} 10]+=4,[\mathrm{~W} 10]+=2,[\mathrm{~W} 10],[\mathrm{W} 10]-=6,[\mathrm{~W} 10]-=4,[\mathrm{~W} 10]-=2, \\
& {[\mathrm{W} 11]+=6,[\mathrm{~W} 11]+=4,[\mathrm{~W} 11]+=2,[\mathrm{~W} 11],[\mathrm{W} 11]-=6,[\mathrm{~W} 11]-=4,[\mathrm{~W} 11]-=2,} \\
& [\mathrm{~W} 11+\mathrm{W} 12], \text { none }\}
\end{aligned}
\] \\
\hline Wyd & \(Y\) data space prefetch destination register for DSP instructions \(\in\{\mathrm{W} 4 \ldots \mathrm{~W} 7\}\) \\
\hline
\end{tabular}

\section*{TABLE 30-2: INSTRUCTION SET OVERVIEW}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \[
\begin{gathered}
\text { \# of } \\
\text { Cycles }^{(2)}
\end{gathered}
\] & Status Flags Affected \\
\hline \multirow[t]{7}{*}{1} & \multirow[t]{7}{*}{ADD} & ADD & Acc \({ }^{(1)}\) & Add Accumulators & 1 & 1 & OA,OB,SA,SB \\
\hline & & ADD & f & \(\mathrm{f}=\mathrm{f}+\) WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & f, WREG & WREG = \(\mathrm{f}+\mathrm{WREG}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & \#lit10,Wn & Wd \(=\) lit10 + Wd & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & Wb,Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{Ws}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & Wb,\#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit5}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & Wso,\#Slit4, Acc & 16-bit Signed Add to Accumulator & 1 & 1 & OA,OB,SA,SB \\
\hline \multirow[t]{5}{*}{2} & \multirow[t]{5}{*}{ADDC} & ADDC & f & \(\mathrm{f}=\mathrm{f}+\mathrm{WREG}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & f,WREG & WREG = f + WREG + (C) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & \#lit10, Wn & Wd \(=\) lit10 + Wd + (C) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & Wb, Ws, Wd & \(W \mathrm{~d}=\mathrm{Wb}+\mathrm{Ws}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & Wb,\#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit5}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{5}{*}{3} & \multirow[t]{5}{*}{AND} & AND & f & \(\mathrm{f}=\mathrm{f}\). AND. WREG & 1 & 1 & N,Z \\
\hline & & AND & f, WREG & WREG = f.AND. WREG & 1 & 1 & N,Z \\
\hline & & AND & \#lit10, Wn & Wd = lit10.AND. Wd & 1 & 1 & N,Z \\
\hline & & AND & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}\). AND. Ws & 1 & 1 & N,Z \\
\hline & & AND & Wb,\#lit5, Wd & Wd = Wb .AND. lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{5}{*}{4} & \multirow[t]{5}{*}{ASR} & ASR & \(f\) & \(\mathrm{f}=\) Arithmetic Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & ASR & f,WREG & WREG = Arithmetic Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & ASR & Ws, Wd & Wd = Arithmetic Right Shift Ws & 1 & 1 & C,N,OV,Z \\
\hline & & ASR & Wb,Wns, Wnd & Wnd = Arithmetic Right Shift Wb by Wns & 1 & 1 & N,Z \\
\hline & & ASR & Wb,\#lit5, Wnd & Wnd = Arithmetic Right Shift Wb by lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{BCLR} & BCLR & f,\#bit4 & Bit Clear f & 1 & 1 & None \\
\hline & & BCLR & Ws, \#bit4 & Bit Clear Ws & 1 & 1 & None \\
\hline \multirow[t]{22}{*}{6} & \multirow[t]{22}{*}{BRA} & BRA & C, Expr & Branch if Carry & 1 & 1 (4) & None \\
\hline & & BRA & GE, Expr & Branch if greater than or equal & 1 & 1 (4) & None \\
\hline & & BRA & GEU, Expr & Branch if unsigned greater than or equal & 1 & 1 (4) & None \\
\hline & & BRA & GT, Expr & Branch if greater than & 1 & 1 (4) & None \\
\hline & & BRA & GTU, Expr & Branch if unsigned greater than & 1 & 1 (4) & None \\
\hline & & BRA & LE, Expr & Branch if less than or equal & 1 & 1 (4) & None \\
\hline & & BRA & LEU, Expr & Branch if unsigned less than or equal & 1 & 1 (4) & None \\
\hline & & BRA & LT, Expr & Branch if less than & 1 & 1 (4) & None \\
\hline & & BRA & LTU, Expr & Branch if unsigned less than & 1 & 1 (4) & None \\
\hline & & BRA & N, Expr & Branch if Negative & 1 & 1 (4) & None \\
\hline & & BRA & NC, Expr & Branch if Not Carry & 1 & 1 (4) & None \\
\hline & & BRA & NN, Expr & Branch if Not Negative & 1 & 1 (4) & None \\
\hline & & BRA & NOV, Expr & Branch if Not Overflow & 1 & 1 (4) & None \\
\hline & & BRA & NZ, Expr & Branch if Not Zero & 1 & 1 (4) & None \\
\hline & & BRA & OA, Expr \({ }^{(1)}\) & Branch if Accumulator A overflow & 1 & 1 (4) & None \\
\hline & & BRA & OB, Expr \({ }^{(1)}\) & Branch if Accumulator B overflow & 1 & 1 (4) & None \\
\hline & & BRA & OV, Expr \({ }^{(1)}\) & Branch if Overflow & 1 & 1 (4) & None \\
\hline & & BRA & SA, Expr \({ }^{(1)}\) & Branch if Accumulator A saturated & 1 & 1 (4) & None \\
\hline & & BRA & SB, Expr \({ }^{(1)}\) & Branch if Accumulator B saturated & 1 & 1 (4) & None \\
\hline & & BRA & Expr & Branch Unconditionally & 1 & 4 & None \\
\hline & & BRA & Z, Expr & Branch if Zero & 1 & 1 (4) & None \\
\hline & & BRA & Wn & Computed Branch & 1 & 4 & None \\
\hline \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{BSET} & BSET & f, \#bit4 & Bit Set f & 1 & 1 & None \\
\hline & & BSET & Ws, \#bit4 & Bit Set Ws & 1 & 1 & None \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.
2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \[
\begin{gathered}
\text { \# of } \\
\text { Cycles }^{(2)}
\end{gathered}
\] & Status Flags Affected \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{BSW} & BSW.C & Ws, Wb & Write C bit to Ws<Wb> & 1 & 1 & None \\
\hline & & BSW. Z & Ws, Wb & Write Z bit to \(\mathrm{Ws}<\mathrm{Wb}>\) & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{BTG} & BTG & f,\#bit4 & Bit Toggle f & 1 & 1 & None \\
\hline & & BTG & Ws, \#bit4 & Bit Toggle Ws & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{BTSC} & BTSC & f,\#bit4 & Bit Test f, Skip if Clear & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & & BTSC & Ws, \#bit4 & Bit Test Ws, Skip if Clear & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3) \\
\hline
\end{gathered}
\] & None \\
\hline \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{BTSS} & BTSS & f,\#bit4 & Bit Test f, Skip if Set & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & & BTSS & Ws, \#bit4 & Bit Test Ws, Skip if Set & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3) \\
\hline
\end{gathered}
\] & None \\
\hline \multirow[t]{5}{*}{12} & \multirow[t]{5}{*}{BTST} & BTST & f,\#bit4 & Bit Test f & 1 & 1 & Z \\
\hline & & BTST.C & Ws, \#bit4 & Bit Test Ws to C & 1 & 1 & C \\
\hline & & BTST.Z & Ws, \#bit4 & Bit Test Ws to Z & 1 & 1 & Z \\
\hline & & BTST.C & Ws, Wb & Bit Test Ws<Wb> to C & 1 & 1 & C \\
\hline & & BTST.Z & Ws, Wb & Bit Test Ws<Wb> to Z & 1 & 1 & Z \\
\hline \multirow[t]{3}{*}{13} & \multirow[t]{3}{*}{BTSTS} & BTSTS & f,\#bit4 & Bit Test then Set f & 1 & 1 & Z \\
\hline & & BTSTS.C & Ws, \#bit4 & Bit Test Ws to C, then Set & 1 & 1 & C \\
\hline & & BTSTS. Z & Ws, \#bit4 & Bit Test Ws to Z, then Set & 1 & 1 & Z \\
\hline \multirow[t]{3}{*}{14} & \multirow[t]{3}{*}{CALL} & CALL & lit23 & Call subroutine & 2 & 4 & SFA \\
\hline & & CALL & Wn & Call indirect subroutine & 1 & 4 & SFA \\
\hline & & CALL.L & Wn & Call indirect subroutine (long address) & 1 & 4 & SFA \\
\hline \multirow[t]{4}{*}{15} & \multirow[t]{4}{*}{CLR} & CLR & f & \(\mathrm{f}=0 \times 0000\) & 1 & 1 & None \\
\hline & & CLR & WREG & WREG \(=0 \times 0000\) & 1 & 1 & None \\
\hline & & CLR & Ws & Ws = 0x0000 & 1 & 1 & None \\
\hline & & CLR & Acc, Wx, Wxd, Wy, Wyd, AWB \({ }^{(1)}\) & Clear Accumulator & 1 & 1 & OA,OB,SA,SB \\
\hline 16 & CLRWDT & CLRWDT & & Clear Watchdog Timer & 1 & 1 & WDTO,Sleep \\
\hline \multirow[t]{3}{*}{17} & \multirow[t]{3}{*}{COM} & COM & f & \(\mathrm{f}=\overline{\mathrm{f}}\) & 1 & 1 & N,Z \\
\hline & & COM & f, WREG & WREG \(=\overline{\mathrm{f}}\) & 1 & 1 & N,Z \\
\hline & & COM & Ws, Wd & \(\mathrm{Wd}=\overline{\mathrm{Ws}}\) & 1 & 1 & N,Z \\
\hline \multirow[t]{3}{*}{18} & \multirow[t]{3}{*}{CP} & CP & f & Compare f with WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CP & Wb,\#lit8 & Compare Wb with lit8 & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CP & Wb, Ws & Compare Wb with Ws (Wb - Ws) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{2}{*}{19} & \multirow[t]{2}{*}{CP0} & CP0 & f & Compare f with 0x0000 & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CP0 & Ws & Compare Ws with 0x0000 & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{3}{*}{20} & \multirow[t]{3}{*}{CPB} & CPB & f & Compare f with WREG, with Borrow & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CPB & Wb,\#lit8 & Compare Wb with lit8, with Borrow & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CPB & Wb, Ws & Compare Wb with Ws, with Borrow
\[
(\mathrm{Wb}-\mathrm{Ws}-\overline{\mathrm{C}})
\] & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{2}{*}{21} & CPSEQ & CPSEQ & Wb, Wn & Compare Wb with Wn, skip if = & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & CPBEQ & CPBEQ & Wb, Wn, Expr & Compare Wb with Wn, branch if = & 1 & 1 (5) & None \\
\hline \multirow[t]{2}{*}{22} & CPSGT & CPSGT & Wb, Wn & Compare Wb with Wn, skip if > & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & CPBGT & CPBGT & Wb, Wn, Expr & Compare Wb with Wn, branch if > & 1 & 1 (5) & None \\
\hline \multirow[t]{2}{*}{23} & CPSLT & CPSLT & Wb, Wn & Compare Wb with Wn, skip if < & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & CPBLT & CPBLT & Wb, Wn, Expr & Compare Wb with Wn, branch if < & 1 & 1 (5) & None \\
\hline \multirow[t]{2}{*}{24} & CPSNE & CPSNE & Wb, Wn & Compare Wb with Wn, skip if \(\neq\) & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3) \\
\hline
\end{gathered}
\] & None \\
\hline & CPBNE & CPBNE & Wb, Wn, Expr & Compare Wb with Wn, branch if \(\neq\) & 1 & 1 (5) & None \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.
2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \[
\begin{gathered}
\text { \# of } \\
\text { Cycles }^{(2)}
\end{gathered}
\] & Status Flags Affected \\
\hline 25 & DAW & DAW & Wn & Wn = decimal adjust W n & 1 & 1 & C \\
\hline \multirow[t]{3}{*}{26} & \multirow[t]{3}{*}{DEC} & DEC & \(f\) & \(\mathrm{f}=\mathrm{f}-1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & DEC & f, WREG & WREG \(=\mathrm{f}-1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & DEC & Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}-1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{3}{*}{27} & \multirow[t]{3}{*}{DEC2} & DEC2 & \(f\) & \(\mathrm{f}=\mathrm{f}-2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & DEC2 & f, WREG & WREG = \(\mathrm{f}-2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & DEC2 & Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}-2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline 28 & DISI & DISI & \#lit14 & Disable Interrupts for k instruction cycles & 1 & 1 & None \\
\hline \multirow[t]{4}{*}{29} & \multirow[t]{4}{*}{DIV} & DIV.S & Wm, Wn & Signed 16/16-bit Integer Divide & 1 & 18 & N,Z,C,OV \\
\hline & & DIV.SD & Wm, Wn & Signed 32/16-bit Integer Divide & 1 & 18 & N,Z,C,OV \\
\hline & & DIV.U & Wm, Wn & Unsigned 16/16-bit Integer Divide & 1 & 18 & N,Z,C,OV \\
\hline & & DIV.UD & Wm, Wn & Unsigned 32/16-bit Integer Divide & 1 & 18 & N,Z,C,OV \\
\hline 30 & DIVF & DIVF & Wm, Wn \({ }^{(1)}\) & Signed 16/16-bit Fractional Divide & 1 & 18 & N,Z,C,OV \\
\hline \multirow[t]{2}{*}{31} & \multirow[t]{2}{*}{DO} & DO & \#lit15, Expr \({ }^{(1)}\) & Do code to PC + Expr, lit15 + 1 times & 2 & 2 & None \\
\hline & & D0 & Wn, Expr \({ }^{(1)}\) & Do code to PC + Expr, (Wn) + 1 times & 2 & 2 & None \\
\hline 32 & ED & ED & Wm*Wm, Acc, Wx, Wy, Wxd \({ }^{(\mathbf{1})}\) & Euclidean Distance (no accumulate) & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline 33 & EDAC & EDAC & Wm*Wm, Acc, Wx, Wy, Wxd \({ }^{(1)}\) & Euclidean Distance & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline 34 & EXCH & EXCH & Wns, Wnd & Swap Wns with Wnd & 1 & 1 & None \\
\hline 35 & FBCL & FBCL & Ws, Wnd & Find Bit Change from Left (MSb) Side & 1 & 1 & C \\
\hline 36 & FF1L & FF1L & Ws, Wnd & Find First One from Left (MSb) Side & 1 & 1 & C \\
\hline 37 & FF1R & FF1R & Ws, Wnd & Find First One from Right (LSb) Side & 1 & 1 & C \\
\hline \multirow[t]{3}{*}{38} & \multirow[t]{3}{*}{GOTO} & GOTO & Expr & Go to address & 2 & 4 & None \\
\hline & & GOTO & Wn & Go to indirect & 1 & 4 & None \\
\hline & & GOTO. L & Wn & Go to indirect (long address) & 1 & 4 & None \\
\hline \multirow[t]{3}{*}{39} & \multirow[t]{3}{*}{INC} & INC & \(f\) & \(\mathrm{f}=\mathrm{f}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & INC & f, WREG & WREG = \(\mathrm{f}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & INC & Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{3}{*}{40} & \multirow[t]{3}{*}{INC2} & INC2 & f & \(\mathrm{f}=\mathrm{f}+2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & INC2 & f,WREG & WREG \(=\mathrm{f}+2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & INC2 & Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}+2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{5}{*}{41} & \multirow[t]{5}{*}{IOR} & IOR & f & \(\mathrm{f}=\mathrm{f}\). IOR. WREG & 1 & 1 & N,Z \\
\hline & & IOR & f,WREG & WREG = f.IOR. WREG & 1 & 1 & N,Z \\
\hline & & IOR & \#lit10, Wn & \(\mathrm{Wd}=\) lit10 .IOR. Wd & 1 & 1 & N,Z \\
\hline & & IOR & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}\).IOR. Ws & 1 & 1 & N,Z \\
\hline & & IOR & Wb, \#lit5, Wd & Wd = Wb .IOR. lit5 & 1 & 1 & N,Z \\
\hline 42 & LAC & LAC & Wso,\#Slit4, Acc & Load Accumulator & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline 43 & LNK & LNK & \#lit14 & Link Frame Pointer & 1 & 1 & SFA \\
\hline \multirow[t]{5}{*}{44} & \multirow[t]{5}{*}{LSR} & LSR & f & \(\mathrm{f}=\) Logical Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & LSR & f,WREG & WREG = Logical Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & LSR & Ws, Wd & Wd = Logical Right Shift Ws & 1 & 1 & C,N,OV,Z \\
\hline & & LSR & Wb, Wns, Wnd & Wnd = Logical Right Shift Wb by Wns & 1 & 1 & N,Z \\
\hline & & LSR & Wb, \#lit5, Wnd & Whd = Logical Right Shift Wb by lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{2}{*}{45} & \multirow[t]{2}{*}{MAC} & MAC & Wm*Wn, Acc , Wx , Wxd , Wy, Wyd, AWB \({ }^{(1)}\) & Multiply and Accumulate & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline & & MAC & Wm*Wm, Acc , Wx , Wxd , Wy, Wyd \({ }^{(1)}\) & Square and Accumulate & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.
2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \[
\begin{gathered}
\text { \# of } \\
\text { Cycles }^{(2)}
\end{gathered}
\] & Status Flags Affected \\
\hline \multirow[t]{10}{*}{46} & \multirow[t]{10}{*}{MOV} & MOV & f, Wn & Move f to Wn & 1 & 1 & None \\
\hline & & MOV & f & Move \(f\) to \(f\) & 1 & 1 & None \\
\hline & & MOV & f,WREG & Move f to WREG & 1 & 1 & None \\
\hline & & MOV & \#lit16,Wn & Move 16-bit literal to Wn & 1 & 1 & None \\
\hline & & MOV.b & \#lit8, Wn & Move 8-bit literal to Wn & 1 & 1 & None \\
\hline & & MOV & Wn, f & Move Wn to f & 1 & 1 & None \\
\hline & & MOV & Wso, Wdo & Move Ws to Wd & 1 & 1 & None \\
\hline & & MOV & WREG, f & Move WREG to f & 1 & 1 & None \\
\hline & & MOV.D & Wns, Wd & Move Double from W(ns):W(ns + 1) to Wd & 1 & 2 & None \\
\hline & & MOV.D & Ws, Wnd & Move Double from Ws to W(nd + 1):W(nd) & 1 & 2 & None \\
\hline \multirow[t]{6}{*}{47} & \multirow[t]{6}{*}{MOVPAG} & MOVPAG & \#lit10, DSRPAG & Move 10-bit literal to DSRPAG & 1 & 1 & None \\
\hline & & MOVPAG & \#lit9, DSWPAG & Move 9-bit literal to DSWPAG & 1 & 1 & None \\
\hline & & MOVPAG & \#lit8, TBLPAG & Move 8-bit literal to TBLPAG & 1 & 1 & None \\
\hline & & MOVPAGW & Ws, DSRPAG & Move Ws \(29: 0>\) to DSRPAG & 1 & 1 & None \\
\hline & & MOVPAGW & Ws, DSWPAG & Move Ws<8:0> to DSWPAG & 1 & 1 & None \\
\hline & & MOVPAGW & Ws, TBLPAG & Move Ws<7:0> to TBLPAG & 1 & 1 & None \\
\hline 48 & MOVSAC & MOVSAC & Acc, Wx, Wxd, Wy, Wyd, AWB \({ }^{(1)}\) & Prefetch and store accumulator & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{49} & \multirow[t]{2}{*}{MPY} & MPY & Wm*Wn, Acc , Wx, Wxd, Wy, Wyd \({ }^{(1)}\) & Multiply Wm by Wn to Accumulator & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline & & MPY & Wm*Wm, Acc \(, \mathrm{Wx}, \mathrm{Wxd}\), Wy, Wyd \({ }^{(1)}\) & Square Wm to Accumulator & 1 & 1 & OA,OB,OAB, SA,SB,SAB \\
\hline 50 & MPY.N & MPY.N & Wm*Wn, Acc, Wx, Wxd, Wy, Wyd \({ }^{(\mathbf{1})}\) & -(Multiply Wm by Wn) to Accumulator & 1 & 1 & None \\
\hline 51 & MSC & MSC & Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB \({ }^{(1)}\) & Multiply and Subtract from Accumulator & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline \multirow[t]{19}{*}{52} & \multirow[t]{19}{*}{MUL} & MUL.SS & Wb, Ws, Wnd & \[
\begin{aligned}
& \{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\operatorname{signed}(\mathrm{Wb})^{*} \\
& \text { signed }(\mathrm{Ws})
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.SS & Wb, Ws, Acc \({ }^{(\mathbf{1})}\) & Accumulator \(=\) signed \((\mathrm{Wb})^{*}\) signed(Ws) & 1 & 1 & None \\
\hline & & MUL.SU & Wb, Ws, Wnd & \[
\begin{aligned}
& \{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\text { signed }(\mathrm{Wb})^{*} \\
& \text { unsigned }(\mathrm{Ws})
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.SU & Wb, Ws, Acc \({ }^{(1)}\) & Accumulator \(=\operatorname{signed}(\mathrm{Wb})\) * unsigned(Ws) & 1 & 1 & None \\
\hline & & MUL.SU & Wb, \#lit5, Acc \({ }^{(1)}\) & Accumulator \(=\operatorname{signed}(\mathrm{Wb})\) * unsigned(lit5) & 1 & 1 & None \\
\hline & & MUL.US & Wb, Ws, Wnd & \[
\begin{aligned}
& \{\text { Wnd }+1, \text { Wnd }\}=\text { unsigned(Wb) * } \\
& \text { signed(Ws) }
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.US & Wb, Ws, Acc \({ }^{(1)}\) & ```
l}\begin{array}{l}{\mathrm{ Accumulator = unsigned(Wb) *}}\\{\mathrm{ signed(Ws)}}
``` & 1 & 1 & None \\
\hline & & MUL.UU & Wb, Ws, Wnd & \[
\begin{aligned}
& \{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\text { unsigned }(\mathrm{Wb})^{*} \\
& \text { unsigned(Ws) }
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.UU & Wb, \#lit5, Acc \({ }^{(1)}\) & ```
Accumulator = unsigned(Wb) *
unsigned(lit5)
``` & 1 & 1 & None \\
\hline & & MUL.UU & Wb, Ws, Acc \({ }^{(1)}\) & Accumulator \(=\) unsigned \((\mathrm{Wb})\) * unsigned(Ws) & 1 & 1 & None \\
\hline & & MULW.SS & Wb, Ws, Wnd & Whd = signed(Wb) * signed(Ws) & 1 & 1 & None \\
\hline & & MULW.SU & Wb, Ws, Wnd & Wnd = signed(Wb) * unsigned(Ws) & 1 & 1 & None \\
\hline & & MULW.US & Wb, Ws, Wnd & Whd = unsigned(Wb) * signed(Ws) & 1 & 1 & None \\
\hline & & MULW. UU & Wb, Ws, Wnd & Wnd = unsigned(Wb) * unsigned(Ws) & 1 & 1 & None \\
\hline & & MUL.SU & Wb, \#lit5, Wnd & \[
\begin{aligned}
& \{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\operatorname{signed}(\mathrm{Wb}) \text { * } \\
& \text { unsigned(lit5) }
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.SU & Wb, \#lit5, Wnd & Whd = signed(Wb) * unsigned(lit5) & 1 & 1 & None \\
\hline & & MUL.UU & Wb,\#lit5, Wnd & \[
\begin{aligned}
& \text { \{Wnd + 1, Wnd }\}=\text { unsigned(Wb) * } \\
& \text { unsigned(lit5) }
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.UU & Wb,\#lit5, Wnd & Wnd = unsigned(Wb) * unsigned(lit5) & 1 & 1 & None \\
\hline & & MUL & \(f\) & W3:W2 = \(\mathrm{f}^{\text {* WREG }}\) & 1 & 1 & None \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.
2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \[
\begin{gathered}
\# \text { of } \\
\text { Cycles }^{(2)}
\end{gathered}
\] & Status Flags Affected \\
\hline \multirow[t]{4}{*}{53} & \multirow[t]{4}{*}{NEG} & NEG & \(\mathrm{Acc}^{(1)}\) & Negate Accumulator & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline & & NEG & f & \(\mathrm{f}=\overline{\mathrm{f}}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & NEG & f, WREG & WREG \(=\overline{\mathrm{f}}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & NEG & Ws, Wd & \(\mathrm{Wd}=\overline{\mathrm{Ws}}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{2}{*}{54} & \multirow[t]{2}{*}{NOP} & NOP & & No Operation & 1 & 1 & None \\
\hline & & NOPR & & No Operation & 1 & 1 & None \\
\hline \multirow[t]{4}{*}{55} & \multirow[t]{4}{*}{POP} & POP & f & Pop f from Top-of-Stack (TOS) & 1 & 1 & None \\
\hline & & POP & Wdo & Pop from Top-of-Stack (TOS) to Wdo & 1 & 1 & None \\
\hline & & POP.D & Wnd & Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1) & 1 & 2 & None \\
\hline & & POP.S & & Pop Shadow Registers & 1 & 1 & All \\
\hline \multirow[t]{4}{*}{56} & \multirow[t]{4}{*}{PUSH} & PUSH & f & Push f to Top-of-Stack (TOS) & 1 & 1 & None \\
\hline & & PUSH & Wso & Push Wso to Top-of-Stack (TOS) & 1 & 1 & None \\
\hline & & PUSH.D & Wns & Push W(ns):W(ns + 1) to Top-of-Stack (TOS) & 1 & 2 & None \\
\hline & & PUSH.S & & Push Shadow Registers & 1 & 1 & None \\
\hline 57 & PWRSAV & PWRSAV & \#lit1 & Go into Sleep or Idle mode & 1 & 1 & WDTO,Sleep \\
\hline \multirow[t]{2}{*}{58} & \multirow[t]{2}{*}{RCALL} & RCALL & Expr & Relative Call & 1 & 4 & SFA \\
\hline & & RCALL & Wn & Computed Call & 1 & 4 & SFA \\
\hline \multirow[t]{2}{*}{59} & \multirow[t]{2}{*}{REPEAT} & REPEAT & \#lit15 & Repeat Next Instruction lit15 + 1 times & 1 & 1 & None \\
\hline & & REPEAT & Wn & Repeat Next Instruction (Wn) + 1 times & 1 & 1 & None \\
\hline 60 & RESET & RESET & & Software device Reset & 1 & 1 & None \\
\hline 61 & RETFIE & RETFIE & & Return from interrupt & 1 & 6 (5) & SFA \\
\hline 62 & RETLW & RETLW & \#lit10,Wn & Return with literal in Wn & 1 & 6 (5) & SFA \\
\hline 63 & RETURN & RETURN & & Return from Subroutine & 1 & 6 (5) & SFA \\
\hline \multirow[t]{3}{*}{64} & \multirow[t]{3}{*}{RLC} & RLC & f & \(\mathrm{f}=\) Rotate Left through Carry f & 1 & 1 & C,N,Z \\
\hline & & RLC & f, WREG & WREG = Rotate Left through Carry f & 1 & 1 & C,N,Z \\
\hline & & RLC & Ws, Wd & Wd = Rotate Left through Carry Ws & 1 & 1 & C,N,Z \\
\hline \multirow[t]{3}{*}{65} & \multirow[t]{3}{*}{RLNC} & RLNC & f & \(\mathrm{f}=\) Rotate Left (No Carry) f & 1 & 1 & N,Z \\
\hline & & RLNC & f, WREG & WREG = Rotate Left (No Carry) f & 1 & 1 & N,Z \\
\hline & & RLNC & Ws, Wd & Wd = Rotate Left (No Carry) Ws & 1 & 1 & N,Z \\
\hline \multirow[t]{3}{*}{66} & \multirow[t]{3}{*}{RRC} & RRC & \(f\) & \(\mathrm{f}=\) Rotate Right through Carry f & 1 & 1 & C,N, Z \\
\hline & & RRC & f, WREG & WREG = Rotate Right through Carry f & 1 & 1 & C,N,Z \\
\hline & & RRC & Ws, Wd & Wd = Rotate Right through Carry Ws & 1 & 1 & C,N,Z \\
\hline \multirow[t]{3}{*}{67} & \multirow[t]{3}{*}{RRNC} & RRNC & f & \(\mathrm{f}=\) Rotate Right (No Carry) f & 1 & 1 & N,Z \\
\hline & & RRNC & f, WREG & WREG = Rotate Right (No Carry) f & 1 & 1 & N,Z \\
\hline & & RRNC & Ws, Wd & Wd = Rotate Right (No Carry) Ws & 1 & 1 & N,Z \\
\hline \multirow[t]{2}{*}{68} & \multirow[t]{2}{*}{SAC} & SAC & Acc,\#Slit4, Wdo \({ }^{(1)}\) & Store Accumulator & 1 & 1 & None \\
\hline & & SAC.R & Acc, \#Slit4, Wdo \({ }^{(1)}\) & Store Rounded Accumulator & 1 & 1 & None \\
\hline 69 & SE & SE & Ws, Wnd & Wnd = sign-extended Ws & 1 & 1 & C,N,Z \\
\hline \multirow[t]{3}{*}{70} & \multirow[t]{3}{*}{SETM} & SETM & f & \(\mathrm{f}=0 \times \mathrm{FFFF}\) & 1 & 1 & None \\
\hline & & SETM & WREG & WREG = 0xFFFF & 1 & 1 & None \\
\hline & & SETM & Ws & Ws = 0xFFFF & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{71} & \multirow[t]{2}{*}{SFTAC} & SFTAC & Acc, \(\mathrm{Wn}^{(1)}\) & Arithmetic Shift Accumulator by (Wn) & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline & & SFTAC & Acc, \#Slit6 \({ }^{(1)}\) & Arithmetic Shift Accumulator by Slit6 & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.
2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \[
\begin{gathered}
\text { \# of } \\
\text { Cycles }^{(2)}
\end{gathered}
\] & Status Flags Affected \\
\hline \multirow[t]{5}{*}{72} & \multirow[t]{5}{*}{SL} & SL & f & \(\mathrm{f}=\) Left Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & SL & f,WREG & WREG = Left Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & SL & Ws, Wd & Wd = Left Shift Ws & 1 & 1 & C, N, OV, Z \\
\hline & & SL & Wb, Wns, Wnd & Wnd = Left Shift Wb by Wns & 1 & 1 & N,Z \\
\hline & & SL & Wb,\#lit5, Wnd & Wnd = Left Shift Wb by lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{6}{*}{73} & \multirow[t]{6}{*}{SUB} & SUB & Acc \({ }^{(1)}\) & Subtract Accumulators & 1 & 1 & OA,OB,OAB,
SA,SB,SAB \\
\hline & & SUB & f & \(\mathrm{f}=\mathrm{f}-\mathrm{WREG}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUB & f, WREG & WREG = \(\mathrm{f}-\) WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUB & \#lit10, Wn & \(\mathrm{Wn}=\mathrm{W} \mathrm{n}-\mathrm{lit} 10\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUB & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUB & Wb, \#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit} 5\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{5}{*}{74} & \multirow[t]{5}{*}{SUBB} & SUBB & f & \(\mathrm{f}=\mathrm{f}-\mathrm{WREG}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBB & f, WREG & WREG \(=\mathrm{f}-\) WREG \(-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBB & \#lit10, Wn & Wn \(=\mathrm{W} n-\mathrm{lit} 10-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBB & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBB & Wb, \#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit} 5-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{4}{*}{75} & \multirow[t]{4}{*}{SUBR} & SUBR & f & \(\mathrm{f}=\) WREG -f & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBR & f, WREG & WREG = WREG - f & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBR & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}-\mathrm{Wb}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBR & Wb, \#lit5, Wd & \(\mathrm{Wd}=\) lit5 -Wb & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{4}{*}{76} & \multirow[t]{4}{*}{SUBBR} & SUBBR & f & \(\mathrm{f}=\) WREG \(-\mathrm{f}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBBR & f, WREG & WREG \(=\) WREG \(-\mathrm{f}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBBR & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}-\mathrm{Wb}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBBR & Wb,\#lit5, Wd & \(\mathrm{Wd}=\) lit5 \(-\mathrm{Wb}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{2}{*}{77} & \multirow[t]{2}{*}{SWAP} & SWAP.b & Wn & \(\mathrm{W} \mathrm{n}=\) nibble swap W & 1 & 1 & None \\
\hline & & SWAP & Wn & Wn = byte swap Wn & 1 & 1 & None \\
\hline 78 & TBLRDH & TBLRDH & Ws, Wd & Read Prog<23:16> to Wd<7:0> & 1 & 5 & None \\
\hline 79 & TBLRDL & TBLRDL & Ws, Wd & Read Prog<15:0> to Wd & 1 & 5 & None \\
\hline 80 & TBLWTH & TBLWTH & Ws, Wd & Write Ws<7:0> to Prog<23:16> & 1 & 2 & None \\
\hline 81 & TBLWTL & TBLWTL & Ws, Wd & Write Ws to Prog<15:0> & 1 & 2 & None \\
\hline 82 & ULNK & ULNK & & Unlink Frame Pointer & 1 & 1 & SFA \\
\hline \multirow[t]{5}{*}{83} & \multirow[t]{5}{*}{XOR} & XOR & f & \(\mathrm{f}=\mathrm{f} . \mathrm{XOR}\). WREG & 1 & 1 & N,Z \\
\hline & & XOR & f, WREG & WREG = f.XOR. WREG & 1 & 1 & N,Z \\
\hline & & XOR & \#lit10, Wn & \(\mathrm{Wd}=\) lit10.XOR. Wd & 1 & 1 & N,Z \\
\hline & & XOR & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb} . \mathrm{XOR} . \mathrm{Ws}\) & 1 & 1 & N,Z \\
\hline & & XOR & Wb, \#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb} . \mathrm{XOR} .1 \mathrm{lit} 5\) & 1 & 1 & N,Z \\
\hline 84 & ZE & ZE & Ws, Wnd & Wnd = Zero-extend Ws & 1 & 1 & C,Z,N \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.
2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

NOTES:

\subsection*{31.0 DEVELOPMENT SUPPORT}

The \(\mathrm{PIC}^{\circledR}\) microcontrollers and dsPIC \({ }^{\circledR}\) digital signal controllers are supported with a full range of software and hardware development tools:
- Integrated Development Environment
- MPLAB \({ }^{\circledR}\) IDE Software
- Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device Families
- HI-TECH C for Various Device Families
- MPASM \({ }^{\text {TM }}\) Assembler
- MPLINK \({ }^{\text {TM }}\) Object Linker/ MPLIB \({ }^{\text {M }}\) Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
- MPLAB SIM Software Simulator
- Emulators
- MPLAB REAL ICE \({ }^{\text {TM }}\) In-Circuit Emulator
- In-Circuit Debuggers
- MPLAB ICD 3
- PICkit \({ }^{\text {TM }} 3\) Debug Express
- Device Programmers
- PICkit \({ }^{\text {TM }} 2\) Programmer
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

\subsection*{31.1 MPLAB Integrated Development Environment Software}

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows \({ }^{\circledR}\) operating system-based application that contains:
- A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers
The MPLAB IDE allows you to:
- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
- Source files (C or assembly)
- Mixed C and assembly
- Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

\subsection*{31.2 MPLAB C Compilers for Various Device Families}

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.
For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

\subsection*{31.3 HI-TECH C for Various Device Families}

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.
For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.
The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

\subsection*{31.4 MPASM Assembler}

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel \({ }^{\circledR}\) standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.
The MPASM Assembler features include:
- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

\subsection*{31.5 MPLINK Object Linker/ \\ MPLIB Object Librarian}

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.
The object linker/library features include:
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

\subsection*{31.6 MPLAB Assembler, Linker and Librarian for Various Device Families}

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:
- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

\subsection*{31.7 MPLAB SIM Software Simulator}

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC \({ }^{\circledR}\) DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.
The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

\subsection*{31.8 MPLAB REAL ICE In-Circuit Emulator System}

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC \({ }^{\circledR}\) Flash MCUs and dsPIC \({ }^{\circledR}\) Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

\subsection*{31.9 MPLAB ICD 3 In-Circuit Debugger System}

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs \(\mathrm{PIC}^{\circledR}\) Flash microcontrollers and dsPIC \({ }^{\circledR}\) DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE).
The MPLAB ICD 3 In -Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

\subsection*{31.10 PICkit 3 In-Circuit DebuggerI Programmer and PICkit 3 Debug Express}

The MPLAB PICkit 3 allows debugging and programming of \(\mathrm{PIC}^{\circledR}\) and dsPIC \({ }^{\circledR}\) Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming \({ }^{\text {TM }}\).
The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

\subsection*{31.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express}

The PICkit \({ }^{\text {TM }} 2\) Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows \({ }^{\circledR}\) programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit \({ }^{\text {TM }} 2\) enables in-circuit debugging on most PIC \({ }^{\circledR}\) microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.
The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

\subsection*{31.12 MPLAB PM3 Device Programmer}

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display ( \(128 \times 64\) ) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP \({ }^{\text {TM }}\) cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

\subsection*{31.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits}

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.
In addition to the PICDEM \({ }^{\text {TM }}\) and dsPICDEM \({ }^{\text {TM }}\) demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ \({ }^{\circledR}\) security ICs, CAN, IrDA \({ }^{\circledR}\), PowerSmart battery management, SEEVAL \({ }^{\circledR}\) evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.
Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

\subsection*{32.0 ELECTRICAL CHARACTERISTICS}

This section provides an overview of dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.
Absolute maximum ratings for the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.
Absolute Maximum Ratings \({ }^{(1)}\)
Ambient temperature under bias ..... \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Voltage on VdD with respect to Vss -0.3 V to +4.0 V
Voltage on any pin that is not 5 V tolerant, with respect to \(\mathrm{Vss}{ }^{(3)}\) ..... -0.3 V to \((\mathrm{VDD}+0.3 \mathrm{~V})\)
Voltage on any 5 V tolerant pin with respect to Vss when \(\mathrm{VDD} \geq 3.0 \mathrm{~V}^{(3)}\) ..... -0.3 V to +5.5 V
Voltage on any 5 V tolerant pin with respect to Vss when \(\mathrm{VDD}<3.0 \mathrm{~V}^{(3)}\) ..... -0.3 V to 3.6 V
Voltage on D+ OR D- pin with respect to VUSB ..... -0.3 V to (VUSB +3.0 V )
Voltage on Vbus with respect to Vss ..... -0.3 V to +5.5 V
Maximum current out of Vss pin ..... 320 mA
Maximum current into VDD pin \({ }^{(2)}\) ..... 320 mA
Maximum current sunk by any I/O pin except OSC2 and SOSCO ..... 8 mA
Maximum current sourced by any I/O pin except OSC2 and SOSCO ..... 8 mA
Maximum current sunk by OSC2 and SOSCO pins ..... 10 mA
Maximum current sourced by OSC2 and SOSCO pins ..... 12 mA
Maximum current sunk by all ports ..... 200 mA
Maximum current sourced by all ports \({ }^{(2)}\) ..... 200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).
See the "Pin Diagrams" section for the 5V tolerant pins.

\subsection*{32.1 DC Characteristics}

TABLE 32-1: OPERATING MIPS VS. VOLTAGE
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristic } & \(\begin{array}{c}\text { VDd Range } \\
\text { (in Volts) }\end{array}\) & \(\begin{array}{c}\text { Temp Range } \\
\text { (in }\end{array}\) & Maximum MIPS
\end{tabular}\(\left.] \begin{array}{c}\text { dsPIC33EPXXXMU806/810/814 and } \\
\text { PIC24EPXXXGU810/814 }\end{array}\right]\)

Note 1: See the BO10 parameter in Table 32-11 for the minimum and maximum BOR values.

TABLE 32-2: THERMAL OPERATING CONDITIONS


TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Typ. & Max. & Unit & Notes \\
\hline Package Thermal Resistance, 64-pin QFN (9x9 mm) & \(\theta \mathrm{JA}\) & 28 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 64-pin TQFP (10x10 mm) & \(\theta\) JA & 47 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 100-pin TQFP ( \(12 \times 12 \mathrm{~mm}\) ) & \(\theta\) JA & 43 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 100-pin TQFP (14x14 mm) & \(\theta\) JA & 43 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 121-pin XBGA (10x10 mm) & \(\theta\) JA & 40 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 144-pin LQFP ( \(20 \times 20 \mathrm{~mm}\) ) & \(\theta \mathrm{JA}\) & 33 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 144-pin TQFP (16x16 mm) & \(\theta\) JA & 33 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline
\end{tabular}

Note 1: Junction to ambient thermal resistance, Theta-JA ( \(\theta \mathrm{JA}\) ) numbers are achieved by package simulations.

TABLE 32-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
\(\begin{array}{ll}\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }\end{array}\)
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline \multicolumn{8}{|l|}{Operating Voltage} \\
\hline DC10 & VDD & Supply Voltage & 3.0 & - & 3.6 & V & - \\
\hline DC12 & VDR & RAM Data Retention Voltage \({ }^{(2)}\) & 1.8 & - & - & V & - \\
\hline DC16 & VPOR & VDD Start Voltage \({ }^{(3)}\) to ensure internal Power-on Reset signal & - & - & Vss & V & - \\
\hline DC17 & SVDD & VdD Rise Rate to ensure internal Power-on Reset signal & 1.0 & - & - & V/ms & \(0-3.0 \mathrm{~V}\) in 3 ms \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: This is the limit to which VDD may be lowered without losing RAM data.
3: VDD voltage must remain at Vss for a minimum of \(200 \mu\) s to ensure POR.

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature
\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]
\end{tabular}} \\
\hline Param. \({ }^{(2)}\) & Typ. \({ }^{(3)}\) & Max. & Units & \multicolumn{3}{|c|}{Conditions} \\
\hline \multicolumn{7}{|l|}{Operating Current (IDD) \({ }^{(1)}\)} \\
\hline DC20d & 22 & 50 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{10 MIPS} \\
\hline DC20a & 22 & 50 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC20b & 22 & 50 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC20c & 24 & 50 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC22d & 33 & 60 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{20 MIPS} \\
\hline DC22a & 33 & 60 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC22b & 33 & 60 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC22c & 37 & 65 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC24d & 58 & 100 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{40 MIPS} \\
\hline DC24a & 58 & 100 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC24b & 58 & 100 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC24c & 60 & 100 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC25d & 78 & 120 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{60 MIPS} \\
\hline DC25a & 78 & 120 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC25b & 78 & 120 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC25c & 79 & 120 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:
- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{\text { MCLR }}=\) VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement

2: These parameters are characterized but not tested in manufacturing.
3: Data in "Typ" column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated.

TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. \({ }^{(2)}\) & Typ. \({ }^{(3)}\) & Max. & Units & \multicolumn{3}{|c|}{Conditions} \\
\hline \multicolumn{7}{|l|}{Idle Current (IIDLE) \({ }^{(1)}\)} \\
\hline DC40d & 8 & 20 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{10 MIPS} \\
\hline DC40a & 8 & 20 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC40b & 9 & 20 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC40c & 10 & 20 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC42d & 15 & 30 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{20 MIPS} \\
\hline DC42a & 15 & 30 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC42b & 16 & 30 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC42c & 17 & 30 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC44d & 28 & 60 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{40 MIPS} \\
\hline DC44a & 28 & 60 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC44b & 29 & 60 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC44c & 30 & 60 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC45d & 43 & 80 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{60 MIPS} \\
\hline DC45a & 43 & 80 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC45b & 44 & 80 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC45c & 46 & 80 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Note 1: Base lidLE current is measured as follows:
- CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- External Secondary Oscillator (Sosc) is disabled (i.e., SOSCO and SOSCI pins are configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{\mathrm{MCLR}}=\) VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to stand-by while the device is in Idle mode)
2: These parameters are characterized but not tested in manufacturing.
3: Data in "Typ" column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated.

TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Typ. \({ }^{(2)}\) & Max. & Units & \multicolumn{3}{|r|}{Conditions} \\
\hline \multicolumn{7}{|l|}{Power-Down Current (IPD) \({ }^{(1)}\)} \\
\hline DC60d & 50 & 100 & \(\mu \mathrm{A}\) & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{Base Power-Down Current \({ }^{(1,4)}\)} \\
\hline DC60a & 60 & 200 & \(\mu \mathrm{A}\) & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC60b & 250 & 500 & \(\mu \mathrm{A}\) & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC60c & 1600 & 3000 & \(\mu \mathrm{A}\) & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC61d & 8 & 10 & \(\mu \mathrm{A}\) & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{Watchdog Timer Current: \(\mathrm{IIWDT}^{(3)}\)} \\
\hline DC61a & 10 & 15 & \(\mu \mathrm{A}\) & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC61b & 12 & 20 & \(\mu \mathrm{A}\) & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC61c & 13 & 25 & \(\mu \mathrm{A}\) & \(+125^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Note 1: IPD (Sleep) current is measured as follows:
- CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- External Secondary Oscillator (Sosc) is disabled (i.e., SOSCO and SOSCI pins are configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{M C L R}=\) VDD, WDT and FSCM are disabled
- VREGS bit \((\) RCON \(<8>)=0\) (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- RTCC is disabled.
- The VREGSF bit (RCON<11>) \(=0\) (i.e., Flash regulator is set to stand-by while the device is in Sleep mode)
2: Data in the "Typ" column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
4: These currents are measured on the device containing the most memory in this family.

TABLE 32-8: DC CHARACTERISTICS: DOZE CURRENT (IDoze) \({ }^{\text {(1) }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter & Typ. \({ }^{(2)}\) & Max. & Doze Ratio & Units & \multicolumn{3}{|c|}{Conditions} \\
\hline DC73a & 62 & 110 & 1:2 & mA & \multirow[b]{2}{*}{\(-40^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{3.3 V} & \multirow[b]{2}{*}{60 MIPS} \\
\hline DC73g & 50 & 100 & 1:128 & mA & & & \\
\hline DC70a & 64 & 110 & 1:2 & mA & \multirow[b]{2}{*}{\(+25^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{3.3 V} & \multirow[b]{2}{*}{60 MIPS} \\
\hline DC70g & 52 & 100 & 1:128 & mA & & & \\
\hline DC71a & 66 & 110 & 1:2 & mA & \multirow{2}{*}{\(+85^{\circ} \mathrm{C}\)} & \multirow{2}{*}{3.3 V} & \multirow{2}{*}{60 MIPS} \\
\hline DC71g & 54 & 100 & 1:128 & mA & & & \\
\hline DC72a & 75 & 110 & 1:2 & mA & \multirow[b]{2}{*}{\(+125^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{3.3 V} & \multirow[b]{2}{*}{60 MIPS} \\
\hline DC72g & 60 & 100 & 1:128 & mA & & & \\
\hline
\end{tabular}

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:
- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{M C L R}=\) VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement.

2: Data in the "Typ" column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated.

TABLE 32-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
& \text { (unless otherwise stated) } \\
& \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& \qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]} \\
\hline Param. & Symbol & Characteristic & Min. & Typ \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline \begin{tabular}{l}
DI10 \\
DI11 \\
DI15 \\
DI16 \\
DI18 \\
DI19
\end{tabular} & VIL & \begin{tabular}{l}
Input Low Voltage \\
I/O pins \\
PMP pins \\
\(\overline{M C L R}\) \\
I/O Pins with OSC1 or SOSCI \\
I/O Pins with SDAx, SCLx \\
I/O Pins with SDAx, SCLx
\end{tabular} & \[
\begin{aligned}
& \text { Vss } \\
& \text { Vss }
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
0.2 \mathrm{VDD} \\
0.15 \mathrm{VDD} \\
0.2 \mathrm{VDD} \\
0.2 \mathrm{VDD} \\
0.3 \mathrm{VDD} \\
0.8
\end{gathered}
\] & \(V\)
\(V\)
\(V\)
\(V\)
\(V\)
\(V\) & \begin{tabular}{l}
PMPTTL = 1 \\
SMBus disabled \\
SMBus enabled
\end{tabular} \\
\hline DI20 & VIH & Input High Voltage \({ }^{(\mathbf{1 0})}\)
I/O Pins Not 5V Tolerant \({ }^{(4)}\)
I/O Pins 5 V Tolerant \({ }^{(4)}\)
PMP pins
I/O Pins with SDAx, SCLx
I/O Pins with SDAx, SCLx & \[
\begin{aligned}
& 0.7 \text { VDD } \\
& 0.7 \text { VDD } \\
& 0.25 \text { VDD }+0.8 \\
& 0.7 \text { VDD } \\
& 2.1
\end{aligned}
\] & — & \[
\begin{aligned}
& \text { VDD } \\
& 5.3 \\
& - \\
& 5.3 \\
& 5.3
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V
\end{aligned}
\] & \begin{tabular}{l}
PMPTTL = 1 \\
SMBus disabled \\
SMBus enabled
\end{tabular} \\
\hline DI30 & ICNPU & Change Notification Pull-up Current & 50 & 250 & 400 & \(\mu \mathrm{A}\) & \(\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}, \mathrm{VPIN}=\mathrm{V}\) SS \\
\hline DI31 & ICNPD & Change Notification Pulldown Current \({ }^{(5)}\) & - & 50 & - & \(\mu \mathrm{A}\) & \(\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}, \mathrm{VPIN}=\mathrm{VDD}\) \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: The leakage current on the \(\overline{M C L R}\) pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: See "Pin Diagrams" for the 5 V tolerant I/O pins.
5: Characterized but not tested.
6: Non-5V tolerant pins VIH source \(>(\mathrm{VDD}+0.3), 5 \mathrm{~V}\) tolerant pins VIH source \(>5.5 \mathrm{~V}\). Characterized but not tested.
7: Digital 5 V tolerant pins cannot tolerate any "positive" input injection current from input sources \(>5.5 \mathrm{~V}\).
8: Injection currents \(>|0|\) can affect the ADC results by approximately 4-6 counts.
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
10: These parameters are characterized, but not tested.

TABLE 32-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l} 
Standard Operating Conditions: \(\mathbf{3 . 0 \mathrm { V }}\) to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(\quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\\
\\
\hline\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline DI50 & IIL & Input Leakage Current \({ }^{(2,3)}\) I/O pins 5V Tolerant \({ }^{(4)}\) & - & - & \(\pm 1\) & \(\mu \mathrm{A}\) & VSS \(\leq\) VPIN \(\leq\) VDD, Pin at high-impedance \\
\hline DI51 & & I/O Pins Not 5V Tolerant \({ }^{(4)}\) & - & - & \(\pm 1\) & \(\mu \mathrm{A}\) & Vss \(\leq\) VPIN \(\leq\) VDD, Pin at high-impedance, \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) \\
\hline DI51a & & I/O Pins Not 5V Tolerant \({ }^{(4)}\) & - & - & \(\pm 1\) & \(\mu \mathrm{A}\) & Analog pins shared with external reference pins,
\[
-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}
\] \\
\hline DI51b & & I/O Pins Not 5V Tolerant \({ }^{(4)}\) & - & - & \(\pm 1\) & \(\mu \mathrm{A}\) & Vss \(\leq\) VPIN \(\leq\) VDD, Pin at high-impedance,
\[
-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}
\] \\
\hline DI51c & & I/O Pins Not 5V Tolerant \({ }^{(4)}\) & - & - & \(\pm 1\) & \(\mu \mathrm{A}\) & Analog pins shared with external reference pins,
\[
-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}
\] \\
\hline DI55 & & \(\overline{\text { MCLR }}\) & - & - & \(\pm 1\) & \(\mu \mathrm{A}\) & Vss \(\leq\) VPIN \(\leq\) VDD \\
\hline DI56 & & OSC1 & - & - & \(\pm 1\) & \(\mu \mathrm{A}\) & Vss \(\leq\) VPIN \(\leq\) VDD, XT and HS modes \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: The leakage current on the \(\overline{M C L R}\) pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: See "Pin Diagrams" for the 5V tolerant I/O pins.
5: Characterized but not tested.
6: Non-5V tolerant pins VIH source \(>(\mathrm{VDD}+0.3), 5 \mathrm{~V}\) tolerant pins VIH source \(>5.5 \mathrm{~V}\). Characterized but not tested.
7: Digital 5 V tolerant pins cannot tolerate any "positive" input injection current from input sources \(>5.5 \mathrm{~V}\).
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
10: These parameters are characterized, but not tested.

TABLE 32-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{```
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature }-4\mp@subsup{0}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Industrial
-40}\mp@subsup{}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Extended
```} \\
\hline Param. & Symbol & Characteristic & Min. & Typ \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline DI60a & IICL & Input Low Injection Current & 0 & - & \(-5^{(5,8)}\) & mA & All pins except VDD, Vss, AVDD, AVss, MCLR, VcAP, RB11, SOSCI, SOSCO, D+, D, Vusb, and Vbus \\
\hline DI60b & IICH & Input High Injection Current & 0 & - & \(+5^{(6,7,8)}\) & mA & All pins except VDD, Vss, AVdd, AVss, MCLR, Vcap, RB11, SOSCI, SOSCO, D+, DVusb, and Vbus, and all 5 V tolerant pins \({ }^{(7)}\) \\
\hline DI60c & ElICT & Total Input Injection Current (sum of all I/O and control pins) & \(-20^{(9)}\) & - & \(+20^{(9)}\) & mA & Absolute instantaneous sum of all \(\pm\) input injection currents from all I/O pins \((\mid\) IICL \(+\mid\) IICH \(\mid) \leq \Sigma\) IICT \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: The leakage current on the \(\overline{M C L R}\) pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: See "Pin Diagrams" for the 5V tolerant I/O pins.
5: Characterized but not tested.
6: Non-5V tolerant pins VIH source \(>(\mathrm{VDD}+0.3), 5 \mathrm{~V}\) tolerant pins VIH source \(>5.5 \mathrm{~V}\). Characterized but not tested.
7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources \(>5.5 \mathrm{~V}\).
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
10: These parameters are characterized, but not tested.

TABLE 32-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
& \begin{array}{l}
\text { (unless otherwise stated) } \\
\text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
\\
-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{array}
\end{aligned}
\]} \\
\hline Param. & Symbol & Characteristic & Min. & Typ & Max. & Units & Conditions \\
\hline \begin{tabular}{l}
DO10 \\
DO16
\end{tabular} & Vol & \begin{tabular}{l}
Output Low Voltage \\
All I/O pins except OSC2 and SOSCO \\
OSC2 and SOSCO pins
\end{tabular} & & & 0.4
0.4 & \begin{tabular}{l}
V \\
V
\end{tabular} & \[
\begin{aligned}
& \mathrm{IOL}=8 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{IOL}=10 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}
\end{aligned}
\] \\
\hline DO20 & VOH & \begin{tabular}{l}
Output High Voltage \\
All I/O pins except OSC2 and SOSCO \\
OSC2 and SOSCO pins
\end{tabular} & 2.40
2.40 & - & - & V
V & \begin{tabular}{l}
\(\mathrm{IOH}=-8 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\(\mathrm{IOH}=-12 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\)
\end{tabular} \\
\hline
\end{tabular}

TABLE 32-11: ELECTRICAL CHARACTERISTICS: BOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. \({ }^{(1)}\) & Typ & Max. & Units & Conditions \\
\hline BO10 & VBOR & BOR Event on VDD transition high-to-low & 2.7 & - & 2.9 & V & VDD \\
\hline
\end{tabular}

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 32-12: DC CHARACTERISTICS: PROGRAM MEMORY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{```
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature }-4\mp@subsup{0}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Industrial
 -40}\mp@subsup{}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Extended
```} \\
\hline Param. & Symbol & Characteristic & Min. & Typ \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline & & Program Flash Memory & & & & & \\
\hline D130 & Ep & Cell Endurance & 10,000 & - & - & E/W & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline D131 & VPR & Vdd for Read & 3.0 & - & 3.6 & V & \\
\hline D132b & Vpew & VDD for Self-Timed Write & 3.0 & - & 3.6 & V & \\
\hline D134 & TRETD & Characteristic Retention & 20 & - & - & Year & Provided no other specifications are violated, \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline D135 & IDDP & Supply Current during Programming & - & 10 & - & mA & \\
\hline D136a & TRW & Row Write Time & 1.32 & - & 1.74 & ms & TRW = 11064 FRC cycles, TA \(=+85^{\circ} \mathrm{C}\), See Note 2 \\
\hline D136b & TRW & Row Write Time & 1.28 & - & 1.79 & ms & TRW \(=11064\) FRC cycles, TA \(=+125^{\circ} \mathrm{C}\), See Note 2 \\
\hline D137a & TPE & Page Erase Time & 20.1 & - & 26.5 & ms & TPE \(=168517\) FRC cycles, TA \(=+85^{\circ} \mathrm{C}\), See Note 2 \\
\hline D137b & TPE & Page Erase Time & 19.5 & - & 27.3 & ms & TPE \(=168517\) FRC cycles, TA \(=+125^{\circ} \mathrm{C}\), See Note 2 \\
\hline D138a & Tww & Word Write Cycle Time & 42.3 & - & 55.9 & \(\mu \mathrm{s}\) & Tww \(=355\) FRC cycles, TA \(=+85^{\circ} \mathrm{C}\), See Note 2 \\
\hline D138b & Tww & Word Write Cycle Time & 41.1 & - & 57.6 & \(\mu \mathrm{s}\) & Tww \(=355\) FRC cycles, \(\mathrm{TA}=+125^{\circ} \mathrm{C}\), See Note 2 \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: Other conditions: \(F R C=7.37 \mathrm{MHz}, \mathrm{TUN}<5: 0>=\mathrm{b}^{\prime} 011111\) (for Minimum), TUN<5:0> = b'100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 32-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 32-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Standard Operating Conditions (unless otherwise stated): Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline Param. & Symbol & Characteristics & Min. & Typ & Max. & Units & Comments \\
\hline - & CEFC \({ }^{(1)}\) & External Filter Capacitor Value & 4.7 & 10 & - & \(\mu \mathrm{F}\) & Capacitor must have a low series resistance (< 1 Ohm) \\
\hline
\end{tabular}

Note 1: Typical VCAP (CEFC) voltage \(=1.8 \mathrm{~V}\) when VDD \(\geq\) VDDMIN.

\subsection*{32.2 AC Characteristics and Timing Parameters}

This section defines dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 AC characteristics and timing parameters.

TABLE 32-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Standard Operating Conditions: \(\mathbf{3 . 0 V}\) to 3.6 V \\
(unless otherwise stated)
\end{tabular} \\
AC CHARACTERISTICS & Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
& \begin{tabular}{l} 
Operating voltage VDD range as described in Section 32.1 "DC \\
Characteristics".
\end{tabular} \\
\hline
\end{tabular}

FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS


TABLE 32-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
\begin{tabular}{|l|l|l|c|c|c|c|l|}
\hline Param. & Symbol & \multicolumn{1}{|c|}{ Characteristic } & Min. & Typ. & Max. & Units & \multicolumn{1}{|c|}{ Conditions } \\
\hline \hline DO50 & Cosco & OSC2 pin & - & - & 15 & pF & In XT and HS modes when \\
external clock is used to drive \\
DO56 & CıO & All I/O pins and OSC2 & - & - & 50 & pF & EC mode \\
DO58 & CB & SCLx, SDAx & - & - & 400 & pF & In I \(^{2} \mathrm{C}^{\text {TM }}\) mode \\
\hline
\end{tabular}

FIGURE 32-2: EXTERNAL CLOCK TIMING


TABLE 32-16: EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l} 
Standard Operating Conditions: \(\mathbf{3 . 0 \mathrm { V }}\) to \(\mathbf{3 . 6 \mathrm { V }}\) \\
(unless otherwise stated) \\
Operating temperature \(\quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\\
\\
\hline\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline \multirow[t]{2}{*}{OS10} & \multirow[t]{2}{*}{FIN} & External CLKI Frequency (External clocks allowed only in EC and ECPLL modes) & DC & - & 60 & MHz & EC \\
\hline & & Oscillator Crystal Frequency & \[
\begin{gathered}
3.5 \\
10 \\
32.4
\end{gathered}
\] & \[
32.768
\] & \[
\begin{gathered}
10 \\
40 \\
33.1
\end{gathered}
\] & \begin{tabular}{l}
MHz \\
MHz \\
kHz
\end{tabular} & XT HS Sosc \\
\hline OS20 & Tosc & Tosc \(=1 /\) Fosc & 8.33 & - & DC & ns & - \\
\hline OS25 & TCY & Instruction Cycle Time \({ }^{(\mathbf{2})}\) & 16.67 & - & DC & ns & - \\
\hline OS30 & TosL, TosH & External Clock in (OSC1) High or Low Time & \(0.375 \times\) Tosc & - & \(0.625 \times\) Tosc & ns & EC \\
\hline OS31 & TosR, TosF & External Clock in (OSC1) Rise or Fall Time & - & - & 20 & ns & EC \\
\hline OS40 & TckR & CLKO Rise Time \({ }^{(3)}\) & - & 5.2 & - & ns & - \\
\hline OS41 & TckF & CLKO Fall Time \({ }^{(3)}\) & - & 5.2 & - & ns & - \\
\hline \multirow[t]{2}{*}{OS42} & \multirow[t]{2}{*}{Gm} & \multirow[t]{2}{*}{External Oscillator Transconductance \({ }^{(4)}\)} & & 12 & - & mA/V & \[
\begin{aligned}
& \mathrm{HS}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{TA}=+25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline & & & & 6 & - & mA/V & \[
\begin{aligned}
& \mathrm{XT}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{TA}=+25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
4: This parameter is characterized, but not tested in manufacturing.

\section*{TABLE 32-17: PLL CLOCK TIMING SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline OS50 & FPLLI & PLL Voltage Controlled Oscillator (VCO) Input Frequency Range & 0.8 & - & 8.0 & MHz & ECPLL, XTPLL modes \\
\hline OS51 & FSYS & On-Chip VCO System Frequency & 120 & - & 340 & MHz & - \\
\hline OS52 & TLOCK & PLL Start-up Time (Lock Time) & 0.9 & 1.5 & 3.1 & mS & - \\
\hline OS53 & DcLK & CLKO Stability (Jitter) \({ }^{(\mathbf{2})}\) & -5 & 0.5 & 5 & \% & - \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:
\[
\text { Effective Jitter }=\frac{\text { DCLK }}{\sqrt{\frac{\text { FOSC }}{\text { Time Base or Communication Clock }}}}
\]

For example, if Fosc \(=120 \mathrm{MHz}\) and the SPI bit rate \(=10 \mathrm{MHz}\), the effective jitter is as follows:
\[
\text { Effective Jitter }=\frac{D C L K}{\sqrt{\frac{120}{10}}}=\frac{D C L K}{\sqrt{12}}=\frac{D C L K}{3.464}
\]

TABLE 32-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{Standard Operating Conditions: 3.0 V to 3.6 V (unless otherwise stated) Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline OS54 & FPLLI & PLL Voltage Controlled Oscillator (VCO) Input Frequency Range & 3 & - & 5.5 & MHz & ECPLL, XTPLL modes \\
\hline OS55 & Fsys & On-Chip VCO System Frequency & 60 & - & 120 & MHz & - \\
\hline OS56 & TLOCK & PLL Start-up Time (Lock Time) & 0.9 & 1.5 & 3.1 & mS & - \\
\hline OS57 & DCLK & CLKO Stability (Jitter) & -2 & 0.25 & 2 & \% & - \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 32-19: INTERNAL FRC ACCURACY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC CHARACTERISTICS} & \multicolumn{6}{|l|}{Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline Param. & Characteristic & Min. & Typ. & Max. & Units & \multicolumn{2}{|l|}{Conditions} \\
\hline & \multicolumn{7}{|l|}{Internal FRC Accuracy @ FRC Frequency = 7.37 MHz \({ }^{(1)}\)} \\
\hline F20a & FRC & -2 & - & +2 & \% & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) & VDD \(=3.0-3.6 \mathrm{~V}\) \\
\hline F20b & FRC & -5 & - & +5 & \% & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) & \(\mathrm{VDD}=3.0-3.6 \mathrm{~V}\) \\
\hline
\end{tabular}

Note 1: Frequency calibrated at \(25^{\circ} \mathrm{C}\) and 3.3 V . TUN bits can be used to compensate for temperature drift.

TABLE 32-20: INTERNAL LPRC ACCURACY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC CHARACTERISTICS} & \multicolumn{6}{|l|}{Standard Operating Conditions: 3.0 V to 3.6 V (unless otherwise stated) Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline Param. & Characteristic & Min. & Typ. & Max. & Units & Condit & tions \\
\hline & \multicolumn{7}{|l|}{LPRC @ \(32.768 \mathrm{kHz}^{(1)}\)} \\
\hline F21a & LPRC & -20 & \(\pm 6\) & +20 & \% & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) & \(\mathrm{V} D \mathrm{~L}=3.0-3.6 \mathrm{~V}\) \\
\hline F21b & LPRC & -50 & - & +50 & \% & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) & VDD \(=3.0-3.6 \mathrm{~V}\) \\
\hline
\end{tabular}

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 32-3: I/O TIMING CHARACTERISTICS


Note: Refer to Figure 32-1 for load conditions.

TABLE 32-21: //O TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline DO31 & TIoR & Port Output Rise Time & - & 5 & 10 & ns & - \\
\hline DO32 & TIOF & Port Output Fall Time & - & 5 & 10 & ns & - \\
\hline DI35 & TINP & INTx Pin High or Low Time (input) & 20 & - & - & ns & - \\
\hline DI40 & TRBP & CNx High or Low Time (input) & 2 & - & - & TCY & - \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.

FIGURE 32-4: POWER-ON RESET TIMING CHARACTERISTICS


Power-up Timer Disabled - Clock Sources = (HS, HSPLL, XT, XTPLL and Sosc)


Power-up Timer Enabled - Clock Sources = (FRC, FRCDIVN, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)


Power-up Timer Enabled - Clock Sources \(=(H S, H S P L L, X T, X T P L L\) and Sosc)


Note 1: The Power-up period will be extended if the Power-up sequence completes before the device exits from BOR (VDD < VBOR).
2: The power-up period Includes internal voltage regulator stabilization delay.

FIGURE 32-5: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS


TABLE 32-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature
\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SY00 & TPU & Power-up Period & - & 400 & 600 & \(\mu \mathrm{S}\) & - \\
\hline SY10 & Tost & Oscillator Start-up Time & - & 1024 Tosc & - & - & Tosc = OSC1 period \\
\hline SY11 & TPWRT & Power-up Timer Period & - & - & - & - & \begin{tabular}{l}
See Section 29.1 \\
"Configuration Bits" and LPRC specification F21 (Table 32-20)
\end{tabular} \\
\hline SY12 & TWDT & Watchdog Timer Time-out Period & - & - & - & - & See Section 29.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 32-20) \\
\hline SY13 & TIOZ & I/O High-Impedance from MCLR Low or Watchdog Timer Reset & 0.68 & 0.72 & 1.2 & \(\mu \mathrm{S}\) & - \\
\hline SY20 & TMCLR & \(\overline{\text { MCLR Pulse Width (low) }}\) & 2 & - & - & \(\mu \mathrm{S}\) & - \\
\hline SY30 & Tbor & BOR Pulse Width (low) & 1 & - & - & \(\mu \mathrm{s}\) & - \\
\hline SY35 & TFSCM & Fail-Safe Clock Monitor Delay & - & 500 & 900 & \(\mu \mathrm{S}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline SY36 & TVREG & Voltage regulator standby-to-active mode transition time & - & - & 30 & \(\mu \mathrm{s}\) & - \\
\hline SY37 & Toscdfrc & FRC Oscillator start-up delay & - & - & 29 & \(\mu \mathrm{s}\) & - \\
\hline SY38 & Toscdiprc & LPRC Oscillator start-up delay & - & - & 70 & \(\mu \mathrm{s}\) & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.

FIGURE 32-6: TIMER1-TIMER9 EXTERNAL CLOCK TIMING CHARACTERISTICS


Note: Refer to Figure 32-1 for load conditions.

TABLE 32-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & \multicolumn{2}{|l|}{Characteristic \({ }^{(2)}\)} & Min. & Typ. & Max. & Units & Conditions \\
\hline \multirow[t]{2}{*}{TA10} & \multirow[t]{2}{*}{TtxH} & \multirow[t]{2}{*}{TxCK High Time} & Synchronous
mode & \[
\begin{aligned}
& \text { Greater of: } \\
& \quad 20 \text { or } \\
& (\mathrm{TcY}+20) / \mathrm{N}
\end{aligned}
\] & - & - & ns & Must also meet parameter TA15 \(\mathrm{N}=\) prescaler value (1, 8,64 , 256) \\
\hline & & & Asynchronous & 35 & - & - & ns & - \\
\hline \multirow[t]{2}{*}{TA11} & \multirow[t]{2}{*}{TTXL} & \multirow[t]{2}{*}{TxCK Low Time} & Synchronous mode & \[
\begin{aligned}
& \text { Greater of: } \\
& 20 \text { or } \\
& (\mathrm{TCY}+20) / \mathrm{N}
\end{aligned}
\] & - & - & ns & Must also meet parameter TA15 \(\mathrm{N}=\) prescaler value (1, 8, 64, 256) \\
\hline & & & Asynchronous & 10 & - & - & ns & - \\
\hline TA15 & TtxP & TxCK Input Period & Synchronous mode & \[
\begin{gathered}
\text { Greater of: } \\
40 \text { or } \\
(2 \text { Tcy }+40) / \mathrm{N}
\end{gathered}
\] & - & - & ns & \[
\begin{aligned}
& \mathrm{N}=\text { prescale } \\
& \text { value } \\
& (1,8,64,256)
\end{aligned}
\] \\
\hline OS60 & Ft1 & SOSC1/T1C Input freque (oscillator en ting bit TCS & Oscillator cy Range abled by setT1CON<1>)) & DC & - & 50 & kHz & - \\
\hline TA20 & TCKEXTMRL & Delay from Clock Edge Increment & xternal TxCK Timer & 0.75 Tcy + 40 & - & 1.75 TCY + 40 & ns & - \\
\hline
\end{tabular}

Note 1: Timer1 is a Type A.
2: These parameters are characterized, but are not tested in manufacturing.

TABLE 32-24: TIMER2, TIMER4, TIMER6, TIMER8 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{6}{|c|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Chara & teristic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline TB10 & TtxH & TxCK High Time & Synchronous mode & \[
\begin{aligned}
& \text { Greater of: } \\
& 20 \text { or } \\
& (\text { TCY }+20) / \mathrm{N}
\end{aligned}
\] & - & - & ns & Must also meet parameter TB15 \(\mathrm{N}=\) prescale value
\[
(1,8,64,256)
\] \\
\hline TB11 & TtxL & TxCK Low Time & Synchronous mode & \[
\begin{aligned}
& \text { Greater of: } \\
& 20 \text { or } \\
& (\mathrm{Tcy}+20) / \mathrm{N}
\end{aligned}
\] & - & - & ns & Must also meet parameter TB15 \(\mathrm{N}=\) prescale value
\[
(1,8,64,256)
\] \\
\hline TB15 & TtxP & TxCK Input Period & Synchronous mode & \[
\begin{gathered}
\text { Greater of: } \\
40 \text { or } \\
(2 \mathrm{Tcy}+40) / \mathrm{N} \\
\hline
\end{gathered}
\] & - & - & ns & \[
\begin{array}{|l|}
\hline \mathrm{N}=\text { prescale } \\
\text { value } \\
(1,8,64,256) \\
\hline
\end{array}
\] \\
\hline TB20 & TCKEXTMRL & Delay from Clock Edge Increment & External TxCK to Timer & 0.75 TCY + 40 & - & 1.75 TCY + 40 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 32-25: TIMER3, TIMER5, TIMER7, TIMER9 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Charac & teristic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline TC10 & TtxH & TxCK High Time & Synchronous & TCY + 20 & - & - & ns & Must also meet parameter TC15 \\
\hline TC11 & TtxL & TxCK Low Time & Synchronous & TCY + 20 & - & - & ns & Must also meet parameter TC15 \\
\hline TC15 & TtxP & TxCK Input Period & Synchronous, with prescaler & 2 TCY + 40 & - & - & ns & \[
\begin{array}{|l}
\hline N=\text { prescale } \\
\text { value } \\
(1,8,64,256) \\
\hline
\end{array}
\] \\
\hline TC20 & TCKEXTMRL & Delay from Clock Edge ment & xternal TxCK o Timer Incre- & 0.75 Tcy + 40 & - & 1.75 TCY + 40 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.

FIGURE 32-7: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS


TABLE 32-26: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{```
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature }-4\mp@subsup{0}{}{\circ}\textrm{C}\leqT\textrm{TA}\leq+8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Industrial
-40}\mp@subsup{}{}{\circ}\textrm{C}\leqT\textrm{TA}\leq+12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Extended
```} \\
\hline Param. & Symbol & Characte & istic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline TQ10 & TtQH & TQCK High Time & Synchronous, with prescaler & \[
\begin{gathered}
\hline \text { [Greater of } \\
(12.5 \text { or } \\
0.5 \mathrm{TCY}) / \mathrm{N}] \\
+25
\end{gathered}
\] & - & - & ns & Must also meet parameter TQ15. \\
\hline TQ11 & TtQL & TQCK Low Time & Synchronous, with prescaler & \[
\begin{gathered}
\hline \text { [Greater of } \\
(12.5 \text { or } \\
0.5 \mathrm{TCY}) / \mathrm{N}] \\
+25
\end{gathered}
\] & - & - & ns & Must also meet parameter TQ15. \\
\hline TQ15 & TtQP & TQCP Input Period & Synchronous, with prescaler & [Greater of (25 or TcY)
\[
/ \mathrm{N}]+50
\] & - & - & ns & - \\
\hline TQ20 & TCKEXTMRL & \multicolumn{2}{|l|}{Delay from External TxCK Clock Edge to Timer Increment} & - & 1 & TCY & - & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 32-8: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

Note: Refer to Figure 32-1 for load conditions.

TABLE 32-27: INPUT CAPTURE MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{6}{|l|}{```
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature
 -40}\mp@subsup{}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Industrial
 -40}\mp@subsup{}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Extended
```} \\
\hline Param. & Symbol & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ICx Input Low Time}} & Min. & Max. & Units & \multicolumn{2}{|r|}{Conditions} \\
\hline IC10 & TccL & & & \[
\begin{gathered}
\hline \hline \text { Greater of } \\
(12.5 \text { or } 0.5 \mathrm{TcY}) / \mathrm{N}] \\
+25
\end{gathered}
\] & - & ns & \begin{tabular}{l}
Must also \\
meet parameter IC15.
\end{tabular} & \multirow[t]{3}{*}{\(\mathrm{N}=\) prescale value (1, 4, 16)} \\
\hline IC11 & Tcch & ICx Inpu & High Time & \[
\begin{gathered}
\text { [Greater of } \\
\begin{array}{c}
(12.5 \text { or } 0.5 \mathrm{TcY}) / \mathrm{N}] \\
+25
\end{array}
\end{gathered}
\] & - & ns & Must also meet parameter IC15. & \\
\hline IC15 & TccP & ICx Inpu & Period & \[
\begin{gathered}
\text { [Greater of } \\
(25 \text { or } 1 \text { TCY)/N] } \\
+50
\end{gathered}
\] & - & ns & - & \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-9: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


Note: Refer to Figure 32-1 for load conditions.

TABLE 32-28: OUTPUT COMPARE MODULE TIMING REQUIREMENTS
\begin{tabular}{|l|l|l|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{} & \multicolumn{4}{l|}{\begin{tabular}{l} 
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline \hline OC10 & TccF & OCx Output Fall Time & - & - & - & ns & See parameter DO32 \\
\hline OC11 & TccR & OCx Output Rise Time & - & - & - & ns & See parameter DO31 \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
FIGURE 32-10: OC/PWM MODULE TIMING CHARACTERISTICS
\(\square\)

TABLE 32-29: OC/PWM MODE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature
\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline OC15 & TFD & Fault Input to PWM I/O Change & - & - & TCY + 20 & ns & - \\
\hline OC20 & TflT & Fault Input Pulse Width & TCY + 20 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 32-11: HIGH-SPEED PWM MODULE FAULT TIMING CHARACTERISTICS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)


FIGURE 32-12: HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\(\square\)

TABLE 32-30: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\begin{tabular}{|l|l|l|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{} & \multicolumn{4}{|c|}{\(\begin{array}{l}\text { Standard Operating Conditions: 3.0V to 3.6V } \\
\text { (unless otherwise stated) } \\
\text { Operating temperature }\end{array}\)} \\
\hline \multicolumn{3}{|c|}{\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial } \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}\(]\)

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 32-13: QEA/QEB INPUT CHARACTERISTICS
(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)


TABLE 32-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\[
\begin{array}{|l}
\hline \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
\text { (unless otherwise stated) } \\
\text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
\\
\qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{array}
\]} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline TQ30 & TQuL & Quadrature Input Low Time & 6 Tcy & - & ns & - \\
\hline TQ31 & TQuH & Quadrature Input High Time & 6 Tcy & - & ns & - \\
\hline TQ35 & TQuIN & Quadrature Input Period & 12 Tcy & - & ns & - \\
\hline TQ36 & TQuP & Quadrature Phase Period & 3 Tcy & - & ns & - \\
\hline TQ40 & TQUFL & Filter Time to Recognize Low, with Digital Filter & 3 * \({ }^{\text {* TCY }}\) & - & ns & \[
\begin{aligned}
& \mathrm{N}=1,2,4,16,32,64, \\
& 128 \text { and } 256 \text { (Note 3) }
\end{aligned}
\] \\
\hline TQ41 & TQuFH & Filter Time to Recognize High, with Digital Filter & 3 * \({ }^{\text {* TCY }}\) & - & ns & \[
\begin{array}{|l|}
\hline \mathrm{N}=1,2,4,16,32,64, \\
128 \text { and } 256 \text { (Note 3) } \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: \(\mathrm{N}=\) Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33E/PIC24E Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

FIGURE 32-14: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)


TABLE 32-32: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Max. & Units & Conditions \\
\hline TQ50 & TqIL & Filter Time to Recognize Low, with Digital Filter & 3 * * Tcy & - & ns & \[
\begin{array}{|l|}
\hline \mathrm{N}=1,2,4,16,32,64, \\
128 \text { and } 256 \text { (Note 2) } \\
\hline
\end{array}
\] \\
\hline TQ51 & TqiH & Filter Time to Recognize High, with Digital Filter & 3 * N TCY & - & ns & \[
\begin{array}{|l|}
\hline N=1,2,4,16,32,64, \\
128 \text { and } 256 \text { (Note 2) } \\
\hline
\end{array}
\] \\
\hline TQ55 & Tqidxr & Index Pulse Recognized to Position Counter Reset (ungated index) & 3 Tcy & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

TABLE 32-33: SPI1, SPI3, AND SPI4 MAXIMUM DATA/CLOCK RATE SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Maximum Data Rate & Master Transmit Only (Half-Duplex) & Master Transmit/Receive (Full-Duplex) & Slave Transmit/Receive (Full-Duplex) & CKE & CKP & SMP \\
\hline 15 MHz & Table 32-33 & - & - & 0,1 & 0,1 & 0,1 \\
\hline 9 MHz & - & Table 32-34 & - & 1 & 0,1 & 1 \\
\hline 9 MHz & - & Table 32-35 & - & 0 & 0,1 & 1 \\
\hline 15 MHz & - & - & Table 32-36 & 1 & 0 & 0 \\
\hline 11 MHz & - & - & Table 32-37 & 1 & 1 & 0 \\
\hline 15 MHz & - & - & Table 32-38 & 0 & 1 & \(\bigcirc\) \\
\hline 11 MHz & - & - & Table 32-39 & 0 & 0 & 0 \\
\hline
\end{tabular}

FIGURE 32-15: SPI1, SPI3, AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS


FIGURE 32-16: SPI1, SPI3, AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS


TABLE 32-34: SPI1, SPI3, AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdiV2scH, TdiV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns . Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-17: SPI1, SPI3, AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS


TABLE 32-35: SPI1, SPI3, AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 9 & MHz & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & \begin{tabular}{l}
TscH2doV, \\
TscL2doV
\end{tabular} & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2sc, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-18: SPI1, SPI3, AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x , SMP = 1) TIMING CHARACTERISTICS


Note: Refer to Figure 32-1 for load conditions.

TABLE 32-36: SPI1, SPI3, AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP =1) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 9 & MHz & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and see Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & \[
\begin{aligned}
& \hline \text { TdoV2scH, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-19: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS


TABLE 32-37: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & \[
\begin{aligned}
& \hline \text { TdoV2scH, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{\mathrm{SSx}} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{S S x} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & \(1.5 \mathrm{TCY}+40\) & - & - & ns & See Note 4 \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & - & - & 50 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPlx pins.

FIGURE 32-20: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS


TABLE 32-38: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE =1, CKP = 1, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 11 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{S S x} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\text { SSx } \uparrow \text { after SCKx Edge }}\) & \(1.5 \mathrm{TCY}+40\) & - & - & ns & See Note 4 \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & - & - & 50 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-21: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS


TABLE 32-39: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
& \text { (unless otherwise stated) } \\
& \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& \\
& \\
& \hline-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{S S x} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & \(1.5 \mathrm{TCY}+40\) & - & - & ns & See Note 4 \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPlx pins.

FIGURE 32-22: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS


TABLE 32-40: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
& \text { (unless otherwise stated) } \\
& \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& \\
& \\
& \hline-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 11 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{S S x} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & \(1.5 \mathrm{TCY}+40\) & - & - & ns & See Note 4 \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

TABLE 32-41: SPI2 MAXIMUM DATAICLOCK RATE SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Maximum Data Rate & Master Transmit Only (Half-Duplex) & Master Transmit/Receive (Full-Duplex) & Slave Transmit/Receive (Full-Duplex) & CKE & CKP & SMP \\
\hline 15 MHz & Table 32-42 & - & - & 0,1 & 0,1 & 0,1 \\
\hline 10 MHz & - & Table 32-43 & - & 1 & 0,1 & 1 \\
\hline 10 MHz & - & Table 32-44 & - & 0 & 0,1 & 1 \\
\hline 15 MHz & - & - & Table 32-45 & 1 & 0 & 0 \\
\hline 11 MHz & - & - & Table 32-46 & 1 & 1 & 0 \\
\hline 15 MHz & - & - & Table 32-47 & 0 & 1 & 0 \\
\hline 11 MHz & - & - & Table 32-48 & 0 & 0 & 0 \\
\hline
\end{tabular}

FIGURE 32-23: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS


FIGURE 32-24: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS


TABLE 32-42: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdiV2scH, TdiV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-25: SPI2 MASTER MODE (FULL-DUPLEX, CKE =1, CKP = X, SMP = 1) TIMING CHARACTERISTICS


TABLE 32-43: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 10 & MHz & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2sc, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 100 ns . The clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-26: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = X, SMP = 1) TIMING CHARACTERISTICS


Note: Refer to Figure 32-1 for load conditions.

TABLE 32-44: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 10 & MHz & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and see Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & \[
\begin{aligned}
& \hline \text { TdoV2scH, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ." column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-27: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS


TABLE 32-45: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{|l} 
Standard Operating Conditions: \(\mathbf{3 . 0 V}\) to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\\
\hline\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{S S x} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & - & - & 50 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPlx pins.

FIGURE 32-28: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS


TABLE 32-46: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\[
\begin{array}{|l}
\hline \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
\text { (unless otherwise stated) } \\
\begin{array}{ll}
\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{array}
\end{array}
\]} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 11 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH, TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & - & - & 50 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-29: SPI2 SLAVE MODE (FULL-DUPLEX CKE \(=0\), CKP \(=1\), SMP \(=0\) ) TIMING CHARACTERISTICS


TABLE 32-47: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH, TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns . Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPlx pins.

FIGURE 32-30: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS


TABLE 32-48: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 11 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{S S x} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH, TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-31: I2Cx BUS STARTISTOP BITS TIMING CHARACTERISTICS (MASTER MODE)


Note: Refer to Figure 32-1 for load conditions.

FIGURE 32-32: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)


TABLE 32-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
& \text { (unless otherwise stated) } \\
& \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& \qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]} \\
\hline Param. & Symbol & \multicolumn{2}{|l|}{Characteristic} & Min. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline \multirow[t]{3}{*}{IM10} & \multirow[t]{3}{*}{TLO:SCL} & \multirow[t]{3}{*}{Clock Low Time} & 100 kHz mode & TcY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 400 kHz mode & Tcy/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 1 MHz mode \(^{(2)}\) & TCY/2 (BRG + 2) & - & \(\mu \mathrm{S}\) & - \\
\hline \multirow[t]{3}{*}{IM11} & \multirow[t]{3}{*}{THI:SCL} & \multirow[t]{3}{*}{Clock High Time} & 100 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 400 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & TCY/2 (BRG + 2) & - & \(\mu \mathrm{S}\) & - \\
\hline \multirow[t]{3}{*}{IM20} & \multirow[t]{3}{*}{TF:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Fall Time} & 100 kHz mode & - & 300 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1 \mathrm{CB}\) & 300 & ns & \\
\hline & & & 1 MHz mode \(^{(2)}\) & - & 100 & ns & \\
\hline \multirow[t]{3}{*}{IM21} & \multirow[t]{3}{*}{TR:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Rise Time} & 100 kHz mode & - & 1000 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Cв & 300 & ns & \\
\hline & & & 1 MHz mode \(^{(2)}\) & - & 300 & ns & \\
\hline \multirow[t]{3}{*}{IM25} & \multirow[t]{3}{*}{Tsu:DAT} & \multirow[t]{3}{*}{Data Input Setup Time} & 100 kHz mode & 250 & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 100 & - & ns & \\
\hline & & & 1 MHz mode \(^{(2)}\) & 40 & - & ns & \\
\hline \multirow[t]{3}{*}{IM26} & \multirow[t]{3}{*}{THD:DAT} & \multirow[t]{3}{*}{Data Input Hold Time} & 100 kHz mode & 0 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0 & 0.9 & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \(^{(2)}\) & 0.2 & - & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM30} & \multirow[t]{3}{*}{Tsu:STA} & \multirow[t]{3}{*}{Start Condition Setup Time} & 100 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{Only relevant for Repeated Start condition} \\
\hline & & & 400 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & TCY/2 (BRG + 2) & - & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM31} & \multirow[t]{3}{*}{THD:STA} & \multirow[t]{3}{*}{Start Condition Hold Time} & 100 kHz mode & Tcy/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{After this period the first clock pulse is generated} \\
\hline & & & 400 kHz mode & TCY/2 (BRG +2) & - & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & TCY/2 (BRG + 2) & - & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM33} & \multirow[t]{3}{*}{Tsu:sto} & \multirow[t]{3}{*}{Stop Condition Setup Time} & 100 kHz mode & Tcy/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & Tcy/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & TcY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IM34} & \multirow[t]{3}{*}{THD:STO} & \multirow[t]{3}{*}{Stop Condition Hold Time} & 100 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & Tcy/2 (BRG + 2) & - & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & TCY/2 (BRG + 2) & - & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM40} & \multirow[t]{3}{*}{TAA:SCL} & \multirow[t]{3}{*}{Output Valid From Clock} & 100 kHz mode & - & 3500 & ns & - \\
\hline & & & 400 kHz mode & - & 1000 & ns & - \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & - & 400 & ns & - \\
\hline \multirow[t]{3}{*}{IM45} & \multirow[t]{3}{*}{TBF:SDA} & \multirow[t]{3}{*}{Bus Free Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{Time the bus must be free before a new transmission can start} \\
\hline & & & 400 kHz mode & 1.3 & - & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & 0.5 & - & \(\mu \mathrm{S}\) & \\
\hline IM50 & Св & \multicolumn{2}{|l|}{Bus Capacitive Loading} & - & 400 & pF & - \\
\hline IM51 & TPGD & \multicolumn{2}{|l|}{Pulse Gobbler Delay} & 65 & 390 & ns & See Note 3 \\
\hline
\end{tabular}

Note 1: \(\quad \mathrm{BRG}\) is the value of the \(\mathrm{I}^{2} \mathrm{C}\) Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit ( \(\left.\mathrm{I}^{2} \mathrm{C}^{\mathrm{TM}}\right)\) " (DS70330) in the "dsPIC33E/PIC24E Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.
2: \(\quad\) Maximum pin capacitance \(=10 \mathrm{pF}\) for all I2Cx pins (for 1 MHz mode only).
3: Typical value for this parameter is 130 ns.
4: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-33: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)


FIGURE 32-34: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)


TABLE 32-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & \multicolumn{2}{|c|}{Characteristic} & Min. & Max. & Units & Conditions \\
\hline \multirow[t]{3}{*}{IS10} & \multirow[t]{3}{*}{Tlo:SCL} & \multirow[t]{3}{*}{Clock Low Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 400 kHz mode & 1.3 & - & \(\mu \mathrm{S}\) & - \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.5 & - & \(\mu \mathrm{S}\) & - \\
\hline \multirow[t]{3}{*}{IS11} & \multirow[t]{3}{*}{THI:SCL} & \multirow[t]{3}{*}{Clock High Time} & 100 kHz mode & 4.0 & - & \(\mu \mathrm{s}\) & Device must operate at a minimum of 1.5 MHz \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{S}\) & Device must operate at a minimum of 10 MHz \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.5 & - & \(\mu \mathrm{S}\) & - \\
\hline \multirow[t]{3}{*}{IS20} & \multirow[t]{3}{*}{TF:SCL} & \multirow[t]{3}{*}{\begin{tabular}{l}
SDAx and SCLx \\
Fall Time
\end{tabular}} & 100 kHz mode & - & 300 & ns & \multirow[t]{3}{*}{Св is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Св & 300 & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & - & 100 & ns & \\
\hline \multirow[t]{3}{*}{IS21} & \multirow[t]{3}{*}{TR:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Rise Time} & 100 kHz mode & - & 1000 & ns & \multirow[t]{3}{*}{Cв is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Св & 300 & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & - & 300 & ns & \\
\hline \multirow[t]{3}{*}{IS25} & \multirow[t]{3}{*}{Tsu:DAT} & \multirow[t]{3}{*}{Data Input Setup Time} & 100 kHz mode & 250 & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 100 & - & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 100 & - & ns & \\
\hline \multirow[t]{3}{*}{IS26} & \multirow[t]{3}{*}{THD:DAT} & \multirow[t]{3}{*}{Data Input Hold Time} & 100 kHz mode & 0 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0 & 0.9 & \(\mu \mathrm{S}\) & \\
\hline & & & \(1 \mathrm{MHz} \mathrm{mode}{ }^{(1)}\) & 0 & 0.3 & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IS30} & \multirow[t]{3}{*}{Tsu:STA} & \multirow[t]{3}{*}{Start Condition Setup Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{Only relevant for Repeated Start condition} \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.25 & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IS31} & \multirow[t]{3}{*}{THD:STA} & \multirow[t]{3}{*}{Start Condition Hold Time} & 100 kHz mode & 4.0 & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{After this period, the first clock pulse is generated} \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.25 & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IS33} & \multirow[t]{3}{*}{Tsu:STO} & \multirow[t]{3}{*}{Stop Condition Setup Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{S}\) & \\
\hline & & & \(1 \mathrm{MHz} \mathrm{mode}{ }^{(1)}\) & 0.6 & - & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IS34} & \multirow[t]{3}{*}{THD:STO} & \multirow[t]{3}{*}{Stop Condition Hold Time} & 100 kHz mode & 4 & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.25 & & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IS40} & \multirow[t]{3}{*}{TAA:SCL} & \multirow[t]{3}{*}{Output Valid From Clock} & 100 kHz mode & 0 & 3500 & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0 & 1000 & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0 & 350 & ns & \\
\hline \multirow[t]{3}{*}{IS45} & \multirow[t]{3}{*}{TBF:SDA} & \multirow[t]{3}{*}{Bus Free Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{Time the bus must be free before a new transmission can start} \\
\hline & & & 400 kHz mode & 1.3 & - & \(\mu \mathrm{S}\) & \\
\hline & & & \(1 \mathrm{MHz} \mathrm{mode}{ }^{(1)}\) & 0.5 & - & \(\mu \mathrm{S}\) & \\
\hline IS50 & Св & \multicolumn{2}{|l|}{Bus Capacitive Loading} & - & 400 & pF & - \\
\hline IS51 & TPGD & Pulse Gobbler De & & 65 & 390 & ns & See Note 2 \\
\hline
\end{tabular}

Note 1: Maximum pin capacitance \(=10 \mathrm{pF}\) for all I2Cx pins (for 1 MHz mode only).
2: The Typical value for this parameter is 130 ns .
3: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-35: \(\quad E^{\text {ECAN }}{ }^{\text {TM }}\) MODULE I/O TIMING CHARACTERISTICS


TABLE 32-51: ECAN \({ }^{\text {TM }}\) MODULE I/O TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline CA10 & TioF & Port Output Fall Time & - & - & - & ns & See parameter DO32 \\
\hline CA11 & TioR & Port Output Rise Time & - & - & - & ns & See parameter DO31 \\
\hline CA20 & Tcwf & Pulse Width to Trigger CAN Wake-up Filter & 120 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 32-36: UART MODULE I/O TIMING CHARACTERISTICS


TABLE 32-52: UART MODULE I/O TIMING REQUIREMENTS
\begin{tabular}{|l|l|l|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{} & \multicolumn{4}{|c|}{\begin{tabular}{l} 
Standard Operating Conditions: 3.0 V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\)
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Param. } & Symbol & \multicolumn{1}{|c|}{ Characteristic \(^{(1)}\)} & Min. & Typ. \({ }^{\text {(2) }}\) & Max. & Units & Conditions \\
\hline \hline UA10 & Tuabaud & UART Baud Time & 66.67 & - & - & ns & - \\
\hline UA11 & Fbaud & UART Baud Frequency & - & - & 15 & mbps & - \\
\hline UA20 & Tcwf & \begin{tabular}{l} 
Start Bit Pulse Width to Trigger \\
UART Wake-up
\end{tabular} & 500 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 32-53: USB OTG TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline USB313 & VUSB \({ }^{(2)}\) & USB Voltage & 3.0 & - & 3.6 & V & Voltage on bus must be in this range for proper USB operation \\
\hline USB315 & VILUSB & Input Low Voltage for USB Buffer & - & - & 0.8 & V & - \\
\hline USB316 & VIHUSB & Input High Voltage for USB Buffer & 2.0 & - & - & V & - \\
\hline USB318 & VDIFS & Differential Input Sensitivity & - & - & 0.2 & V & - \\
\hline USB319 & VCM & Differential Common Mode Range & 0.8 & - & 2.5 & V & The difference between D+ and D- must be within this range while VCM is met \\
\hline USB320 & Zout & Driver Output Impedance & 28.0 & - & 44.0 & \(\Omega\) & - \\
\hline USB321 & Vol & Voltage Output Low & 0.0 & - & 0.3 & V & \[
\begin{array}{|l|}
\hline 14.25 \mathrm{k} \Omega \text { load connected to } \\
3.6 \mathrm{~V} \\
\hline
\end{array}
\] \\
\hline USB322 & VOH & Voltage Output High & 2.8 & - & 3.6 & V & \(14.25 \mathrm{k} \Omega\) load connected to ground \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: If the USB module is not being used, this pin must be connected to VDD.

TABLE 32-54: ADC MODULE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. & Max. & Units & Conditions \\
\hline \multicolumn{8}{|c|}{Device Supply} \\
\hline AD01 & AVDD \({ }^{(2)}\) & Module VDD Supply & Greater of VDD-0.3 or 3.0 & - & Lesser of VDD +0.3 or 3.6 & V & - \\
\hline AD02 & AVss & Module Vss Supply & Vss - 0.3 & - & Vss + 0.3 & V & - \\
\hline \multicolumn{8}{|c|}{Reference Inputs} \\
\hline AD05 & VREFH & Reference Voltage High & AVss + 2.5 & - & AVDD & V & \begin{tabular}{l}
See Note 1 \\
VREFH = VREF + \\
VREFL = VREF-
\end{tabular} \\
\hline AD05a & & & 3.0 & - & 3.6 & V & \[
\begin{aligned}
& \hline \text { VREFH }=\text { AVDD } \\
& \text { VREFL }=A V S S=0
\end{aligned}
\] \\
\hline AD06 & Vrefl & Reference Voltage Low & AVss & - & AVDD - 2.5 & V & See Note 1 \\
\hline AD06a & & & 0 & - & 0 & V & \[
\begin{aligned}
& \hline \text { VREFH }=A V D D \\
& \text { VREFL }=A V S S=0
\end{aligned}
\] \\
\hline AD07 & VREF & Absolute Reference Voltage & 2.5 & - & 3.6 & V & VREF = VREFH - VREFL \\
\hline AD08 & IREF & Current Drain & - & - & \[
\begin{gathered}
10 \\
600
\end{gathered}
\] & \(\mu \mathrm{A}\) \(\mu \mathrm{A}\) & ADC off ADC on \\
\hline AD09 & IAD & Operating Current & - & \[
\begin{aligned}
& 9.0 \\
& 3.2
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] & ADC operating in 10-bit mode, see Note 1 ADC operating in 12-bit mode, see Note 1 \\
\hline \multicolumn{8}{|c|}{Analog Input} \\
\hline AD12 & VINH & Input Voltage Range VinH & VINL & - & Vrefr & V & This voltage reflects Sample \& Hold Channels \(0,1,2\), and 3 (CH0-CH3), positive input \\
\hline AD13 & VINL & Input Voltage Range VINL & VREFL & - & AVss + 1V & V & This voltage reflects Sample \& Hold Channels \(0,1,2\), and 3 (CH0-CH3), negative input \\
\hline AD17 & RIN & Recommended Impedance of Analog Voltage Source & - & - & 200 & \(\Omega\) & - \\
\hline
\end{tabular}

Note 1: These parameters are not characterized or tested in manufacturing.
2: The voltage difference between AVDD and VDD cannot exceed 300 mV at any time during operation or start-up.

TABLE 32-55: ADC MODULE SPECIFICATIONS (12-BIT MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. & Max. & Units & Conditions \\
\hline \multicolumn{8}{|c|}{ADC Accuracy (12-bit Mode) - Measurements with external Vref+/Vref-} \\
\hline AD20a & Nr & Resolution & \multicolumn{3}{|c|}{12 data bits} & bits & - \\
\hline AD21a & INL & Integral Nonlinearity & -2 & - & +2 & LSb & \[
\begin{aligned}
& \text { VINL = AVSS = VREFL = OV, AVDD } \\
& =\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD22a & DNL & Differential Nonlinearity & >-1 & - & <1 & LSb & \[
\begin{aligned}
& \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \mathrm{AVDD} \\
& =\mathrm{VREFH}=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD23a & GERR & Gain Error & 1.25 & 1.5 & 3 & LSb & \[
\begin{aligned}
& \text { VINL = AVsS }=\text { VREFL }=0 \mathrm{~V} \text {, AVDD } \\
& =\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD24a & EOFF & Offset Error & 1.25 & 1.52 & 2 & LSb & \[
\begin{aligned}
& \text { VINL = AVsS }=\text { VREFL }=0 \mathrm{~V} \text {, AVDD } \\
& =\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD25a & - & Monotonicity & - & - & - & - & Guaranteed \\
\hline \multicolumn{8}{|c|}{ADC Accuracy (12-bit Mode) - Measurements with internal Vref+/Vref-} \\
\hline AD20a & Nr & Resolution & & data b & & bits & - \\
\hline AD21a & INL & Integral Nonlinearity & -2 & - & +2 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD22a & DNL & Differential Nonlinearity & >-1 & - & <1 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD23a & GERR & Gain Error & 2 & 3 & 7 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD24a & Eoff & Offset Error & 2 & 3 & 5 & LSb & \(\mathrm{VINL}=\mathrm{AVss}=0 \mathrm{~V}, \mathrm{AV}\) do \(=3.6 \mathrm{~V}\) \\
\hline AD25a & - & Monotonicity & - & - & - & - & Guaranteed \\
\hline \multicolumn{8}{|c|}{Dynamic Performance (12-bit Mode)} \\
\hline AD30a & THD & Total Harmonic Distortion & - & - & -75 & dB & - \\
\hline AD31a & SINAD & Signal to Noise and Distortion & 68.5 & 69.5 & - & dB & - \\
\hline AD32a & SFDR & Spurious Free Dynamic Range & 80 & - & - & dB & - \\
\hline AD33a & FNYQ & Input Signal Bandwidth & - & - & 250 & kHz & - \\
\hline AD34a & ENOB & Effective Number of Bits & 11.09 & 11.3 & - & bits & - \\
\hline
\end{tabular}

TABLE 32-56: ADC MODULE SPECIFICATIONS (10-BIT MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. & Max. & Units & Conditions \\
\hline \multicolumn{8}{|c|}{ADC Accuracy (10-bit Mode) - Measurements with external Vref+/Vref-} \\
\hline AD20b & Nr & Resolution & \multicolumn{3}{|c|}{10 data bits} & bits & - \\
\hline AD21b & INL & Integral Nonlinearity & -1 & - & +1 & LSb & \[
\begin{aligned}
& \text { VINL = AVSS }=\text { VREFL }=0 \mathrm{~V}, \\
& \text { AVDD = VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD22b & DNL & Differential Nonlinearity & >-1 & - & <1 & LSb & \[
\begin{aligned}
& \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\
& \text { AVDD }=\mathrm{VREFH}=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD23b & GERR & Gain Error & 1 & 3 & 6 & LSb & \[
\begin{aligned}
& \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\
& \text { AVDD }=\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD24b & EOFF & Offset Error & 1 & 2 & 3 & LSb & \[
\begin{aligned}
& \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\
& \text { AVDD }=\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD25b & - & Monotonicity & - & - & - & - & Guaranteed \\
\hline \multicolumn{8}{|c|}{ADC Accuracy (10-bit Mode) - Measurements with internal Vref+/Vref-} \\
\hline AD20b & Nr & Resolution & & data b & & bits & - \\
\hline AD21b & INL & Integral Nonlinearity & -1.5 & - & +1.5 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AV} D \mathrm{l}=3.6 \mathrm{~V}\) \\
\hline AD22b & DNL & Differential Nonlinearity & >-1 & - & <1 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD23b & GERR & Gain Error & 1 & 5 & 6 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD24b & Eoff & Offset Error & 1 & 2 & 5 & LSb & \(\mathrm{VINL}=\mathrm{AVss}=0 \mathrm{~V}, \mathrm{AV} D=3.6 \mathrm{~V}\) \\
\hline AD25b & - & Monotonicity & - & - & - & - & Guaranteed \\
\hline \multicolumn{8}{|c|}{Dynamic Performance (10-bit Mode)} \\
\hline AD30b & THD & Total Harmonic Distortion & - & - & -64 & dB & - \\
\hline AD31b & SINAD & Signal to Noise and Distortion & 57 & 58.5 & - & dB & - \\
\hline AD32b & SFDR & Spurious Free Dynamic Range & 72 & - & - & dB & - \\
\hline AD33b & FNYQ & Input Signal Bandwidth & - & - & 550 & kHz & - \\
\hline AD34b & ENOB & Effective Number of Bits & 9.16 & 9.4 & - & bits & - \\
\hline
\end{tabular}

FIGURE 32-37: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM \(=0, S S R C<2: 0>=000, S S R C G=0)\)


TABLE 32-57: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature
\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. & Max. & Units & Conditions \\
\hline \multicolumn{8}{|c|}{Clock Parameters} \\
\hline AD50 & TAd & ADC Clock Period & 117.6 & - & - & ns & - \\
\hline AD51 & tRC & ADC Internal RC Oscillator Period & - & 250 & - & ns & - \\
\hline \multicolumn{8}{|c|}{Conversion Rate} \\
\hline AD55 & tconv & Conversion Time & - & 14 TAD & & ns & - \\
\hline AD56 & FCNV & Throughput Rate & - & - & 500 & Ksps & - \\
\hline AD57 & TSAMP & Sample Time & 3 TAD & - & - & - & - \\
\hline \multicolumn{8}{|c|}{Timing Parameters} \\
\hline AD60 & tPCS & Conversion Start from Sample Trigger \({ }^{(2)}\) & 2 TAD & - & 3 TAD & - & Auto convert trigger not selected \\
\hline AD61 & tPSS & Sample Start from Setting Sample (SAMP) bit \({ }^{(2)}\) & 2 TAD & - & 3 TAD & - & - \\
\hline AD62 & tcss & Conversion Completion to Sample Start (ASAM = 1) \({ }^{(2)}\) & - & 0.5 TAD & - & - & - \\
\hline AD63 & tDPU & Time to Stabilize Analog Stage from ADC Off to ADC On \({ }^{(2)}\) & - & - & 20 & \(\mu \mathrm{s}\) & See Note 3 \\
\hline
\end{tabular}

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
2: These parameters are characterized but not tested in manufacturing.
3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

FIGURE 32-38: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS \(<1: 0>=01\), SIMSAM \(=0\), ASAM \(=0, \operatorname{SSRC}<2: 0>=000\), SSRCG \(=0\) )


FIGURE 32-39: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> \(=01\), SIMSAM \(=0\), ASAM \(=1, S S R C<2: 0>=111, S S R C G=0, S A M C<4: 0>=00010)\)

(1) - Software sets ADxCON1. ADON to start AD operation.
(2) - Sampling starts after discharge period. TSAMP is described in Section 16. "Analog-to-Digital Converter (ADC)" (DS70621) of the "dsPIC33E/PIC24E Family Reference Manual".
(3) - Convert bit 9 .
(4) - Convert bit 8 .
(5) - Convert bit 0 .
(6) - One TAD for end of conversion
(7) - Begin conversion of next channel.
(8) - Sample for time specified by \(\mathrm{SAMC}<4: 0>\).

TABLE 32-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline \multicolumn{8}{|c|}{Clock Parameters} \\
\hline AD50 & TAD & ADC Clock Period & 76 & - & - & ns & - \\
\hline AD51 & tRC & ADC Internal RC Oscillator Period & - & 250 & - & ns & - \\
\hline \multicolumn{8}{|c|}{Conversion Rate} \\
\hline AD55 & tconv & Conversion Time & - & 12 TAD & - & - & - \\
\hline AD56 & FCNV & Throughput Rate & - & - & 1.1 & Msps & Using Sequential Sampling \\
\hline AD57 & Tsamp & Sample Time & 2 Tad & - & - & - & - \\
\hline \multicolumn{8}{|c|}{Timing Parameters} \\
\hline AD60 & tPCS & Conversion Start from Sample Trigger \({ }^{(1)}\) & 2 TAD & - & 3 TAD & - & Auto-Convert Trigger not selected \\
\hline AD61 & tPSS & Sample Start from Setting Sample (SAMP) bit \({ }^{(1)}\) & 2 TAD & - & 3 TAD & - & - \\
\hline AD62 & tcss & Conversion Completion to Sample Start (ASAM = 1) \({ }^{\mathbf{1})}\) & - & 0.5 TAD & - & - & - \\
\hline AD63 & tDPU & Time to Stabilize Analog Stage from ADC Off to ADC On \({ }^{(1)}\) & - & - & 20 & \(\mu \mathrm{S}\) & See Note 3 \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADxCON1<ADON> = 1). During this time, the ADC result is indeterminate.

FIGURE 32-40: DCI MODULE (MULTI-CHANNEL, I \({ }^{2}\) S MODES) TIMING CHARACTERISTICS


TABLE 32-59: DCI MODULE (MULTI-CHANNEL, \(I^{2}\) S MODES) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline \multirow[t]{2}{*}{CS10} & \multirow[t]{2}{*}{TCSCKL} & CSCK Input Low Time (CSCK pin is an input) & TCy/2 + 20 & - & - & ns & - \\
\hline & & CSCK Output Low Time \({ }^{(3)}\) (CSCK pin is an output) & 30 & - & - & ns & - \\
\hline \multirow[t]{2}{*}{CS11} & \multirow[t]{2}{*}{Tcsckh} & CSCK Input High Time (CSCK pin is an input) & TCy/2 + 20 & - & - & ns & - \\
\hline & & CSCK Output High Time \({ }^{(3)}\) (CSCK pin is an output) & 30 & - & - & ns & - \\
\hline CS20 & TCSCKF & CSCK Output Fall Time (CSCK pin is an output) & - & - & - & ns & See parameter DO32 \\
\hline CS21 & TCSCKR & CSCK Output Rise Time (CSCK pin is an output) & - & - & - & ns & See parameter DO31 \\
\hline CS30 & Tcsdof & CSDO Data Output Fall Time & - & - & - & ns & See parameter DO32 \\
\hline CS31 & TCSDOR & CSDO Data Output Rise Time & - & - & - & ns & See parameter DO31 \\
\hline CS35 & TDV & Clock Edge to CSDO Data Valid & - & - & 10 & ns & - \\
\hline CS36 & TDIV & Clock Edge to CSDO Tri-Stated & 10 & - & 20 & ns & - \\
\hline CS40 & TCSDI & Setup Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output) & 20 & - & - & ns & - \\
\hline CS41 & THCSDI & Hold Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output) & 20 & - & - & ns & - \\
\hline CS50 & Tcofsf & COFS Fall Time (COFS pin is output) & - & - & - & ns & See parameter DO32 \\
\hline CS51 & TcofsR & COFS Rise Time (COFS pin is output) & - & - & - & ns & See parameter DO31 \\
\hline CS55 & Tscofs & Setup Time of COFS Data Input to CSCK Edge (COFS pin is input) & 20 & - & - & ns & - \\
\hline CS56 & Thcofs & Hold Time of COFS Data Input to CSCK Edge (COFS pin is input) & 20 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for CSCK is 100 ns . Therefore, the clock generated in Master mode must not violate this specification.

FIGURE 32-41: DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS


TABLE 32-60: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1,2)}\) & Min. & Typ. \({ }^{(3)}\) & Max. & Units & Conditions \\
\hline CS60 & TBCLKL & BIT_CLK Low Time & 36 & 40.7 & 45 & ns & - \\
\hline CS61 & TbCLKH & BIT_CLK High Time & 36 & 40.7 & 45 & ns & - \\
\hline CS62 & Tbclk & BIT_CLK Period & - & 81.4 & - & ns & Bit clock is input \\
\hline CS65 & TsACL & Input Setup Time to Falling Edge of BIT_CLK & - & - & 10 & ns & - \\
\hline CS66 & THACL & Input Hold Time from Falling Edge of BIT_CLK & - & - & 10 & ns & - \\
\hline CS70 & Tsynclo & SYNC Data Output Low Time & - & 19.5 & - & \(\mu \mathrm{S}\) & - \\
\hline CS71 & TSYNCHI & SYNC Data Output High Time & - & 1.3 & - & \(\mu \mathrm{S}\) & - \\
\hline CS72 & TsYnc & SYNC Data Output Period & - & 20.8 & - & \(\mu \mathrm{S}\) & - \\
\hline CS77 & TRACL & Rise Time, SYNC, SDATA_OUT & - & - & - & ns & See parameter DO32 \\
\hline CS78 & TfACL & Fall Time, SYNC, SDATA_OUT & - & - & - & ns & See parameter DO31 \\
\hline CS80 & TovDACL & Output Valid Delay from Rising Edge of BIT_CLK & - & - & 15 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: These values assume BIT_CLK frequency is 12.288 MHz .
3: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 32-61: COMPARATOR TIMING SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline 300 & TRESP & Response Time \({ }^{(2)}\) & - & 150 & 400 & ns & - \\
\hline 301 & Tmc2ov & Comparator Mode Change to Output Valid & - & - & 10 & \(\mu \mathrm{S}\) & - \\
\hline
\end{tabular}

Note 1: Parameters are characterized but not tested.
2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to Vdd.

TABLE 32-62: COMPARATOR MODULE SPECIFICATIONS
\begin{tabular}{|l|l|l|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{} & \multicolumn{3}{|c|}{\begin{tabular}{l} 
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
DC CHARACTERISTICS
\end{tabular}} \\
Operating temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline \hline D300 & VIOFF & Input Offset Voltage & - & \(\pm 10\) & - & mV & - \\
\hline D301 & VICM & Input Common Mode Voltage & 0 & - & AVDD-1.5V & V & - \\
\hline D302 & CMRR & Common Mode Rejection Ratio & -54 & - & - & dB & - \\
\hline
\end{tabular}

Note 1: Parameters are characterized but not tested.
TABLE 32-63: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline VR310 & TSET & Settling Time & - & - & 10 & \(\mu \mathrm{s}\) & - \\
\hline
\end{tabular}

Note 1: Setting time measured while CVRR = 1 and CVR<3:0> bits transition from ' 0000 ' to ' 1111 '.
2: These parameters are characterized, but not tested in manufacturing.

TABLE 32-64: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DC CHA & RACTERIS & TICS & \multicolumn{5}{|l|}{\[
\begin{array}{|l}
\hline \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
\text { (unless otherwise stated) } \\
\text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
\\
\hline-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{array}
\]} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline VRD310 & CVRes & Resolution & CVRSRC/24 & - & CVRSRC/32 & LSb & - \\
\hline VRD311 & CVRAA & Absolute Accuracy & - & - & 0.5 & LSb & - \\
\hline VRD312 & CVRL & Maximum Load on CVREF output pin & - & - & 0.75 & \(\mu \mathrm{A}\) & \[
\begin{gathered}
\text { AVDD }=3.6 \mathrm{~V}, \\
\text { CVRSS }=0, \\
\text { CVRR }=0, \\
\text { CVR<3:0> }=1111
\end{gathered}
\] \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-42: PARALLEL SLAVE PORT TIMING


TABLE 32-65: PARALLEL SLAVE PORT TIMING SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic & Min. & Typ. & Max. & Units & Conditions \\
\hline PS1 & TdtV2wrH & Data in Valid before \(\overline{\mathrm{WR}}\) or \(\overline{\mathrm{CS}}\) Inactive (setup time) & 20 & - & - & ns & - \\
\hline PS2 & TwrH2dtI & \(\overline{\mathrm{WR}}\) or \(\overline{\mathrm{CS}}\) Inactive to Data-In Invalid (hold time) & 20 & - & - & ns & - \\
\hline PS3 & TrdL2dtV & \(\overline{\mathrm{RD}}\) and \(\overline{\mathrm{CS}}\) to Active Data-Out Valid & - & - & 80 & ns & - \\
\hline PS4 & TrdH2dtI & \(\overline{\mathrm{RD}}\) or \(\overline{\mathrm{CS}}\) Inactive to Data-Out Invalid & 10 & - & 30 & ns & - \\
\hline PS5 & Tcs & \(\overline{\overline{C S}}\) Active Time & 33.33 & - & - & ns & - \\
\hline PS6 & Twr & \(\overline{\mathrm{RD}}\) Active Time & 33.33 & - & - & ns & - \\
\hline PS7 & Trd & \(\overline{\text { WR Active Time }}\) & 33.33 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-43: PARALLEL MASTER PORT READ TIMING DIAGRAM


TABLE 32-66: PARALLEL MASTER PORT READ TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Characteristic & Min. & Typ. & Max. & Units & Conditions \\
\hline PM1 & PMALL/PMALH Pulse Width & - & 0.5 Tcy & - & ns & - \\
\hline PM2 & Address Out Valid to PMALL/PMALH Invalid (address setup time) & - & 1 Tcy & - & ns & - \\
\hline PM3 & PMALL/PMALH Invalid to Address Out Invalid (address hold time) & - & 0.5 Tcy & - & ns & - \\
\hline PM5 & PMRD Pulse Width & - & 0.5 Tcy & - & ns & - \\
\hline PM6 & PMRD or PMENB Active to Data In Valid (data setup time) & 150 & - & - & ns & - \\
\hline PM7 & PMRD or PMENB Inactive to Data In Invalid (data hold time) & - & - & 5 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-44: PARALLEL MASTER PORT WRITE TIMING DIAGRAM


TABLE 32-67: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Characteristic & Min. & Typ. & Max. & Units & Conditions \\
\hline PM11 & PMWR Pulse Width & - & 0.5 TcY & - & ns & - \\
\hline PM12 & Data Out Valid before PMWR or PMENB goes Inactive (data setup time) & - & 1 TCY & - & ns & - \\
\hline PM13 & PMWR or PMEMB Invalid to Data Out Invalid (data hold time) & - & 0.5 Tcy & - & ns & - \\
\hline PM16 & PMCSx Pulse Width & TCY - 5 & - & - & ns & \begin{tabular}{l}
ADRMUX<1:0> \(=00\) \\
(demultiplexed \\
address)
\end{tabular} \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 32-68: DMA MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERISTICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Characteristic & Min. & Typ. & Max. & Units & Conditions \\
\hline DM1 & DMA Byte/Word Transfer Latency & 1 Tcy & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

\subsection*{33.0 PACKAGING INFORMATION}

\subsection*{33.1 Package Marking Information}

64-Lead QFN (9x9x0.9 mm)


64-Lead TQFP (10x10x1 mm)


100-Lead TQFP ( \(12 \times 12 \times 1 \mathrm{~mm}\) )


100-Lead TQFP ( \(14 \times 14 \times 1 \mathrm{~mm}\) )


Example


Example


Example


Example


Legend: \(X X\)...X Customer-specific information
\begin{tabular}{ll} 
Y & Year code (last digit of calendar year) \\
YY & Year code (last 2 digits of calendar year) \\
WW & Week code (week of January 1 is week '01') \\
NNN & Alphanumeric traceability code \\
e3 & \begin{tabular}{l} 
Pb-free JEDEC designator for Matte Tin (Sn)
\end{tabular} \\
This package is Pb-free. The Pb-free JEDEC designator (e3) \\
& can be found on the outer packaging for this package.
\end{tabular}

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

\subsection*{33.1 Package Marking Information (Continued)}


Example


144-Lead LQFP (20x20x1.4 mm)


Example



Example


Legend: \(X X \ldots\) Customer-specific information
\(Y \quad\) Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ' 01 ')
NNN Alphanumeric traceability code
e3) Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

\subsection*{33.2 Package Details}

\section*{64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN] With \(7.15 \times 7.15\) Exposed Pad [QFN]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


\section*{64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN] With \(7.15 \times 7.15\) Exposed Pad [QFN]}

\section*{Note: For the most current package drawings, please see the Microchip Packaging Specification located at} http://www.microchip.com/packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ Units } \\
& \multicolumn{4}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{6}{|c|}{ Dimension Limits } & \multicolumn{2}{|c|}{ MIN } & NOM & MAX \\
\hline Number of Pins & N & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Pitch & e & \multicolumn{3}{|c|}{0.20 REF} \\
\hline Overall Height & A & 0.80 & 0.90 & 1.00 \\
\hline Standoff & A1 & 0.00 & 0.05 \\
\hline Contact Thickness & A3 & \multicolumn{3}{|c|}{9.00 BSC} \\
\hline Overall Width & E & \multicolumn{3}{|c|}{9.00 BSC} \\
\hline Exposed Pad Width & E2 & 7.05 & 7.50 \\
\hline Overall Length & D & \multicolumn{3}{|c|}{7.15} \\
\hline Exposed Pad Length & D2 & 7.05 & 7.50 \\
\hline Contact Width & b & 0.18 & 0.25 & 0.30 \\
\hline Contact Length & L & 0.30 & 0.40 & 0.50 \\
\hline Contact-to-Exposed Pad & K & 0.20 & - & - \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-149C Sheet 2 of 2

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{4}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & \multicolumn{2}{c|}{ MIN } & NOM \\
\hline & MAX \\
\hline Contact Pitch & W & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Optional Center Pad Width & W2 & & & 7.35 \\
\hline Optional Center Pad Length & T2 & & & 7.35 \\
\hline Contact Pad Spacing & C1 & & 8.90 & \\
\hline Contact Pad Spacing & C2 & & 8.90 & \\
\hline Contact Pad Width (X64) & X1 & & & 0.30 \\
\hline Contact Pad Length (X64) & Y1 & & & 0.85 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2149A

\section*{64-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm Footprint [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & & 64 & \\
\hline Lead Pitch & e & & . 50 BS & \\
\hline Overall Height & A & - & - & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & & . 00 RE & \\
\hline Foot Angle & \(\phi\) & \(0^{\circ}\) & \(3.5^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & & 2.00 BS & \\
\hline Overall Length & D & & 2.00 BS & \\
\hline Molded Package Width & E1 & & 0.00 BS & \\
\hline Molded Package Length & D1 & & .00 BS & \\
\hline Lead Thickness & c & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.17 & 0.22 & 0.27 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-085B

64-Lead Plastic Thin Quad Flatpack (PT) \(10 \times 10 \times 1 \mathrm{~mm}\) Body, 2.00 mm Footprint [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{3}{|c|}{ Dimension Limits } & \multicolumn{2}{|c|}{ MIN } \\
\hline \multicolumn{3}{|c|}{ NOM } & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Contact Pad Spacing & C1 & & 11.40 & \\
\hline Contact Pad Spacing & C2 & & 11.40 & \\
\hline Contact Pad Width (X64) & X1 & & & 0.30 \\
\hline Contact Pad Length (X64) & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2085B

100-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm Footprint [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & & 100 & \\
\hline Lead Pitch & e & & . 40 BS & \\
\hline Overall Height & A & - & - & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & & . 00 RE & \\
\hline Foot Angle & \(\phi\) & \(0^{\circ}\) & \(3.5^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & & 4.00 BS & \\
\hline Overall Length & D & & 4.00 BS & \\
\hline Molded Package Width & E1 & & 2.00 BS & \\
\hline Molded Package Length & D1 & & 2.00 BS & \\
\hline Lead Thickness & c & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.13 & 0.18 & 0.23 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT) \(-12 \times 12 \times 1 \mathrm{~mm}\) Body, 2.00 mm Footprint [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.40 BSC } \\
\hline Contact Pad Spacing & C1 & & 13.40 & \\
\hline Contact Pad Spacing & C2 & & 13.40 & \\
\hline Contact Pad Width (X100) & X1 & & & 0.20 \\
\hline Contact Pad Length (X100) & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2100B

\section*{100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body, 2.00 mm Footprint [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & \multicolumn{3}{|c|}{100} \\
\hline Lead Pitch & e & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Overall Height & A & - & - & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1.00 REF} \\
\hline Foot Angle & ¢ & \(0^{\circ}\) & \(3.5^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & \multicolumn{3}{|c|}{16.00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{16.00 BSC} \\
\hline Molded Package Width & E1 & \multicolumn{3}{|c|}{14.00 BSC} \\
\hline Molded Package Length & D1 & \multicolumn{3}{|c|}{14.00 BSC} \\
\hline Lead Thickness & c & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.17 & 0.22 & 0.27 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-110B

100-Lead Plastic Thin Quad Flatpack (PF) - \(14 \times 14 \times 1 \mathrm{~mm}\) Body 2.00 mm Footprint [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{3}{|c|}{ Dimension Limits } & MIN & NOM \\
\hline & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Contact Pitch & C1 & & 15.40 & \\
\hline Contact Pad Spacing & C2 & & 15.40 & \\
\hline Contact Pad Spacing & X1 & & & 0.30 \\
\hline Contact Pad Width (X100) & Y1 & & & 1.50 \\
\hline Contact Pad Length (X100) & G & 0.20 & & \\
\hline Distance Between Pads & & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2110B

\section*{121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


DETAIL B


Microchip Technology Drawing C04-148B Sheet 1 of 2

\section*{121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


DETAIL B
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Number of Contacts & N & \multicolumn{3}{|c|}{121} \\
\hline Contact Pitch & e & \multicolumn{3}{|c|}{0.80 BSC} \\
\hline Overall Height & A & 1.00 & 1.10 & 1.20 \\
\hline Standoff & A1 & 0.25 & 0.30 & 0.35 \\
\hline Molded Package Thickness & A2 & 0.55 & 0.60 & 0.65 \\
\hline Overall Width & E & \multicolumn{3}{|c|}{10.00 BSC} \\
\hline Array Width & E1 & \multicolumn{3}{|c|}{8.00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{10.00 BSC} \\
\hline Array Length & D1 & \multicolumn{3}{|c|}{8.00 BSC} \\
\hline Contact Diameter & b & \multicolumn{3}{|c|}{0.40 TYP} \\
\hline
\end{tabular}

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
3. The outer rows and colums of balls are located with respect to datums \(A\) and \(B\).

Microchip Technology Drawing C04-148 Rev B Sheet 2 of 2

\section*{121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|l|c|l|c|c|}
\hline & \multicolumn{3}{|c|}{ Units } & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & \multicolumn{2}{|c|}{ MIN } & NOM \\
( & E1 & \multicolumn{3}{|c|}{0.80 BSC } \\
\hline Contact Pitch & E2 & \multicolumn{3}{|c|}{0.80 BSC } \\
\hline Contact Pitch & C1 & & 8.00 & \\
\hline Contact Pad Spacing & C2 & & 8.00 & \\
\hline Contact Pad Spacing & X & & & 0.32 \\
\hline Contact Pad Diameter (X121) & & \\
\hline
\end{tabular}

\section*{Notes:}
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2148B

144-Lead Plastic Low Profile Quad Flatpack (PL) - 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


\section*{144-Lead Plastic Low Profile Quad Flatpack (PL) - 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


DETAIL A
\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ Units } & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{6}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Number of Leads & N & & 144 & \\
\hline Lead Pitch & e & & 0.50 BSC & \\
\hline Overall Height & A & - & - & 1.60 \\
\hline Molded Package Height & A2 & 1.35 & 1.40 & 1.45 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1.00 (REF) } \\
\hline Overall Width & E & \multicolumn{3}{|c|}{22.00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{22.00 BSC} \\
\hline Molded Body Width & E1 & \multicolumn{3}{|c|}{20.00 BSC} \\
\hline Molded Body Length & D1 & 20.00 BSC \\
\hline Lead Thickness & C & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.17 & 0.22 & 0.27 \\
\hline
\end{tabular}

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-044B Sheet 2 of 2

144-Lead Plastic Low Profile Quad Flatpack (PL) - 20x20x1.40 mm Body [LQFP] 2.00 mm Footprint

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Contact Pad Spacing & C1 & & 21.40 & \\
\hline Contact Pad Spacing & C2 & & 21.40 & \\
\hline Contact Pad Width (X144) & X1 & & & 0.30 \\
\hline Contact Pad Length (X144) & Y1 & & & 1.55 \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2044B

\section*{144-Lead Plastic Thin Quad Flatpack (PH)-16x16x1mm Body, 2.00 mm Footprint [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


\section*{144-Lead Plastic Thin Quad Flatpack (PH)-16x16x1mm Body, 2.00 mm Footprint [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


DETAIL A
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Pins & N & \multicolumn{3}{|c|}{144} \\
\hline Lead Pitch & e & \multicolumn{3}{|c|}{0.40 BSC} \\
\hline Overall Height & A & - & - & 1.20 \\
\hline Molded PackageThickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1.00 REF} \\
\hline Overall Width & D & \multicolumn{3}{|c|}{18.00 BSC} \\
\hline Overall Length & E & \multicolumn{3}{|c|}{18.00 BSC} \\
\hline Molded Body Width & D1 & \multicolumn{3}{|c|}{16.00 BSC} \\
\hline Molded Body Length & E1 & \multicolumn{3}{|c|}{16.00 BSC} \\
\hline Lead Thickness & c & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.13 & - & 0.23 \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

\section*{144-Lead Plastic Thin Quad Flat Pack (PH) - 16x16 mm Body, 2.00 mm Footprint [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & \multicolumn{2}{|c|}{ MIN } & NOM \\
MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.40 BSC} \\
\hline Contact Pad Spacing & C1 & & 17.40 & \\
\hline Contact Pad Spacing & C2 & & 17.40 & \\
\hline Contact Pad Width (X144) & X1 & & & 0.20 \\
\hline Contact Pad Length (X144) & Y1 & & & 1.45 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2155B

\section*{APPENDIX A: REVISION HISTORY}

\section*{Revision A (December 2009)}

This is the initial released version of this document.

\section*{Revision B (July 2010)}

This revision includes minor typographical and formatting changes throughout the data sheet text.
The major changes are referenced by their respective section in Table A-1.

\section*{TABLE A-1: MAJOR SECTION UPDATES}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c|}{ Update Description } \\
\hline \hline \begin{tabular}{l} 
"High-Performance, 16-bit Digital \\
Microcontrollers" and
\end{tabular} & \begin{tabular}{l} 
Removed reference to dual triggers for Motor Control Peripherals. \\
Relocated the VBUsSt pin in all pin diagrams (see "Pin Diagrams", Table 2 \\
and Table 3). \\
Added SCK2, SDI2, SDO2 pins in pin location 4,5 and 6 respectively in 64-pin \\
QFN. \\
Added SCK2, SDI2, SDO2 pins in pin location 4,5 and 6 respectively in 64-pin \\
TQFP. \\
Added SCK2, SDI2, SDO2 pins in pin location 10,11 and 12 respectively in \\
\(100-p i n ~ T Q F P . ~\)
\end{tabular} \\
Added SCK2, SDI2, SDO2 pins in Table 2 and Table 3. \\
Moved the RP30 pin to pin location 95, and the RP31 pin to pin location 96 in \\
the 144-pin TQFP and 144-pin LQFP pin diagrams.
\end{tabular}\(|\)\begin{tabular}{l} 
Removed the SCL1 and SDA1 pins from the Pinout I/O Descriptions (see \\
Table 1-1).
\end{tabular}

\section*{TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)}
\begin{tabular}{|c|c|}
\hline Section Name & Update Description \\
\hline Section 4.0 "Memory Organization" & \begin{tabular}{l}
Added the Write Latch and Auxiliary Interrupt Vector to the Program Memory Map (see Figure 4-1). \\
Updated the All Resets value for the DSRPAG and DSWPAG registers in the CPU Core Register Maps (see Table 4-1 and Table 4-2). \\
Updated the All Resets value for the INTCON2 register in the Interrupt Controller Register Maps (see Table 4-3 through Table 4-6). \\
Updated the All Resets values for all registers in the Output Compare 1 Output Compare 16 Register Map, with the exception of the OCxTMR and OCxCON1 registers (see Table 4-9). \\
Removed the DTM bit (TRGCON1<7> from all PWM Generator \# Register Maps (see Table 4-11 through Table 4-17). \\
Updated the All Resets value for the QEI1IOC register in the QEI1 Register Map (see Table 4-18). \\
Updated the All Resets value for the QEI2IOC register in the QEI1 Register Map (see Table 4-19). \\
Added Note 4 to the USB OTG Register Map (see Table 4-25) \\
Updated all addresses in the Real-Time Clock and Calendar Register Map (see Table 4-34). \\
Removed RPINR22 from Table 4-37 through Table 4-40. \\
Updated the All Resets values for all registers in the Peripheral Pin Select Input Register Maps and modified the RPIN37-RPINR43 registers (see Table 4-37 through Table 4-40). \\
Added the VREGSF bit (RCON<11>) to the System Control Register Map (see Table 4-43). \\
Added the REFOMD bit (PMD4<3>) to the PMD Register Maps (see Table 4-44 through Table 4-47). \\
Changed the bit range for CNT from <15:0> to <13:0> for all DMAxCNT registers in the DMAC Register Map (see Table 4-49). \\
Updated the All Resets value and removed the ANSC15 and ANSC12 bits in the ANSLEC registers in the PORTC Register Maps (see Table 4-52 and Table 4-53). \\
Updated DSxPAG and Page Description of O, Read and U, Read in Table 4-66. \\
Added Note to the Table 4-67. \\
Updated Arbiter Architecture in Figure 4-8. \\
Updated the Unimplemented value and removed the LATG3 and LATG2 bits in the LATG registers and the CNPUG3 and CNPUG2 bits from the CNPUG registers in the PORTG Register Maps (see Table 4-60 and Table 4-61) \\
Updated the All Resets value and removed the TRISG3 and TRISG2 bits in the TRISG registers and the ODCG3 and ODCG2 bits from the ODCG registers in the PORTG Register Maps (see Table 4-60 and Table 4-61).
\end{tabular} \\
\hline Section 5.0 "Flash Program Memory" & Updated the NVMOP<3:0> = 1110 definition to Reserved and added Note 6 to the Nonvolatile Memory (NVM) Control Register (see Register 5-1). \\
\hline Section 6.0 "Resets" & Added the VREGSF bit (RCON<11>) to the Reset Control Register (see Register 6-1). \\
\hline
\end{tabular}

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)
\begin{tabular}{|c|c|}
\hline Section Name & Update Description \\
\hline Section 7.0 "Interrupt Controller" & \begin{tabular}{l}
Added the VAR bit (CORCON<15>) to the Core Control Register (see Register 7-2) \\
Changed the default POR value for the GIE bit (INTCON2<15) to R/W-1 (see Register 7-4). \\
Changed the VECNUM<7:0> = 11111111 pending interrupt vector number to 263 in the Interrupt Control and Status Register (see Register 7-7).
\end{tabular} \\
\hline Section 8.0 "Direct Memory Access (DMA)" & \begin{tabular}{l}
Updated Section 8.1 "DMAC Registers". \\
Updated DMA Controller in Figure 8-1. \\
Added Note 1 to the DMA Channel x Peripheral Address Register (see Register 8-7). \\
Added Note 1 and Note 2 to the DMA Channel x Transfer Count Register (see Register 8-8). \\
Updated all RQCOLx bit definitions, changing Peripheral Write to Transfer Request in the DMA Request Collision Status Register (see Register 8-12).
\end{tabular} \\
\hline Section 9.0 "Oscillator Configuration" & \begin{tabular}{l}
Added the Reference Oscillator Control Register (see Register 9-7). \\
Added Note 3 and 4 to the CLKDIV Register (see Register 9-2)
\end{tabular} \\
\hline Section 10.0 "Power-Saving Features" & \begin{tabular}{l}
Added the DCIMD and C2MD bits to the Peripheral Module Disable Control Register 1 (see Register 10-1) \\
Added the IC6MD, IC5MD, IC4MD, IC3MD, OC8MD, OC7MD, OC6MD, and OC5MD bits to the Peripheral Module Disable Control Register 2 (see Register 10-2) \\
Added the T9MD, T8MD, T7MD, and T6MD bits and removed the DSC1MD bit in the Peripheral Module Disable Control Register 3 (see Register 10-3). \\
Added the REFOMD bit (PMD4<3>) to the Peripheral Module Disable Control Register 4 (see Register 10-4).
\end{tabular} \\
\hline Section 11.0 "//O Ports" & \begin{tabular}{l}
Updated the first paragraph of Section 11.2 "Configuring Analog and Digital Port Pins". \\
Updated the PWM Fault, Dead Time Compensation, and Synch Input register numbers of the Selectable Input Sources (see Table 11-2). \\
Removed RPINR22 register. \\
Bit names and definitions were modified in the following registers: \\
- Peripheral Pin Select Input Register 37 (see Register 11-37) \\
- Peripheral Pin Select Input Register 38 (see Register 11-38) \\
- Peripheral Pin Select Input Register 39 (see Register 11-39) \\
- Peripheral Pin Select Input Register 40 (see Register 11-40) \\
- Peripheral Pin Select Input Register 41 (see Register 11-41) \\
- Peripheral Pin Select Input Register 42 (see Register 11-42) \\
- Peripheral Pin Select Input Register 43 (see Register 11-43)
\end{tabular} \\
\hline Section 12.0 "Timer1" & Added Note in Register 12-1. \\
\hline Section 14.0 "Input Capture" & Added Note 1 to the Input Capture Block Diagram (see Figure 14-1). \\
\hline Section 15.0 "Output Compare" & \begin{tabular}{l}
Added Note 1 to the Output Compare Module Block Diagram (see Figure 15-1). \\
Added Note 2 to the Output Compare x Control Register 2 (see Register 15-2).
\end{tabular} \\
\hline Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMU806/ 810/814 Devices Only)" & Added Comparator bit values for the CLSRC<4:0> and FLTSRC<4:0> bits in the PWM Fault Current-Limit Control Register (see Register 16-21). \\
\hline
\end{tabular}

\section*{TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)}
\begin{tabular}{|c|c|}
\hline Section Name & Update Description \\
\hline Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810/814 Devices Only)" & Reordered the bit values for the OUTFNC<1:0> bits and updated the default POR bit value to ' \(x\) ' for the HOME, INDEX, QEB, and QEA bits in the QEI I/O Control Register (see Register 17-2). \\
\hline Section 23.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)" & Updated VREFL in the ADC1 and ADC2 Module Block Diagram (see Figure 23-1). \\
\hline Section 25.0 "Comparator Module" & Added Note 1 to the Comparator I/O Operating Modes (see Figure 25-1). Removed the CLPWR bit (CMxCON<12>) (see Register 25-2). \\
\hline Section 29.0 "Special Features" & Added a new first paragraph to Section 29.1 "Configuration Bits" \\
\hline Section 30.0 "Instruction Set Summary" & \begin{tabular}{l}
The following instructions have been updated (see Table 30-2): \\
- BRA \\
- CALL \\
- CPBEQ \\
- CPBGT \\
- CPBLT \\
- CPBNE \\
- GOTO \\
- MOVPAG \\
- MUL \\
- RCALL \\
- RETFIE \\
- RETLW \\
- RETURN \\
- TBLRDH \\
- TBLRDL
\end{tabular} \\
\hline Section 32.0 "Electrical Characteristics" & \begin{tabular}{l}
Updated the Typical and Maximum values for DC Characteristics: Operating Current (IDD) (see Table 32-5). \\
Updated the Typical and Maximum values for DC Characteristics: Idle Current (IIDLE) (see Table 32-6). \\
Updated the Maximum values for DC Characteristics: Power-down Current (IPD) (see Table 32-7). \\
Updated the Maximum values for DC Characteristics: Doze Current (IDOZE) (see Table 32-8). \\
Updated the parameter numbers for Internal FRC Accuracy (see Table 32-19). \\
Updated the parameter numbers and the Typical value for parameter F21b for Internal RC Accuracy (see Table 32-20). \\
Updated the Minimum value for PM6 and the Typical and Maximum values for PM7 in Parallel Master Port Read Requirements (see Table 32-52). \\
Added DMA Module Timing Requirements (see Table 32-54).
\end{tabular} \\
\hline
\end{tabular}

\section*{Revision C (May 2011)}

This revision includes minor typographical and formatting changes throughout the data sheet text.
These global changes were implemented:
- All instances of VdDCore have been removed.
- References to remappable pins have been updated to clarify output-only pins (RPn) versus input/output pins (RPIn).
- The minimum VDD value was changed from 2.7 V to 3.0 V to adhere to the current BOR specification.

The major changes are referenced by their respective section in Table A-2.

\section*{TABLE A-2: MAJOR SECTION UPDATES}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c|}{ Update Description } \\
\hline \begin{tabular}{l} 
High-Performance, 16-bit Digital \\
Signal Controllers and \\
Microcontrollers
\end{tabular} & \begin{tabular}{l} 
Removed the shading for D+/RG2 and D-/RG3 pin designations in all pin \\
diagrams, as these pins are not 5V tolerant. \\
References to remappable pins have been updated to clarify input/output pins \\
(RPn) and input-only pins (RPIn).
\end{tabular} \\
\hline \begin{tabular}{l} 
Section 2.0 "Guidelines for \\
Getting Started with 16-bit Digital \\
Signal Controllers and \\
Microcontrollers"
\end{tabular} & \begin{tabular}{l} 
Add information on the VusB pin in Section 2.1 "Basic Connection \\
Requirements". \\
Updated the title of Section 2.3 to Section 2.3 "CPU Logic Filter Capacitor \\
Connection (VcAP)" and modified the first paragraph.
\end{tabular} \\
\hline Section 3.0 "CPU" & \begin{tabular}{l} 
Added Note 2 to the Programmer's Model Register Descriptions \\
(see Table 3-1).
\end{tabular} \\
\hline \begin{tabular}{l} 
Section 4.0 "Memory \\
Organization"
\end{tabular} & \begin{tabular}{l} 
Added the CANCKS bit (CxCTRL1<11>) to the ECAN1 and ECAN 2 Register \\
Maps (see Table 4-26 and Table 4-29).
\end{tabular} \\
\hline \begin{tabular}{l} 
Added the SBOREN bit (RCON<13>) to the System Control Register Map (see \\
Table 4-43). \\
Added Note 1 to the PORTG Register maps (see Table 4-60 and Table 4-61). \\
Updated the Page Description for DSRPAG = 0x1FF and DSRPAG = 0x200 in
\end{tabular} \\
\hline Table 4-66. \\
Updated the second paragraph of Section 4.2.9 "EDS Arbitration and Bus \\
Master Priority". \\
Updated the last note box in Section 4.2.10 "Software Stack".
\end{tabular}

\section*{TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c|}{\(\quad\) Update Description } \\
\hline \hline \begin{tabular}{l} 
Section 21.0 "Enhanced CAN \\
(ECAN
\end{tabular} ) Module"
\end{tabular}\(\quad\)\begin{tabular}{l} 
Added the CANCKS bit to the ECAN Control Register 1 (CiCTRL1) \\
(see Register 21-1).
\end{tabular}

\section*{Revision D (August 2011)}

This revision includes minor typographical and formatting changes throughout the data sheet text.
The Data Converter Interface ( DCI ) module is available on all dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices. References throughout the document have been updated accordingly.

The following pin name changes were implemented throughout the document:
- C1INA renamed to C1IN1+
- C1INB renamed to C1IN2-
- C1INC renamed to C1IN1-
- C1IND renamed to C1IN3-
- C2INA renamed to C2IN1+
- C2INB renamed to C2IN2-
- C2INC renamed to C2IN1-
- C2IND renamed to C2IN3-
- C3INA renamed to C3IN1+
- C3INB renamed to C3IN2-
- C3INC renamed to C3IN1-
- C3IND renamed to C3IN3-

The other major changes are referenced by their respective section in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c|}{ Update Description } \\
\hline \hline Section 1.0 "Device Overview" & Added Section 1.1 "Referenced Sources". \\
\hline \begin{tabular}{l} 
Section 2.0 "Guidelines for Getting \\
Started with 16-bit Digital Signal \\
Controllers and Microcontrollers"
\end{tabular} & Updated the Note in Section 2.1 "Basic Connection Requirements". \\
\hline Section 3.0 "CPU" & Updated Section 3.1 "Registers". \\
\hline Section 4.0 "Memory Organization" & \begin{tabular}{l} 
Updated FIGURE 4-3: "Data Memory Map for dsPIC33EP512MU810/814 \\
Devices with 52 KB RAM" and FIGURE 4-5: "Data Memory Map for \\
dsPIC33EP256MU806/810/814 Devices with 28 KB RAM". \\
Updated the IFS3, IEC3, IPC14, and IPC15 SFRs in the Interrupt Controller
\end{tabular} \\
Register Map (see Table 4-6). \\
Updated the SMPI bits for the AD1CON2 and AD2CON2 SFRs in the ADC1 \\
and ADC2 Register Map (see Table 4-23). \\
Updated the All Resets values for the CLKDIV and PLLFBD SFRs and \\
removed the SBOREN bit in the System Control Register Map \\
(see Table 4-43).
\end{tabular}

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c|}{ Update Description } \\
\hline \hline Section 25.0 "Comparator Module" & \(\begin{array}{l}\text { Updated the Comparator I/O Operating Modes diagram (see Figure 25-1). } \\
\text { Added Note 2 to the Comparator Voltage Reference Control Register (see } \\
\text { Register 25-6). }\end{array}\) \\
\hline Section 29.0 "Special Features" & \(\begin{array}{l}\text { Added Note 3 to the Connections for the On-chip Voltage Regulator (see } \\
\text { Figure 29-1). }\end{array}\) \\
\hline Section 32.0 "Electrical \\
Characteristics" & \(\begin{array}{l}\text { Removed the Voltage on VcAP with respect to Vss from the Absolute } \\
\text { Maximum Ratings }\end{array}\) \\
& \(\begin{array}{l}\text { Removed Note 3 and parameter DC18 from the DC Temperature and } \\
\text { Voltage Specifications (see Table 32-4). } \\
\text { Updated the notes in the DC Characteristics: Operating Current (IDD) } \\
\text { (see Table 32-5). }\end{array}\) \\
& \(\begin{array}{l}\text { Updated the notes in the DC Characteristics: Idle Current (IIDLE) } \\
\text { (see Table 32-6). } \\
\text { Updated the Typical and Maximum values for parameter DC60c and the }\end{array}\) \\
notes in the DC Characteristics: Power-down Current (IPD) (see Table 32-7). \\
Updated the notes in the DC Characteristics: Doze Current (IDOZE)
\end{tabular}\(\}\)\begin{tabular}{l} 
(see Table 32-8). \\
Updated the conditions for parameters DI60a and DI60b (see Table 32-9). \\
Updated the conditions for parameter BO10 in the BOR Electrical \\
Characteristics (see Table 32-10). \\
Added Note 1 to the Internal Voltage Regulator Specifications \\
(see Table 32-13). \\
Updated the Minimum and Maximum values for parameter OS53 in the PLL \\
Clock Timing Specifications (see Table 32-17). \\
Updated the Minimum and Maximum values for parameter F21b in the \\
Internal LPRC Accuracy specifications (see Table 32-20). \\
Added Note 2 to the ADC Module Specifications (see Table 32-54).
\end{tabular}

\section*{Revision E (August 2011)}

This revision includes the following updates to Section 32.0 "Electrical Characteristics":
- The maximum HS value for parameter OS10 was updated (see Table 32-16)
- The OC/PWM Module Timing Characteristics for OCx were updated (see Figure 32-10)
- The Maximum Data Rate values were updated for the SPI1, SPI3, and SPI4 Maximum Data/Clock Rate Summary (see Table 32-33)
- These SPI1, SPI3, and SPI4 Timing Requirements were updated:
- Maximum value for parameter SP10 and the minimum clock period value for SCKx in Note 3 (see Table 32-34, Table 32-35, and Table 32-36)
- Maximum value for parameter SP70 and the minimum clock period value for SCKx in Note 3 (see Table 32-38 and Table 32-40)
- The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 32-41)
- These SPI2 Timing Requirements were updated:
- Maximum value for parameter SP10 and the minimum clock period value for SCKx in Note 3 (see Table 32-42, Table 32-43, and Table 32-44)
- Maximum value for parameter SP70 and the minimum clock period value for SCKx in Note 3 (see Table 32-45 through Table 32-48)
- Minimum value for parameters SP40 and SP41 see Table 32-43 through Table 32-48)
- These ADC Module Specifications were updated (see Table 32-54):
- Minimum value for parameter AD05
- Maximum value for parameter AD06
- Minimum value for parameter AD07

Notes:

\section*{INDEX}
A
AC Characteristics ..... 471
Capacitive Loading Requirements on Output Pins. ..... 471
Internal FRC Accuracy ..... 474
Internal RC Accuracy ..... 474
Load Conditions ..... 471
ADC
Initialization ..... 381
Key Features ..... 381
Analog-to-Digital Converter (ADC) ..... 381
Arithmetic Logic Unit (ALU) ..... 41
Assembler
MPASM Assembler ..... 456
B
Bit-Reversed Addressing ..... 121
Example ..... 122
Implementation ..... 121
Sequence Table (16-Entry) ..... 122
Block Diagrams
16-bit Timer1 Module ..... 249
ADC Conversion Clock Period ..... 383
ADC1 and ADC2 Module ..... 382
APLL ..... 165
Comparator I/O Operating Modes ..... 401
Comparator Voltage Reference ..... 402
Connections for On-Chip Voltage Regulator ..... 441
CPU Core ..... 34
CRC Module ..... 423
CRC Shift Engine ..... 423
DCI Module ..... 395
Digital Filter Interconnect ..... 403
dsPIC33EPXXXMU806/810/814 ..... and
PIC24EPXXXGU810/814 ..... 22
ECAN Module ..... 330
Input Capture ..... 257
Oscillator System Diagram ..... 163
Output Compare ..... 261
PLL ..... 164
Quadrature Encoder Interface ..... 296
Reset System ..... 129
RTCC ..... 413
Shared Port Structure ..... 189
SPlx module ..... 309
Type B (Timer2, Timer4, Timer6, Timer8) ..... 252
Type C (Timer3, Timer5, Timer7, Timer9) ..... 252
UART ..... 323
User Programmable Blanking Function ..... 402
Watchdog Timer (WDT) ..... 442
C
C Compilers
MPLAB C18 ..... 456
Clock Switching ..... 173
Code Examples
Port Write/Read ..... 190
PWRSAV Instruction Syntax ..... 175
Code Protection ..... 437, 443
Configuration Bits ..... 437
Configuration Register Map ..... 437
Configuring Analog Port Pins ..... 190
CPU
Control Register ..... 37
CPU Clocking System ..... 164
Sources ..... 164
CRC
User Interface ..... 424
Data ..... 424
Customer Change Notification Service ..... 567
Customer Notification Service ..... 567
Customer Support. ..... 567
D
Data Address Space ..... 45
Alignment ..... 45
Memory Map for dsPIC33EP256MU806/810/814 Devices with 28 KB RAM. ..... 48
Memory Map for dsPIC33EP512MU810/814 Devices with 52 KB RAM. ..... 46
Memory Map for PIC24EP256GU810/814 Devices with 28 KB RAM. ..... 49
Memory Map for PIC24EP512GU810/814 Devices with 52 KB RAM. ..... 47
Near Data Space ..... 45
SFR ..... 45
Width ..... 45
Data Converter Interface (DCI) Module ..... 395
DC Characteristics ..... 460
BOR. ..... 469
I/O Pin Input Specifications ..... 466
I/O Pin Output Specifications. ..... 469
Idle Current (IDOZE) ..... 465
Idle Current (IIDLE) ..... 463
Internal Voltage Regulator ..... 470
Operating Current (IDD) ..... 462
Power-Down Current (IPD). ..... 464
Program Memory ..... 470
Temperature and Voltage Specifications ..... 461
DCI
Introduction ..... 395
Development Support ..... 455
DMA Module
DSADR register ..... 155
supported peripherals ..... 147
DMAC Registers ..... 150
DMAxCNT ..... 150
DMAxCON ..... 150
DMAxPAD ..... 150
DMAxREQ ..... 150
DMAxSTA ..... 150
DMAxSTB ..... 150
Doze Mode ..... 176
DSP Engine ..... 41
E
ECAN Module
CiBUFPNT1 register ..... 340
CiBUFPNT2 register ..... 341
CiBUFPNT3 register ..... 341
CiBUFPNT4 register ..... 342
CiCFG1 register. ..... 338
CiCFG2 register ..... 339
CiCTRL1 register ..... 331
CiCTRL2 register ..... 332
CiEC register ..... 338
CiFCTRL register ..... 334
CiFEN1 register ..... 340
CiFIFO register ..... 335
CiFMSKSEL1 register ..... 344
CiFMSKSEL2 register ..... 345
CilNTE register ..... 337
CilNTF register ..... 336
CiRXFnEID register ..... 344
CiRXFnSID register ..... 343
CiRXFUL1 register ..... 347
CiRXFUL2 register ..... 347
CiRXMnEID register ..... 346
CiRXMnSID register ..... 346
CiRXOVF1 register ..... 348
CiRXOVF2 register ..... 348
CiTRmnCON register ..... 349
CiVEC register ..... 333
Modes of Operation ..... 330
Overview ..... 329
ECAN Registers
Acceptance Filter Enable Register (CiFEN1) ..... 340
Acceptance Filter Extended Identifier Register n (CiRXFnEID) ..... 344
Acceptance Filter Mask Extended Identifier Register n(CiRXMnEID)346
Acceptance Filter Mask Standard Identifier Register n (CiRXMnSID) ..... 346
Acceptance Filter Standard Identifier Register n (CiRXFnSID) ..... 343
Baud Rate Configuration Register 1 (CiCFG1) ..... 338
Baud Rate Configuration Register 2 (CiCFG2) ..... 339
Control Register 1 (CiCTRL1) ..... 331
Control Register 2 (CiCTRL2) ..... 332
FIFO Control Register (CiFCTRL) ..... 334
FIFO Status Register (CiFIFO) ..... 335
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) ....... 340
Filter 12-15 Buffer Pointer Register (CiBUFPNT4) ... 342
Filter 15-8 Mask Selection Register (CiFMSKSEL2). 345
Filter 4-7 Buffer Pointer Register (CiBUFPNT2) ....... 341
Filter 7-0 Mask Selection Register (CiFMSKSEL1)... 344
Filter 8-11 Buffer Pointer Register (CiBUFPNT3) ..... 341
Interrupt Code Register (CiVEC) ..... 333
Interrupt Enable Register (CiINTE) ..... 337
Interrupt Flag Register (CilNTF) ..... 336
Receive Buffer Full Register 1 (CiRXFUL1) ..... 347
Receive Buffer Full Register 2 (CiRXFUL2) ..... 347
Receive Buffer Overflow Register 2 (CiRXOVF2)..... 348
Receive Overflow Register (CiRXOVF1) ..... 348
ECAN Transmit/Receive Error Count Register (CiEC) ..... 338
ECAN TX/RX Buffer m Control Register (CiTRmnCON ..... 349
Electrical Characteristics ..... 459
AC ..... 471
Enhanced CAN Module ..... 329
Equations
Device Operating Frequency ..... 164
Errata ..... 20
F
Flash Program Memory ..... 125
Control Registers ..... 126
Operations ..... 126
Programming Algorithm ..... 128
RTSP Operation ..... 126
Table Instructions ..... 125
Flexible Configuration ..... 437
H
High-Speed PWM ..... 267
I/O Ports. ..... 189
Parallel I/O (PIO) ..... 189
Write/Read Timing ..... 190
In-Circuit Debugger. ..... 443
In-Circuit Emulation ..... 437
In-Circuit Serial Programming (ICSP). ..... 437, 443
Input Capture ..... 257
Registers ..... 258
Input Change Notification ..... 190
Instruction Addressing Modes ..... 118
File Register Instructions ..... 118
Fundamental Modes Supported ..... 119
MAC Instructions ..... 119
MCU Instructions ..... 118
Move and Accumulator Instructions ..... 119
Other Instructions ..... 119
Instruction Set
Overview. ..... 448
Summary ..... 445
Instruction-Based Power-Saving Modes ..... 175
Idle ..... 176
Sleep ..... 175
Internal RC Oscillator Use with WDT ..... 442
Internet Address ..... 567
Interrupt Control and Status Registers ..... 138
IFSx ..... 138
INTCON1 ..... 138
INTCON2 ..... 138
Interrupt Vector Table (IVT) ..... 133
Interrupts Coincident with Power Save Instructions ..... 176
J
JTAG Boundary Scan Interface ..... 437
JTAG Interface ..... 443
M
Memory Organization ..... 43
Microchip Internet Web Site ..... 567
Modulo Addressing ..... 120
Applicability ..... 121
Operation Example ..... 120
Start and End Address ..... 120
W Address Register Selection ..... 120
Most Recent DMA DPSRAM Address Low Register ..... 155
Most Recent DMA DPSRAM High Address ..... 155
MPLAB ASM30 Assembler, Linker, Librarian ..... 456
MPLAB Integrated Development Environment Software ..... 455
MPLAB PM3 Device Programmer ..... 458
MPLAB REAL ICE In-Circuit Emulator System ..... 457
MPLINK Object Linker/MPLIB Object Librarian ..... 456
0
Open-Drain Configuration ..... 190
Output Compare ..... 261
P
Packaging ..... 531
Details. ..... 536
Marking ..... 531, 532
Peripheral Module Disable (PMD) ..... 176
Peripherals supported by DMA ..... 147
Pinout I/O Descriptions (table) ..... 23
Power-Saving Features ..... 175
Clock Frequency and Switching ..... 175
Program Address Space ..... 43
Construction. ..... 123
Data Access from Program Memory Using Table Instructions ..... 124
Data Access from, Address Generation ..... 123
Memory Map ..... 43
Table Read Instructions
TBLRDH ..... 124
TBLRDL ..... 124
Program Memory
Organization ..... 44
Reset Vector ..... 44
Programmable CRC
Special Function Registers ..... 88
Programmer's Model ..... 34
Register Description. ..... 35
Q
Quadrature Encoder Interface (QEI) ..... 295
R
Reader Response ..... 568
Real-Time Clock and Calender RTCC Module ..... 413
Register Map
Real-Time Clock and Calendar ..... 89
Register Maps
ADC1 and ADC2 ..... 77
Comparator ..... 101
CPU Core (dsPIC33EPXXXMU806/810/814 Devices Only) ..... 51
CPU Core (PIC24EPXXXGU810/814 Devices Only) ..... 53
DCI ..... 79
DMAC ..... 102
ECAN1 (When WIN (C1CTRL) = 0 or 1) ..... 82
ECAN1 (When WIN (C1CTRL) = 0) ..... 82
ECAN1 (WIN (C1CTRL) = 1) ..... 83
ECAN2 (WIN (C2CTRL) \(=0\) or 1 ) ..... 85
2C1 and I2C2 ..... 74
Input Capture 1 through Input Capture 16 ..... 63
Interrupt Controller (dsPIC33EPXXXMU806 Devices Only) ..... 58
Interrupt Controller (dsPIC33EPXXXMU810 Devices Only) ..... 56
Interrupt Controller (dsPIC33EPXXXMU814 Devices Only) ..... 54
Interrupt Controller (PIC24EPXXXGU810/814 Devices Only) ..... 60
Output Compare 1 through Output Compare 16 ..... 65
Pad Configuration ..... 111
Parallel Master/Slave Port ..... 88
Peripheral Pin Select Input (dsPIC33EPXXXMU806 Devices Only) ..... 95
Peripheral Pin Select Input (dsPIC33EPXXXMU810 Devices Only) ..... 93
Peripheral Pin Select Input (dsPIC33EPXXXMU814 Devices Only) ..... 91
Peripheral Pin Select Input (PIC24EPXXXGU810/814 Devices Only) ..... 97
Peripheral Pin Select Output (dsPIC33EPXXXMU806 Devices Only) ..... 90
Peripheral Pin Select Output (dsPIC33EPXXXMU810/814 and PIC24EPXXXGU810/814Devices Only)89
PMD (dsPIC33EPXXXMU810 Devices Only) ..... 99
PMD (PIC24EPXXXGU810/814 Devices Only) ..... 100
PORTA (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only) ..... 106
PORTB ..... 106
PORTC (dsPIC33EPXXXMU806 Devices Only) ..... 107
PORTC (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only ..... 106
PORTD (dsPIC33EPXXXMU806 Devices Only) ..... 107
PORTD (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only) ..... 107
PORTE (dsPIC33EPXXXMU806 Devices Only) ..... 108
PORTE (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only) ..... 108
PORTF (dsPIC33EPXXXMU806 Devices Only) ..... 109
PORTF (dsPIC33EPXXXMU810/814 and PIC24EPXXXGU810/814 Devices Only ..... 108
PORTG (dsPIC33EPXXXMU806 Devices Only) ..... 109
PORTG (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only)......... 109
PORTH (dsPIC33EPXXXMU814 ..... and
PIC24EPXXXGU814 Devices Only) ..... 110
PORTJ (dsPIC33EPXXXMU814 and PIC24EPXXXGU814 Devices Only) ..... 110
PORTK (dsPIC33EPXXXMU814 and PIC24EPXXXGU814 Devices Only) ..... 111
PWM (dsPIC33EPXXXMU806/810/814 Devices Only) ..... 68
PWM Generator 1 (dsPIC33EPXXXMU806/810/814 Devices Only) ..... 68
PWM Generator 2 (dsPIC33EPXXXMU806/810/814 Devices Only) ..... 69
PWM Generator 3 (dsPIC33EPXXXMU806/810/814 Devices Only) ..... 69
PWM Generator 4 (dsPIC33EPXXXMU806/810/814 Devices Only) ..... 70
PWM Generator 5 (dsPIC33EPXXXMU810/814 Devices Only) ..... 70
PWM Generator 6 (dsPIC33EPXXXMU810/814 Devices Only) ..... 71
PWM Generator 7 (dsPIC33EPXXXMU814 Devices Only) ..... 71
QEI1 Register Map (dsPIC33EPXXXMU806/810/814Devices Only)72
QEI2 Register Map (dsPIC33EPXXXMU806/810/814 Devices Only) ..... 73
Reference Clock ..... 98
SPI1, SPI2, SPI3, and SPI4 ..... 76
System Control ..... 98
Timer1 through Timer9 ..... 62
UART1, UART2, UART3, and UART4 ..... 75
USB OTG ..... 80
ACLKDIV2 (Auxiliary Clock Divisor 2) ..... 173
AD1CON2 (ADC1 Control 2). ..... 386
AD1CSSH (ADC1 Input Scan Select High) ..... 394
AD2CON2 (ADC2 Control 2) ..... 386, 388
ADxCHS0 (ADCx Input Channel 0 Select) ..... 393
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) ..... 392
ADxCON1 (ADCx Control 1) ..... 384
ADxCON3 (ADCx Control 3) ..... 390
ADxCON4 (ADCx Control 4) ..... 391
ADxCSSL (ADCx Input Scan Select Low) ..... 394
ALCFGRPT (Alarm Configuration) ..... 418
ALRMVAL (Alarm Minutes and Seconds - when ALRMPTR = 00) ..... 422ALRMVAL (Alarm Month and Day Value - when
Registers
ALRMPTR = 10) ..... 421
ALRMVAL (Alarm Weekday and Hours - when ALRMPTR = 01) ..... 421
ALTDTRx (PWM Alternate Dead-Time) ..... 283
AUXCONx (PWM Auxiliary Control). ..... 292
CHOP (PWM Chop Clock Generator) ..... 276
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer) ..... 340
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer) ..... 341
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) ..... 341
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) ..... 342
CiCFG1 (ECAN Baud Rate Configuration 1) ..... 338
CiCFG2 (ECAN Baud Rate Configuration 2) ..... 339
CiCTRL1 (ECAN Control 1) ..... 331
CiCTRL2 (ECAN Control 2) ..... 332
CiEC (ECAN Transmit/Receive Error Count) ..... 338
CiFCTRL (ECAN FIFO Control) ..... 334
CiFEN1 (ECAN Acceptance Filter Enable) ..... 340
CiFIFO (ECAN FIFO Status) ..... 335
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) ..... 344
CiFMSKSEL2 (ECAN Filter 15-8 Mask Selection) ..... 345
CiINTE (ECAN Interrupt Enable) ..... 337
CilNTF (ECAN Interrupt Flag) ..... 336
CiRXFnEID (ECAN Acceptance Filter n Extended Identifier ..... 344
CiRXFnSID (ECAN Acceptance Filter n Standard Identi-fier)343
CiRXFUL1 (ECAN Receive Buffer Full 1) ..... 347
CiRXFUL2 (ECAN Receive Buffer Full 2) ..... 347
CiRXMnEID (ECAN Acceptance Filter Mask n Extended Identifier) ..... 346
CiRXMnSID (ECAN Acceptance Filter Mask n Standard Identifier) ..... 346
CiRXOVF1 (ECAN Receive Buffer Overflow 1) ..... 348
CiRXOVF2 (ECAN Receive Buffer Overflow 2) ........ 348CiTRBnSID (ECAN Buffer n Standard Identifier) ..... 350,351, 353
CiTRmnCON (ECAN TX/RX Buffer m Control) ..... 349
CiVEC (ECAN Interrupt Code) ..... 333
CLKDIV (Clock Divisor) ..... 168
CMSTAT (Comparator Status) ..... 404
CMxCON (Comparator Control) ..... 405
CMxFLTR (Comparator Filter Control) ..... 411
CMxMSKCON (Comparator Mask Gating Control). ..... 409
CMxMSKSRC (Comparator Mask Source Control) .. 407CORCON (Core Control)39, 140
CVRCON (Comparator Voltage Reference Control). 412
DCICON1 (DCI Control 1) ..... 396
DCICON2 (DCI Control 2) ..... 397
DCICON3 (DCI Control 3) ..... 398
DCISTAT (DCI Status) ..... 399
DTRx (PWM Dead-Time) ..... 283
FCLCONx (PWM Fault Current-Limit Control) ..... 288
12CxCON (I2Cx Control) ..... 317
2CxMSK (I2Cx Slave Mode Address Mask) ..... 321
2CxSTAT (I2Cx Status) ..... 319
CxCON1 (Input Capture x Control 1) ..... 258
ICxCON2 (Input Capture x Control 2) ..... 259
DNXxCNTH (Index Counter High Word) ..... 304
NDXxCNTL (Index Counter Low Word) ..... 304
INDXxHLD (Index Counter Hold) ..... 305
INTCON1 (Interrupt Control 1) ..... 141
INTCON2 (Interrupt Control 2) ..... 143
NTCON2 (Interrupt Control 3) ..... 144
INTCON4 (Interrupt Control 4) ..... 144
NTTREG Interrupt Control and Status Register ..... 145
INTxHLDH (Interval Timer Hold High Word) ..... 308
INTxHLDL (Interval Timer Hold Low Word) ..... 308
INTxTMRH (Interval Timer High Word) ..... 307
INTxTMRL (INterval Timer Low Word) ..... 308
IOCONx (PWM I/O Control) ..... 285
LEBCONx (Leading-Edge Blanking Control) ..... 290
LEBDLYx (Leading-Edge Blanking Delay) ..... 291
MDC (PWM Master Duty Cycle) ..... 277
NVMADR (Non-volatile Memory Address) ..... 128
NVMADRU (Non-volatile Memory Upper Address) ..... 128
NVMCON (Non-volatile (NVM) Memory Control) ..... 127
NVMKEY (Non-volatile Memory Key) ..... 128
OCxCON1 (Output Compare x Control 1) ..... 262
OCxCON2 (Output Compare x Control 2) ..... 264
OSCCON (Oscillator Control) ..... 166
OSCTUN (FRC Oscillator Tuning) ..... 171
PADCFG1 (Pad Configuration Control) ..... 417
PDCx (PWM Generator Duty Cycle). ..... 280
PHASEx (PWM Primary Phase Shift) ..... 281
PLLFBD (PLL Feedback Divisor). ..... 170
PMADDR (Parallel Master Port Address ..... 433
PMCON (Parallel Master Port Control) ..... 430
PMD1 (Peripheral Module Disable Control 1) ..... 177
PMD2 (Peripheral Module Disable Control 2) ..... 179
PMD3 (Peripheral Module Disable Control 3) ..... 181
PMD4 (Peripheral Module Disable Control 4) ..... 182
PMD5 (Peripheral Module Disable Control 5) ..... 183
PMD6 (Peripheral Module Disable Control 6). ..... 185
PMD7 (Peripheral Module Disable Control 7) ..... 186
PMMODE (Parallel Master Port Mode). ..... 432
PMPEN (Parallel Master Port Address Enable) ..... 434
PMSTAT (Parallel Master Port Status) ..... 435
POSxCNTH (Position Counter High Word) ..... 303
POSxCNTL (Position Counter Low Word) ..... 303
POSxHLD (Position Counter Hold) ..... 303
PTCON (PWM Time Base Control) ..... 270
PTCON2 (Primary Master Clock Divider Select) ..... 272
PTPER (Primary Master Time Base Period) ..... 272
PWMCAPx (Primary PWM Time Base Capture) ..... 293
PWMCONx (PWM Control) ..... 278
QEICON (QEI Control) ..... 297
QElxGECH (Greater Than or Equal Compare High Word) ..... 307
QEIxGECL (Greater Than or Equal Compare Low Word) ..... 307
QEIxICH (Initialization/Capture High Word). ..... 305
QEIxICL (Initialization/Capture Low Word) ..... 305
QElxIOC (QEI I/O Control) ..... 299
QEIxLECH (Less Than or Equal Compare High Word) ..... 306
QEIxLECL (Less Than or Equal Compare Low Word) ..... 306
QElxSTAT (QEI Status) ..... 301
RCFGCAL (RTCC Calibration and Configuration). ..... 415
RCON (Reset Control) ..... 130
REFOCON (Reference Oscillator Control) ..... 174
RPINR0 (Peripheral Pin Select Input 0). ..... 199
RPINR1 (Peripheral Pin Select Input 1). ..... 200
RPINR10 (Peripheral Pin Select Input 10) ..... 209
RPINR11 (Peripheral Pin Select Input 11) ..... 210
RPINR12 (Peripheral Pin Select Input 12). ..... 211
RPINR13 (Peripheral Pin Select Input 13) ..... 212
RPINR14 (Peripheral Pin Select Input 14) ..... 213
RPINR15 (Peripheral Pin Select Input 15) ..... 214
RPINR16 (Peripheral Pin Select Input 16). ..... 215
RPINR17 (Peripheral Pin Select Input 17) ..... 216
RPINR18 (Peripheral Pin Select Input 18) ..... 217
RPINR19 (Peripheral Pin Select Input 19) ..... 218
RPINR2 (Peripheral Pin Select Input 2) ..... 201
RPINR20 (Peripheral Pin Select Input 20) ..... 219
RPINR21 (Peripheral Pin Select Input 21) ..... 220
RPINR23 (Peripheral Pin Select Input 23) ..... 221
RPINR24 (Peripheral Pin Select Input 24) ..... 222
RPINR25 (Peripheral Pin Select Input 25) ..... 223
RPINR26 (Peripheral Pin Select Input 26) ..... 224
RPINR27 (Peripheral Pin Select Input 27) ..... 225
RPINR28 (Peripheral Pin Select Input 28) ..... 226
RPINR29 (Peripheral Pin Select Input 29) ..... 227
RPINR3 (Peripheral Pin Select Input 3) ..... 202
RPINR30 (Peripheral Pin Select Input 30) ..... 228
RPINR31 (Peripheral Pin Select Input 31) ..... 229
RPINR32 (Peripheral Pin Select Input 32) ..... 230
RPINR33 (Peripheral Pin Select Input 33) ..... 231
RPINR34 (Peripheral Pin Select Input 34) ..... 232
RPINR35 (Peripheral Pin Select Input 35) ..... 233
RPINR36 (Peripheral Pin Select Input 36) ..... 234
RPINR37 (Peripheral Pin Select Input 37) ..... 235
RPINR38 (Peripheral Pin Select Input 38) ..... 236
RPINR4 (Peripheral Pin Select Input 4) ..... 203
RPINR40 (Peripheral Pin Select Input 40) ..... 237
RPINR41 (Peripheral Pin Select Input 41) ..... 238
RPINR42 (Peripheral Pin Select Input 42) ..... 239
RPINR43 (Peripheral Pin Select Input 43) ..... 240
RPINR45 (Peripheral Pin Select Input 45) ..... 241
RPINR5 (Peripheral Pin Select Input 5) ..... 204
RPINR6 (Peripheral Pin Select Input 6) ..... 205
RPINR7 (Peripheral Pin Select Input 7) ..... 206
RPINR8 (Peripheral Pin Select Input 8) ..... 207
RPINR9 (Peripheral Pin Select Input 9) ..... 208
RPORO (Peripheral Pin Select Output 0) ..... 241
RPOR1 (Peripheral Pin Select Output 1) ..... 242
RPOR11 (Peripheral Pin Select Output 11) ..... 246
RPOR12 (Peripheral Pin Select Output 12) ..... 247
RPOR13 (Peripheral Pin Select Output 13) ..... 247
RPOR14 (Peripheral Pin Select Output 14) ..... 248
RPOR15 (Peripheral Pin Select Output 15) ..... 248
RPOR2 (Peripheral Pin Select Output 2) ..... 242
RPOR3 (Peripheral Pin Select Output 3) ..... 243
RPOR4 (Peripheral Pin Select Output 4) ..... 243
RPOR5 (Peripheral Pin Select Output 5) ..... 244
RPOR6 (Peripheral Pin Select Output 6) ..... 244
RPOR7 (Peripheral Pin Select Output 7) ..... 245
RPOR8 (Peripheral Pin Select Output 8) ..... 245
RPOR9 (Peripheral Pin Select Output 9) ..... 246
RSCON (DCI Receive Slot Control) ..... 400
RTCVAL (Minutes and Seconds Value - when RTCPTR = 00) ..... 420
RTCVAL (Month and Day Value - when RTCPTR = 10) ..... 419
RTCVAL (Weekday and Hours Value - when RTCPTR = 01) ..... 420
RTCVAL (YEAR VALUE Register - when RTCPTR = 11) ..... 419
SDCx (PWM Secondary Duty Cycle) ..... 280
SEVTCMP (Primary Special Event Compare) ..... 273
SPHASEx (PWM Secondary Phase Shift). ..... 282
SPIxCON1 (SPlx Control 1) ..... 312
SPIxCON2 (SPIx Control 2) ..... 314
SPIxSTAT (SPIx Status and Control) ..... 310
SR (CPU Status) ..... 37, 139
SSEVTCMP (PWM Secondary Special Event Compare) ..... 276
T1CON (Timer1 Control) ..... 250
TRGCONx (PWM Trigger Control) ..... 284
TRIGx (PWM Primary Trigger Compare Value) ..... 287
TSCON (DCI Transmit Slot Control). ..... 400
TxCON (T2CON, T4CON, T6CON or T8CON Control). ..... 254
TyCON (T3CON, T5CON, T7CON or T9CON Control). ..... 255
UxADDR (USB Address) ..... 363
UxBDTP1 (USB Buffer Description Table 1) ..... 377
UxBDTP2 (USB Buffer Description Table 2) ..... 377
UxBDTP3 (USB Buffer Description Table 3) ..... 378
UxCNFG1 (USB Configuration 1). ..... 364
UxCNFG2 (USB Configuration 2) ..... 365
UxCON (USB Control - Device mode) ..... 361
UxCON (USB Control - Host mode) ..... 362
UxEIE (USB Error Interrupt Enable - Device mode). 374
UxEIE (USB Error Interrupt Enable - Host mode)... ..... 375
UxEIR (USB Error Interrupt Status - Device mode) ..... 372
UxEIR (USB Error Interrupt Status - Host mode) ..... 373
UxEPn (USB Endpoint \(n\) Control) ..... 376
UxFRMH (USB Frame Number High) ..... 379
UxFRML (USB Frame Number Low) ..... 380
UxIE (USB Interrupt Enable - Device mode) ..... 370
UxIE (USB Interrupt Enable - Host mode) ..... 371
UxIR (USB Interrupt Status - Device mode only) ..... 368
UxIR (USB Interrupt Status - Host mode only) ..... 369
UxMODE (UARTx Mode) ..... 324
UxOTGCON (USB OTG Control) ..... 358
UxOTGIE (USB OTG Interrupt Enable - Host mode only) ..... 367
UxOTGIR (USB OTG Interrupt Status - Host mode only) ..... 366
UxOTGSTAT (USB OTG Status) ..... 357
UxPWMCON (USB Vbus PWM Generator Control) ..... 378
UxPWMRRS (Duty Cycle and PWM Period) ..... 379
UxPWRC (USB Power Control) ..... 359
UxSOF (USB OTG Start-Of-Token Threshold - Host mode only) ..... 364
UxSTA (UARTx Status and Control) ..... 326
UxSTAT (USB Status) ..... 360
UxTOK (USB Token - Host mode only) ..... 363
VELxCNT (Velocity Counter) ..... 304
Reset
Illegal Opcode ..... 129
Uninitialized W Register ..... 129
Reset Sequence ..... 133
Resets ..... 129
S
Serial Peripheral Interface (SPI) ..... 309
Software Simulator (MPLAB SIM) ..... 457
Software Stack Pointer, Frame Pointer
CALLL Stack Frame ..... 118
Special Features of the CPU ..... 437
Symbols Used in Opcode Descriptions ..... 446
T
Temperature and Voltage Specifications
AC. ..... 471
Timer1 ..... 249
Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ..... 251
Timing Characteristics
CLKO and I/O ..... 475
Timing Diagrams
    10-bit ADC Conversion (CHPS<1:0> \(=01\), SIMSAM \(=0\),
        ASAM \(=0, \mathrm{SSRC}<3: 0>=000) \ldots \ldots \ldots \ldots \ldots \ldots . . . . . . . . . . . . . .521\)
    10-bit ADC Conversion (CHPS<1:0> \(=01\), SIMSAM \(=0\),
        ASAM = 1, SSRC<2:0> = 111,
        SAMC<4:0> = 00001)521
10-bit ADC Conversion (CHPS<1:0> \(=01\), SIMSAM \(=0\),ASAM \(=1, S S R C<3: 0>=111\),SAMC<4:0> = 00010)521
12-bit ADC Conversion
(ASAM \(=0, S S R C<3: 0>=000)\) ..... 519
DCI AC-Link Mode ..... 525
DCI Multi -Channel, \({ }^{2}\) S Modes ..... 523
ECAN I/O ..... 514
External Clock ..... 472
2Cx Bus Data (Master Mode) ..... 510
2Cx Bus Data (Slave Mode) ..... 512
2Cx Bus Start/Stop Bits (Master Mode) ..... 510
I2Cx Bus Start/Stop Bits (Slave Mode) ..... 512
Input Capture (CAPx) ..... 481
Motor Control PWM ..... 483
Motor Control PWM Fault ..... 483
OC/PWM ..... 482
Output Compare (OCx) ..... 481
Parallel Slave Port ..... 528
QEA/QEB Input ..... 484
QEI Module Index Pulse ..... 485
Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer ..... 476
Timer1, 2, 3 External Clock ..... 477, 478
TimerQ (QEI Module) External Clock ..... 480
Timing Requirements
CLKO and I/O ..... 475
DCI AC-Link Mode ..... 526
DCI Multi-Channel, \({ }^{2}\) ² Modes ..... 524
DMA Module ..... 530
External Clock ..... 472
Parallel Master Port Read ..... 529
Parallel Master Port Write ..... 530
Timing Specifications
10-bit ADC Conversion Requirements ..... 522
12-bit ADC Conversion Requirements ..... 520
CAN I/O Requirements ..... 514
I2Cx Bus Data Requirements (Master Mode) ..... 511
I2Cx Bus Data Requirements (Slave Mode) ..... 513
Motor Control PWM Requirements ..... 483
Output Compare Requirements ..... 482
Parallel Slave Port ..... 528
PLL Clock ..... 473
QEI External Clock Requirements ..... 480
QEI Index Pulse Requirements ..... 485
Quadrature Decoder Requirements. ..... 484
Reset, Watchdog Timer, Oscillator Start-up Timer,
Power-up Timer and Brown-out ResetRequirements477
Simple OC/PWM Mode Requirements ..... 482
Timer1 External Clock Requirements ..... 478
Timer2 External Clock Requirements ..... 479
Timer3 External Clock Requirements ..... 479
U
Universal Asynchronous Receiver Transmitter (UART) ..... 323
V
Voltage Regulator (On-Chip) ..... 441
W
Watchdog Timer (WDT) ..... 437, 442
Programming Considerations ..... 442
WWW Address ..... 567
WWW, On-Line Support ..... 20

\section*{THE MICROCHIP WEB SITE}

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:
- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

\section*{CUSTOMER CHANGE NOTIFICATION SERVICE}

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

\section*{CUSTOMER SUPPORT}

Users of Microchip products can receive assistance through several channels:
- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

\section*{READER RESPONSE}

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.
TO: Technical Publications Manager
Total Pages Sent \(\qquad\)
RE: Reader Response
From: Name \(\qquad\)
Company
Address \(\qquad\)
City / State / ZIP / Country \(\qquad\)
Telephone: (___ \({ }^{-} \quad\) FAX: (___ \(\quad\) ___

Application (optional):
Would you like a reply? Y \(\qquad\) N

Device: dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Literature Number: DS70616E

Questions:
1. What are the best features of this document?
\(\qquad\)
2. How does this document meet your hardware and software development needs?
\(\qquad\)
3. Do you find the organization of this document easy to follow? If not, why?
\(\qquad\)
4. What additions to the document do you think would enhance the structure and subject?
\(\qquad\)
5. What deletions from the document could be made without affecting the overall usefulness?
\(\qquad\)
\(\qquad\)
6. Is there any incorrect or misleading information (what and where)?
\(\qquad\)
\(\qquad\)
7. How would you improve this document?
\(\qquad\)
\(\qquad\)

\section*{PRODUCT IDENTIFICATION SYSTEM}

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.


\section*{Examples:}
a) dsPIC33EP512MU814T-E/PH: Motor Control with USB dsPIC33,
512 KB program memory, 144-pin, Extended temperature, TQFP package.

Microchip

\section*{Worldwide Sales and Service}
AMERICAS
Corporate Office
2355 West Chandler Blvd.

Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

\section*{Atlanta}

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

\section*{Cleveland}

Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

\section*{ASIA/PACIFIC}

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China-Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

\section*{EUROPE}

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820```


[^0]:    Legend: —= unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

[^1]:    Legend: $x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

[^2]:    TABLE 4-33: CRC REGISTER MAP

    | File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | CRCCON1 | 0640 | CRCEN | - | CSIDL | VWORD<4:0> |  |  |  |  | CRCFUL | CRCMPT | CRCISEL | CRCGO | LENDIAN | - | - | - | 0000 |
    | CRCCON2 | 0642 | - | - | - | DWIDTH<4:0> |  |  |  |  | - | - | - | PLEN<4:0> |  |  |  |  | 0000 |
    | CRCXORL | 0644 | X<15:1> |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - | 0000 |
    | CRCXORH | 0646 | X<23:16> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |
    | CRCDATL | 0648 | CRC Data Input Low Word |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |
    | CRCDATH | 064A | CRC Data Input High Word |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |
    | CRCWDATL | 064C | CRC Result Low Word |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |
    | CRCWDATH | 064E | CRC Result High Word |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |

    TABLE 4-34: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Rest } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | ALRMVAL | 0620 | Alarm Value Register Window based on ALRMPTR<1:0> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | xxxx |
    | ALCFGRPT | 0622 | ALRMEN | CHIME | AMASK<3:0> |  |  |  | ALRMPTR<1:0> |  | ARPT<7:0> |  |  |  |  |  |  |  | 0000 |
    | RTCVAL | 0624 | RTCC Value Register Window based on RTCPTR<1:0> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | xxxx |
    | RCFGCAL | 0626 | RTCEN | - | RTCWREN | RTCSYNC | HALFSEC | RTCOE | RTCPTR<1:0> |  | CAL<7:0> |  |  |  |  |  |  |  | 0000 |

    
    TABLE 4-36: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | RPOR0 | 0680 | - | - | RP65R<5:0> |  |  |  |  |  | - | - | RP64R<5:0> |  |  |  |  |  | 0000 |
    | RPOR1 | 0682 | - | - | RP67R<5:0> |  |  |  |  |  | - | - | RP66R<5:0> |  |  |  |  |  | 0000 |
    | RPOR2 | 0684 | - | - | RP69R<5:0> |  |  |  |  |  | - | - | RP68R<5:0> |  |  |  |  |  | 0000 |
    | RPOR3 | 0686 | - | - | RP71R<5:0> |  |  |  |  |  | - | - | RP70R<5:0> |  |  |  |  |  | 0000 |
    | RPOR4 | 0688 | - | - | RP80R<5:0> |  |  |  |  |  | - | - | - | - | - | - | - | - | 0000 |
    | RPOR5 | 068A | - | - | RP84R<5:0> |  |  |  |  |  | - | - | RP82R<5:0> |  |  |  |  |  | 0000 |
    | RPOR6 | 068C | - | - | RP87R<5:0> |  |  |  |  |  | - | - | RP85R<5:0> |  |  |  |  |  | 0000 |
    | RPOR7 | 068E | - | - | RP97R<5:0> |  |  |  |  |  | - | - | RP96R<5:0> |  |  |  |  |  | 0000 |
    | RPOR8 | 0690 | - | - | RP99R<5:0> |  |  |  |  |  | - | - | - | - | - | - | - | - | 0000 |
    | RPOR9 | 0692 | - | - | RP101R<5:0> |  |  |  |  |  | - | - | RP100R<5:0> |  |  |  |  |  | 0000 |
    | RPOR13 | 069A | - | - | RP118R<5:0> |  |  |  |  |  | - | - | - | - | - | - | - | - | 0000 |
    | RPOR14 | 069C | - | - | - | - | - | - | - | - | - | - | RP120R<5:0> |  |  |  |  |  | 0000 |


    TABLE 4-37: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY
    
    
    
    
    
    
    
    TABLE 4-39: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY
    
    

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | RPINR0 | 06A0 | - | INT1R<6:0> |  |  |  |  |  |  | - | - | - | - | - | - | - | - | 0000 |
    | RPINR1 | 06A2 | - | INT3R<6:0> |  |  |  |  |  |  | - | INT2R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR2 | 06A4 | - | - | - | - | - | - | - | - | - | INT4R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR3 | 06A6 | - | T3CKR<6:0> |  |  |  |  |  |  | - | T2CKR<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR4 | 06A8 | - | T5CKR<6:0> |  |  |  |  |  |  | - | T4CKR<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR5 | 06AA | - | T7CKR<6:0> |  |  |  |  |  |  | - | T6CKR<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR6 | 06AC | - | T9CKR<6:0> |  |  |  |  |  |  | - | T8CKR<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR7 | 06AE | - | IC2R<6:0> |  |  |  |  |  |  | - | IC1R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR8 | 06B0 | - | IC4R<6:0> |  |  |  |  |  |  | - | IC3R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR9 | 06B2 | - | IC6R<6:0> |  |  |  |  |  |  | - |  |  |  | 5R<6:0 |  |  |  | 0000 |
    | RPINR10 | 06B4 | - | IC8R<6:0> |  |  |  |  |  |  | - |  |  |  | $7 \mathrm{R}<6$ : |  |  |  | 0000 |
    | RPINR11 | 06B6 | - | OCFBR<6:0> |  |  |  |  |  |  | - |  |  |  | FAR<6 |  |  |  | 0000 |
    | RPINR18 | 06C4 | - | U1CTSR<6:0> |  |  |  |  |  |  | - |  |  |  | RXR<6 |  |  |  | 0000 |
    | RPINR19 | 06C6 | - | U2CTSR<6:0> |  |  |  |  |  |  | - |  |  |  | RXR<6 |  |  |  | 0000 |
    | RPINR20 | 06C8 | - | SCK1R<6:0> |  |  |  |  |  |  | - | SDI1R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR21 | 06CA | - | - | - | - | - | - | - | - | - | SS1R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR23 | 06CE | - | - | - | - | - | - | - | - | - | SS2R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR26 | 06D4 | - | C2RXR<6:0> |  |  |  |  |  |  | - |  |  |  | RXR<6 |  |  |  | 0000 |
    | RPINR27 | 06D6 | - | U3CTSR<6:0> |  |  |  |  |  |  | - |  |  |  | RXR<6 |  |  |  | 0000 |
    | RPINR28 | 06D8 | - | U4CTSR<6:0> |  |  |  |  |  |  | - |  |  |  | RXR<6:0 |  |  |  | 0000 |
    | RPINR29 | 06DA | - | SCK3R<6:0> |  |  |  |  |  |  | - |  |  |  | $13 \mathrm{R}<6$ |  |  |  | 0000 |
    | RPINR30 | 06DC | - | - | - | - | - | - | - | - | - | SS3R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR31 | 06DE | - | SCK4R<6:0> |  |  |  |  |  |  | - | SDI4R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR32 | 06E0 | - | - | - | - | - | - | - | - | - | SS4R<6:0> |  |  |  |  |  |  | 0000 |
    | RPINR33 | 06E2 | - | IC10R<6:0> |  |  |  |  |  |  | - |  |  |  | 9R<6: |  |  |  | 0000 |
    | RPINR34 | 06E4 | - | IC12R<6:0> |  |  |  |  |  |  | - |  |  |  | $11 \mathrm{R}<6$ |  |  |  | 0000 |
    | RPINR35 | 06E6 | - | IC14R<6:0> |  |  |  |  |  |  | - |  |  |  | $13 \mathrm{R}<6$ |  |  |  | 0000 |
    | RPINR36 | 06E8 | - | IC16R<6:0> |  |  |  |  |  |  | - |  |  |  | $15 \mathrm{R}<6$ |  |  |  | 0000 |
    | RPINR37 | 06EA | - | - | - | - | - | - | - | - | - | OCFCR<6:0> |  |  |  |  |  |  | 0000 |

    TABLE 4-41: REFERENCE CLOCK REGISTER MAP

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | REFOCON | 074E | ROON | - | ROSSLP | ROSEL | RODIV<3:0> |  |  |  | - | - | - | - | - | - | - | - | 0000 |

    TABLE 4-44: PMD REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | DCIMD | I2C1MD | U2MD | U1MD | SPI2MD | SPI1MD | C2MD | C1MD | AD1MD | 0000 |
    | PMD2 | 0762 | IC8MD | IC7MD | IC6MD | IC5MD | IC4MD | IC3MD | IC2MD | IC1MD | OC8MD | OC7MD | OC6MD | OC5MD | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
    | PMD3 | 0764 | T9MD | T8MD | T7MD | T6MD | - | CMPMD | RTCCMD | PMPMD | CRCMD | - | QEI2MD | - | U3MD | - | 12C2MD | AD2MD | 0000 |
    | PMD4 | 0766 | - | - | - | - | - | - | - | - | - | - | U4MD | - | REFOMD | - | - | USB1MD | 0000 |
    | PMD5 | 0768 | IC16MD | IC15MD | IC14MD | IC13MD | IC12MD | IC11MD | IC10MD | IC9MD | OC16MD | OC15MD | OC14MD | OC13MD | OC12MD | OC11MD | OC10MD | OC9MD | 0000 |
    | PMD6 | 076A | - | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | - | - | - | - | - | - | SPI4MD | SPI3MD | 0000 |
    | PMD7 | 076C | - | - | - | - | - | - | - | - | DMA12MD | DMA8MD | DMA4MD | DMAOMD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | DMA13MD | DMA9MD | DMA5MD | DMA1MD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | DMA14MD | DMA10MD | DMA6MD | DMA2MD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | - | DMA11MD | DMA7MD | DMA3MD | - | - | - | - | 0000 |

    TABLE 4-45: PMD REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | DCIMD | I2C1MD | U2MD | U1MD | SPI2MD | SPI1MD | C2MD | C1MD | AD1MD | 0000 |
    | PMD2 | 0762 | IC8MD | IC7MD | IC6MD | IC5MD | IC4MD | IC3MD | IC2MD | IC1MD | OC8MD | OC7MD | OC6MD | OC5MD | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
    | PMD3 | 0764 | T9MD | T8MD | T7MD | T6MD | - | CMPMD | RTCCMD | PMPMD | CRCMD | - | QEI2MD | - | U3MD | - | 12C2MD | AD2MD | 0000 |
    | PMD4 | 0766 | - | - | - | - | - | - | - | - | - | - | U4MD | - | REFOMD | - | - | USB1MD | 0000 |
    | PMD5 | 0768 | IC16MD | IC15MD | IC14MD | IC13MD | IC12MD | IC11MD | IC10MD | IC9MD | OC16MD | OC15MD | OC14MD | OC13MD | OC12MD | OC11MD | OC10MD | OC9MD | 0000 |
    | PMD6 | 076A | - | - | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | - | - | - | - | - | - | SPI4MD | SPI3MD | 0000 |
    | PMD7 | 076C | - | - | - | - | - | - | - | - | DMA12MD | DMA8MD | DMA4MD | DMAOMD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | DMA13MD | DMA9MD | DMA5MD | DMA1MD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | DMA14MD | DMA10MD | DMA6MD | DMA2MD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | - | DMA11MD | DMA7MD | DMA3MD | - | - | - | - | 0000 |

    TABLE 4-46: PMD REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

    | $\begin{aligned} & \text { File } \\ & \text { Name } \end{aligned}$ | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | DCIMD | 12C1MD | U2MD | U1MD | SPI2MD | SPI1MD | C2MD | C1MD | AD1MD | 0000 |
    | PMD2 | 0762 | IC8MD | IC7MD | IC6MD | IC5MD | IC4MD | IC3MD | IC2MD | IC1MD | OC8MD | OC7MD | OC6MD | OC5MD | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
    | PMD3 | 0764 | T9MD | T8MD | T7MD | T6MD | - | CMPMD | RTCCMD | PMPMD | CRCMD | - | QEI2MD | - | U3MD | - | 12C2MD | AD2MD | 0000 |
    | PMD4 | 0766 | - | - | - | - | - | - | - | - | - | - | U4MD | - | REFOMD | - | - | USB1MD | 0000 |
    | PMD5 | 0768 | IC16MD | IC15MD | IC14MD | IC13MD | IC12MD | IC11MD | IC10MD | IC9MD | OC16MD | OC15MD | OC14MD | OC13MD | OC12MD | OC11MD | OC10MD | OC9MD | 0000 |
    | PMD6 | 076A | - | - | - | - | PWM4MD | PWM3MD | PWM2MD | PWM1MD | - | - | - | - | - | - | SPI4MD | SPI3MD | 0000 |
    | PMD7 | 076C | - | - | - | - | - | - | - | - | DMA12MD | DMA8MD | DMA4MD | DMAOMD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | DMA13MD | DMA9MD | DMA5MD | DMA1MD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | DMA14MD | DMA10MD | DMA6MD | DMA2MD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | - | DMA11MD | DMA7MD | DMA3MD | - | - | - | - | 0000 |

    Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
    TABLE 4-47: PMD REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | - | - | DCIMD | 12C1MD | U2MD | U1MD | SPI2MD | SPI1MD | C2MD | C1MD | AD1MD | 0000 |
    | PMD2 | 0762 | IC8MD | IC7MD | IC6MD | IC5MD | IC4MD | IC3MD | IC2MD | IC1MD | OC8MD | OC7MD | OC6MD | OC5MD | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
    | PMD3 | 0764 | T9MD | T8MD | T7MD | T6MD | - | CMPMD | RTCCMD | PMPMD | CRCMD | - | - | - | U3MD | - | 12C2MD | AD2MD | 0000 |
    | PMD4 | 0766 | - | - | - | - | - | - | - | - | - | - | U4MD | - | REFOMD | - | - | USB1MD | 0000 |
    | PMD5 | 0768 | IC16MD | IC15MD | IC14MD | IC13MD | IC12MD | IC11MD | IC10MD | IC9MD | OC16MD | OC15MD | OC14MD | OC13MD | OC12MD | OC11MD | OC10MD | OC9MD | 0000 |
    | PMD6 | 076A | - | - | - | - | - | - | - | - | - | - | - | - | - | - | SPI4MD | SPI3MD | 0000 |
    | PMD7 | 076C | - | - | - | - | - | - | - | - | DMA12MD | DMA8MD | DMA4MD | DMAOMD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | DMA13MD | DMA9MD | DMA5MD | DMA1MD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | DMA14MD | DMA10MD | DMA6MD | DMA2MD | - | - | - | - | 0000 |
    |  |  | - | - | - | - | - | - | - | - | - | DMA11MD | DMA7MD | DMA3MD | - | - | - | - | 0000 |

    TABLE 4-48: COMPARATOR REGISTER MAP

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \hline \text { All } \\ \text { Resets } \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | CMSTAT | 0A80 | CMSIDL | - | - | - | - | C3EVT | C2EVT | C1EVT | - | - | - | - | - | C3OUT | C2OUT | C10UT | 0000 |
    | CVRCON | 0A82 | - | - | - | - | - | VREFSEL | BGSEL<1:0> |  | CVREN | CVROE | CVRR | CVRSS | CVR<3:0> |  |  |  | 0000 |
    | CM1CON | 0A84 | CON | COE | CPOL | - | - | - | CEVT | COUT | EVPOL<1:0> |  | - | CREF | - | - | $\mathrm{CCH}<1: 0>$ |  | 0000 |
    | CM1MSKSRC | 0A86 | - | - | - | - | SELSRCC<3:0> |  |  |  | SELSRCB<3:0> |  |  |  | SELSRCA<3:0> |  |  |  | 0000 |
    | CM1MSKCON | 0A88 | HLMS | - | OCEN | OCNEN | OBEN | OBNEN | OAEN | OANEN | NAGS | PAGS | ACEN | ACNEN | AbEN | ABNEN | AAEN | AANEN | 0000 |
    | CM1FLTR | 0A8A | - | - | - | - | - | - | - | - | CFSEL<2:0> |  |  |  | CFLTREN | CFDIV<2:0> |  |  | 0000 |
    | CM2CON | OA8C | CON | COE | CPOL | - | - | - | CEVT | COUT | EVPOL<1:0> |  | - | CREF | - | - | CCH | 1:0> | 0000 |
    | CM2MSKSRC | OA8E | - | - | - | - | SELSRCC<3:0> |  |  |  | SELSRCB<3:0> |  |  |  | SELSRCA<3:0> |  |  |  | 0000 |
    | CM2MSKCON | 0A90 | HLMS | - | OCEN | OCNEN | OBEN | OBNEN | OAEN | OANEN | NAGS | PAGS | ACEN | ACNEN | ABEN | ABNEN | AAEN | AANEN | 0000 |
    | CM2FLTR | 0A92 | - | - | - | - | - | - | - | - | CFSEL<2:0> |  |  |  | CFLTREN | CFDIV<2:0> |  |  | 0000 |
    | CM3CON | 0A94 | CON | COE | CPOL | - | - | - | CEVT | COUT | EVPOL<1:0> |  | - | CREF | - | - | CCH | 1:0> | 0000 |
    | CM3MSKSRC | 0A96 | - | - | - | - | SELSRCC<3:0> |  |  |  | SELSRCB<3:0> |  |  |  | SELSRCA<3:0> |  |  |  | 0000 |
    | CM3MSKCON | 0A98 | HLMS | - | OCEN | OCNEN | OBEN | OBNEN | OAEN | OANEN | NAGS | PAGS | ACEN | ACNEN | ABEN | ABNEN | AAEN | AANEN | 0000 |
    | CM3FLTR | 0A9A | - | - | - | - | - | - | - | - | - | CFSEL<2:0> |  |  | CFLTREN | CFDIV<2:0> |  |  | 0000 |

    Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
    
    
    Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
    TABLE 4-49
    
    TABLE 4-49: DMAC REGISTER MAP (CONTINUED)

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | DMA14REQ | OBE2 | FORCE | - | - | - | - | - | - | - |  |  |  | IRQSEL | <7:0> |  |  |  | 00FF |
    | DMA14STAL | OBE4 | STA<15:0> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |
    | DMA14STAH | OBE6 | - | - | - | - | - | - | - | - | STA<23:16> |  |  |  |  |  |  |  | 0000 |
    | DMA14STBL | OBE8 | STB<15:0> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |
    | DMA14STBH | OBEA | - | - | - | - | - | - | - | - | STB<23:16> |  |  |  |  |  |  |  | 0000 |
    | DMA14PAD | OBEC | PAD<15:0> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |
    | DMA14CNT | OBEE | - | - | CNT<13:0> |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |
    | DMAPWC | OBFO | - | PWCOL14 | PWCOL13 | PWCOL12 | PWCOL11 | PWCOL10 | PWCOL9 | PWCOL8 | PWCOL7 | PWCOL6 | PWCOL5 | PWCOL4 | PWCOL3 | PWCOL2 | PWCOL1 | PWCOLO | 0000 |
    | DMARQC | OBF2 | - | RQCOL14 | RQCOL13 | RQCOL12 | RQCOL11 | RQCOL10 | RQCOL9 | RQCOL8 | RQCOL7 | RQCOL6 | RQCOL5 | RQCOL4 | RQCOL3 | RQCOL2 | RQCOL1 | RQCOLO | 0000 |
    | DMAPPS | OBF4 | - | PPST14 | PPST13 | PPST12 | PPST11 | PPST10 | PPST9 | PPST8 | PPST7 | PPST6 | PPST5 | PPST4 | PPST3 | PPST2 | PPST1 | PPST0 | 0000 |
    | DMALCA | OBF6 | - | - | - | - | - | - | - | - | - | - | - | - | LSTCH<3:0> |  |  |  | 000F |
    | DSADRL | OBF8 | DSADR<15:0> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |
    | DSADRH | OBFA | - | - | - | - | - | - | - | - | DSADR<23:16> |  |  |  |  |  |  |  | 0000 |

    TABLE 4-50

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISA | 0E00 | TRISA15 | TRISA14 | - | - | - | TRISA10 | TRISA9 | - | TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 | C6FF |
    | PORTA | 0E02 | RA15 | RA14 | - | - | - | RA10 | RA9 | - | RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RAO | xxxx |
    | LATA | 0E04 | LATA15 | LATA14 | - | - | - | LATA10 | LATA9 | - | LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATAO | xxxx |
    | ODCA | 0E06 | ODCA15 | ODCA14 | - | - | - | - | - | - | - | - | ODCA5 | ODCA4 | ODCA3 | ODCA2 | ODCA1 | ODCAO | 0000 |
    | CNENA | 0E08 | CNIEA15 | CNIEA14 | - | - | - | CNIEA10 | CNIEA9 | - | CNIEA7 | CNIEA6 | CNIEA5 | CNIEA4 | CNIEA3 | CNIEA2 | CNIEA1 | CNIEAO | 0000 |
    | CNPUA | OEOA | CNPUA15 | CNPUA14 | - | - | - | CNPUA10 | CNPUA9 | - | CNPUA7 | CNPUA6 | CNPUA5 | CNPUA4 | CNPUA3 | CNPUA2 | CNPUA1 | CNPUAO | 0000 |
    | CNPDA | OEOC | CNPDA15 | CNPDA14 | - | - | - | CNPDA10 | CNPDA9 | - | CNPDA7 | CNPDA6 | CNPDA5 | CNPDA4 | CNPDA3 | CNPDA2 | CNPDA1 | CNPDAO | 0000 |
    | ANSELA | OEOE | - | - | - | - | - | ANSA10 | ANSA9 | - | ANSA7 | ANSA6 | - | - | - | - | - | - | 06C0 |

    Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

    ## TABLE 4-51: PORTB REGISTER MAP

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISB | 0E10 | TRISB15 | TRISB14 | TRISB13 | TRISB12 | TRISB11 | TRISB10 | TRISB9 | TRISB8 | TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 | FFFF |
    | PORTB | OE12 | RB15 | RB14 | RB13 | RB12 | RB11 | RB10 | RB9 | RB8 | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 | xxx |
    | LATB | 0E14 | LATB15 | LATB14 | LATB13 | LATB12 | LATB11 | LATB10 | LATB9 | LATB8 | LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 | xxxx |
    | ODCB | 0E16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - | 0000 |
    | CNENB | OE18 | CNIEB15 | CNIEB14 | CNIEB13 | CNIEB12 | CNIEB11 | CNIEB10 | CNIEB9 | CNIEB8 | CNIEB7 | CNIEB6 | CNIEB5 | CNIEB4 | CNIEB3 | CNIEB2 | CNIEB1 | CNIEBO | 0000 |
    | CNPUB | 0E1A | CNPUB15 | CNPUB14 | CNPUB13 | CNPUB12 | CNPUB11 | CNPUB10 | CNPUB9 | CNPUB8 | CNPUB7 | CNPUB6 | CNPUB5 | CNPUB4 | CNPUB3 | CNPUB2 | CNPUB1 | CNPUB0 | 0000 |
    | CNPDB | OE1C | CNPDB15 | CNPDB14 | CNPDB13 | CNPDB12 | CNPDB11 | CNPDB10 | CNPDB9 | CNPDB8 | CNPDB7 | CNPDB6 | CNPDB5 | CNPDB4 | CNPDB3 | CNPDB2 | CNPDB1 | CNPDB0 | 0000 |
    | ANSELB | 0E1E | ANSB15 | ANSB14 | ANSB13 | ANSB12 | ANSB11 | ANSB10 | ANSB9 | ANSB8 | ANSB7 | ANSB6 | ANSB5 | ANSB4 | ANSB3 | ANSB | ANSB1 | ANSB | FFF | Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

    TABLE 4-52: PORTC REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

    | File Name | Addr, | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISC | 0E20 | TRISC15 | TRISC14 | TRISC13 | TRISC12 | - | - | - | - | - | - | - | TRISC4 | TRISC3 | TRISC2 |
    | PORTC | 0E22 | RC15 | RC14 | RC13 | RC12 | - | - | - | - | - | - | - | RC4 | RC3 | RC2 |
    | LATC | 0E24 | LATC15 | LATC14 | LATC13 | LATC12 | - | - | - | - | - | - | - | LATC4 | LATC3 | LATC2 |
    | ODCC | 0E26 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
    | CNENC | 0E28 | CNIEC15 | CNIEC14 | CNIEC13 | CNIEC12 | - | - | - | - | - | - | - | CNIEC4 | CNIEC3 | CNIEC2 |
    | CNPUC | 0E2A | CNPUC15 | CNPUC14 | CNPUC13 | CNPUC12 | - | - | - | - | - | - | - | CNPUC4 | CNPUC3 | CNPUC2 |
    | CNPDC | 0E2C | CNPDC15 | CNPDC14 | CNPDC13 | CNPDC12 | - | - | - | - | - | - | - | CNPDC4 | CNPDC3 | CNPDC2 |
    | ANSELC | 0E2E | - | ANSC14 | ANSC13 | - | - | - | - | - | - | - | - | ANSC4 | ANSC3 | ANSC2 |

    TABLE 4-53: PORTC REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

    | File Name | Addr, | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISC | 0E20 | TRISC15 | TRISC14 | TRISC13 | TRISC12 | - | - | - | - | - | - | - | - | - | - | - | - | F000 |
    | PORTC | 0E22 | RC15 | RC14 | RC13 | RC12 | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
    | LATC | 0E24 | LATC15 | LATC14 | LATC13 | LATC12 | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x x$ |
    | ODCC | 0E26 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | CNENC | 0E28 | CNIEC15 | CNIEC14 | CNIEC13 | CNIEC12 | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | CNPUC | 0E2A | CNPUC15 | CNPUC14 | CNPUC13 | CNPUC12 | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | CNPDC | 0E2C | CNPDC15 | CNPDC14 | CNPDC13 | CNPDC12 | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | ANSELC | 0E2E | - | ANSC14 | ANSC13 | - | - | - | - | - | - | - | - | - | - | - | - | - | 6000 |

    ## TABLE 4-54: PORTD REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISD | 0E30 | TRISD15 | TRISD14 | TRISD13 | TRISD12 | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 | FFFF |
    | PORTD | 0E32 | RD15 | RD14 | RD13 | RD12 | RD11 | RD10 | RD9 | RD8 | RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 | xxxx |
    | LATD | 0E34 | LATD15 | LATD14 | LATD13 | LATD12 | LATD11 | LATD10 | LATD9 | LATD8 | LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 | xxxx |
    | ODCD | 0E36 | ODCD15 | ODCD14 | ODCD13 | ODCD12 | ODCD11 | ODCD10 | ODCD9 | ODCD8 | - | - | ODCD5 | ODCD4 | ODCD3 | ODCD2 | ODCD1 | ODCD0 | 0000 |
    | CNEND | 0E38 | CNIED15 | CNIED14 | CNIED13 | CNIED12 | CNIED11 | CNIED10 | CNIED9 | CNIED8 | CNIED7 | CNIED6 | CNIED5 | CNIED4 | CNIED3 | CNIED2 | CNIED1 | CNIEDO | 0000 |
    | CNPUD | 0E3A | CNPUD15 | CNPUD14 | CNPUD13 | CNPUD12 | CNPUD11 | CNPUD10 | CNPUD9 | CNPUD8 | CNPUD7 | CNPUD6 | CNPUD5 | CNPUD4 | CNPUD3 | CNPUD2 | CNPUD1 | CNPUDO | 0000 |
    | CNPDD | OE3C | CNPDD15 | CNPDD14 | CNPDD13 | CNPDD12 | CNPDD11 | CNPDD10 | CNPDD9 | CNPDD8 | CNPDD7 | CNPDD6 | CNPDD5 | CNPDD4 | CNPDD3 | CNPDD2 | CNPDD1 | CNPDD0 | 0000 |
    | ANSELD | 0E3E | - | - | - | - | - | - | - | - | ANSD7 | ANSD6 | - | - | - | - | - | - | 00c0 |

    TABLE 4-55: PORTD REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISD | 0E30 | - | - | - | - | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 | 0FFF |
    | PORTD | 0E32 | - | - | - | - | RD11 | RD10 | RD9 | RD8 | RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 | xxxx |
    | LATD | 0E34 | - | - | - | - | LATD11 | LATD10 | LATD9 | LATD8 | LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 | xxxx |
    | ODCD | 0E36 | - | - | - | - | ODCD11 | ODCD10 | ODCD9 | ODCD8 | - | - | ODCD5 | ODCD4 | ODCD3 | ODCD2 | ODCD1 | ODCDO | 0000 |
    | CNEND | 0E38 | - | - | - | - | CNIED11 | CNIED10 | CNIED9 | CNIED8 | CNIED7 | CNIED6 | CNIED5 | CNIED4 | CNIED3 | CNIED2 | CNIED1 | CNIEDO | 0000 |
    | CNPUD | 0E3A | - | - | - | - | CNPUD11 | CNPUD10 | CNPUD9 | CNPUD8 | CNPUD7 | CNPUD6 | CNPUD5 | CNPUD4 | CNPUD3 | CNPUD2 | CNPUD1 | CNPUDO | 0000 |
    | CNPDD | 0E3C | - | - | - | - | CNPDD11 | CNPDD10 | CNPDD9 | CNPDD8 | CNPDD7 | CNPDD6 | CNPDD5 | CNPDD4 | CNPDD3 | CNPDD2 | CNPDD1 | CNPDDO | 0000 |
    | ANSELD | 0E3E | - | - | - | - | - | - | - | - | ANSD7 | ANSD6 | - | - | - | - | - | - | 00C0 |

    TABLE 4-56: PORTE REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISE | 0E40 | - | - | - | - | - | - | TRISE9 | TRISE8 | TRISE7 | TRISE6 | TRISE5 | TRISE4 | TRISE3 | TRISE2 | TRISE1 | TRISE0 | 03FF |
    | PORTE | 0E42 | - | - | - | - | - | - | RE9 | RE8 | RE7 | RE6 | RE5 | RE4 | RE3 | RE2 | RE1 | RE0 | xxxx |
    | LATE | 0E44 | - | - | - | - | - | - | LATE9 | LATE8 | LATE7 | LATE6 | LATE5 | LATE4 | LATE3 | LATE2 | LATE1 | LATE0 | $x \times x \times$ |
    | ODCE | 0E46 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | CNENE | 0 E 48 | - | - | - | - | - | - | CNIEE9 | CNIEE8 | CNIEE7 | CNIEE6 | CNIEE5 | CNIEE4 | CNIEE3 | CNIEE2 | CNIEE1 | CNIEEO | 0000 |
    | CNPUE | 0E4A | - | - | - | - | - | - | CNPUE9 | CNPUE8 | CNPUE7 | CNPUE6 | CNPUE5 | CNPUE4 | CNPUE3 | CNPUE2 | CNPUE1 | CNPUEO | 0000 |
    | CNPDE | 0E4C | - | - | - | - | - | - | CNPDE9 | CNPDE8 | CNPDE7 | CNPDE6 | CNPDE5 | CNPDE4 | CNPDE3 | CNPDE2 | CNPDE1 | CNPDEO | 0000 |
    | ANSELE | 0E4E | - | - | - | - | - | - | ANSE9 | ANSE8 | ANSE7 | ANSE6 | ANSE5 | ANSE4 | ANSE3 | ANSE2 | ANSE1 | ANSE0 | 03FF |

    TABLE 4-57: PORTE REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISE | 0E40 | - | - | - | - | - | - | - | - | TRISE7 | TRISE6 | TRISE5 | TRISE4 | TRISE3 | TRISE2 | TRISE1 | TRISE0 | 00FF |
    | PORTE | 0E42 | - | - | - | - | - | - | - | - | RE7 | RE6 | RE5 | RE4 | RE3 | RE2 | RE1 | RE0 | xxxx |
    | LATE | 0E44 | - | - | - | - | - | - | - | - | LATE7 | LATE6 | LATE5 | LATE4 | LATE3 | LATE2 | LATE1 | LATE0 | xxxx |
    | ODCE | 0E46 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | CNENE | 0E48 | - | - | - | - | - | - | - | - | CNIEE 7 | CNIEE6 | CNIEE5 | CNIEE4 | CNIEE3 | CNIEE2 | CNIEE1 | CNIEEO | 0000 |
    | CNPUE | 0E4A | - | - | - | - | - | - | - | - | CNPUE7 | CNPUE6 | CNPUE5 | CNPUE4 | CNPUE3 | CNPUE2 | CNPUE1 | CNPUEO | 0000 |
    | CNPDE | 0E4C | - | - | - | - | - | - | - | - | CNPDE7 | CNPDE6 | CNPDE5 | CNPDE4 | CNPDE3 | CNPDE2 | CNPDE1 | CNPDE0 | 0000 |
    | ANSELE | 0E4E | - | - | - | - | - | - | - | - | ANSE7 | ANSE6 | ANSE5 | ANSE4 | ANSE3 | ANSE2 | ANSE1 | ANSEO | 00FF |

    TABLE 4-58: PORTF REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISF | 0E50 | - | - | TRISF13 | TRISF12 | - | - | - | TRISF8 | - | - | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 | 313F |
    | PORTF | 0E52 | - | - | RF13 | RF12 | - | - | - | RF8 | - | - | RF5 | RF4 | RF3 | RF2 | RF1 | RF0 | xxxx |
    | LATF | 0E54 | - | - | LATF13 | LATF12 | - | - | - | LATF8 | - | - | LATF5 | LATF4 | LATF3 | LATF2 | LATF1 | LATFO | xxxx |
    | ODCF | 0E56 | - | - | ODCF13 | ODCF12 | - | - | - | ODCF8 | - | - | ODCF5 | ODCF4 | ODCF3 | ODCF2 | ODCF1 | ODCF0 | 0000 |
    | CNENF | 0 E 58 | - | - | CNIEF13 | CNIEF12 | - | - | - | CNIEF8 | - | - | CNIEF5 | CNIEF4 | CNIEF3 | CNIEF2 | CNIEF1 | CNIEFO | 0000 |
    | CNPUF | 0E5A | - | - | CNPUF13 | CNPUF12 | - | - | - | CNPUF8 | - | - | CNPUF5 | CNPUF4 | CNPUF3 | CNPUF2 | CNPUF1 | CNPUFO | 0000 |
    | CNPDF | 0E5C | - | - | CNPDF13 | CNPDF12 | - | - | - | CNPDF8 | - | - | CNPDF5 | CNPDF4 | CNPDF3 | CNPDF2 | CNPDF1 | CNPDF0 | 0000 |
    | ANSELF | 0E5E | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |

    TABLE 4-59: PORTF REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{aligned} & \text { All } \\ & \text { Resets } \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISF | 0E50 | - | - | - | - | - | - | - | - | - | - | TRISF5 | TRISF4 | TRISF3 | - | TRISF1 | TRISF0 | 003B |
    | PORTF | 0E52 | - | - | - | - | - | - | - | - | - | - | RF5 | RF4 | RF3 | - | RF1 | RFO | xxxx |
    | LATF | 0E54 | - | - | - | - | - | - | - | - | - | - | LATF5 | LATF4 | LATF3 | - | LATF1 | LATFO | xxxx |
    | ODCF | 0E56 | - | - | - | - | - | - | - | - | - | - | ODCF5 | ODCF4 | ODCF3 | - | ODCF1 | ODCF0 | 0000 |
    | CNENF | 0E58 | - | - | - | - | - | - | - | - | - | - | CNIEF5 | CNIEF4 | CNIEF3 | - | CNIEF1 | CNIEFO | 0000 |
    | CNPUF | 0E5A | - | - | - | - | - | - | - | - | - | - | CNPUF5 | CNPUF4 | CNPUF3 | - | CNPUF1 | CNPUFO | 0000 |
    | CNPDF | 0E5C | - | - | - | - | - | - | - | - | - | - | CNPDF5 | CNPDF4 | CNPDF3 | - | CNPDF1 | CNPDF0 | 0000 |
    | ANSELF | 0E5E | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |

    TABLE 4-60: PORTG REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISG | 0E60 | TRISG15 | TRISG14 | TRISG13 | TRISG12 | - | - | TRISG9 | TRISG8 | TRISG7 | TRISG6 | - | - | - | - | TRISG1 | TRISG0 | F3C3 |
    | PORTG | 0E62 | RG15 | RG14 | RG13 | RG12 | - | - | RG9 | RG8 | RG7 | RG6 | - | - | RG3 ${ }^{(1)}$ | RG2 ${ }^{(1)}$ | RG1 | RG0 | xxxx |
    | LATG | 0E64 | LATG15 | LATG14 | LATG13 | LATG12 | - | - | LATG9 | LATG8 | LATG7 | LATG6 | - | - | - | - | LATG1 | LATG0 | xxxx |
    | ODCG | 0E66 | ODCG15 | ODCG14 | ODCG13 | ODCG12 | - | - | - | - | - | - | - | - | - | - | ODCG1 | ODCGO | 0000 |
    | CNENG | 0E68 | CNIEG15 | CNIEG14 | CNIEG13 | CNIEG12 | - | - | CNIEG9 | CNIEG8 | CNIEG7 | CNIEG6 | - | - | CNIEG3 ${ }^{(1)}$ | CNIEG2 ${ }^{(1)}$ | CNIEG1 | CNIEGO | 0000 |
    | CNPUG | 0E6A | CNPUG15 | CNPUG14 | CNPUG13 | CNPUG12 | - | - | CNPUG9 | CNPUG8 | CNPUG7 | CNPUG6 | - | - | - | - | CNPUG1 | CNPUGO | 0000 |
    | CNPDG | 0E6C | CNPDG15 | CNPDG14 | CNPDG13 | CNPDG12 | - | - | CNPDG9 | CNPDG8 | CNPDG7 | CNPDG6 | - | - | - | - | CNPDG1 | CNPDGO | 0000 |
    | ANSELG | 0E6E | - | - | - | - | - | - | ANSG9 | ANSG8 | ANSG7 | ANSG6 | - | - | - | - | - | - | 03C0 |
    | Legend: Note 1: | $x=$ | known val and RG3 | on Reset used as | $=\text { unimple }$ <br> eral purp | ented, rea inputs, th | s '0'. | t valu | are show nnected | in hexad VDD. |  |  |  |  |  |  |  |  |  |


    TABLE 4-62: PORTH REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISH | 0E70 | TRISH15 | TRISH14 | TRISH13 | TRISH12 | TRISH11 | TRISH10 | TRISH9 | TRISH8 | TRISH7 | TRISH6 | TRISH5 | TRISH4 | TRISH3 | TRISH2 | TRISH1 | TRISHO | FFFF |
    | PORTH | 0E72 | RH15 | RH14 | RH13 | RH12 | RH11 | RH10 | RH9 | RH8 | RH7 | RH6 | RH5 | RH4 | RH3 | RH2 | RH1 | RH0 | xxxx |
    | LATH | 0E74 | LATH15 | LATH14 | LATH13 | LATH12 | LATH11 | LATH10 | LATH9 | LATH8 | LATH7 | LATH6 | LATH5 | LATH4 | LATH3 | LATH2 | LATH1 | LATH0 | xxx |
    | ODCH | 0E76 | ODCH15 | ODCH14 | ODCH13 | ODCH12 | ODCH11 | ODCH10 | ODCH9 | ODCH8 | ODCH7 | ODCH6 | ODCH5 | ODCH4 | ODCH3 | ODCH2 | ODCH1 | ODCHO | 0000 |
    | CNENH | 0E78 | CNIEH15 | CNIEH14 | CNIEH13 | CNIEH12 | CNIEH11 | CNIEH10 | CNIEH9 | CNIEH8 | CNIEH7 | CNIEH6 | CNIEH5 | CNIEH4 | CNIEH3 | CNIEH2 | CNIEH1 | CNIEHO | 0000 |
    | CNPUH | 0E7A | CNPUH15 | CNPUH14 | CNPUH13 | CNPUH12 | CNPUH11 | CNPUH10 | CNPUH9 | CNPUH8 | CNPUH7 | CNPUH6 | CNPUH5 | CNPUH4 | CNPUH3 | CNPUH2 | CNPUH1 | CNPUHO | 0000 |
    | CNPDH | 0E7C | CNPDH15 | CNPDH14 | CNPDH13 | CNPDH12 | CNPDH11 | CNPDH10 | CNPDH9 | CNPDH8 | CNPDH7 | CNPDH6 | CNPDH5 | CNPDH4 | CNPDH3 | CNPDH2 | CNPDH1 | CNPDHO | 0000 |
    | ANSELH | 0E7E | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |

    TABLE 4-63: PORTJ REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISJ | 0E80 | TRISJ15 | TRISJ14 | TRISJ13 | TRISJ12 | TRISJ11 | TRISJ10 | TRISJ9 | TRISJ8 | TRISJ7 | TRISJ6 | TRISJ5 | TRISJ4 | TRISJ3 | TRISJ2 | TRISJ1 | TRISJO | FFFF |
    | PORTJ | 0E82 | RJ15 | RJ14 | RJ13 | RJ12 | RJ12 | RJ10 | RJ9 | RJ8 | RJ7 | RJ6 | RJ5 | RJ4 | RJ3 | RJ2 | RJ1 | RJo | xxxx |
    | LATJ | 0E84 | LATJ15 | LATJ14 | LATJ13 | LATJ12 | LATJ11 | LATJ10 | LATJ9 | LATJ8 | LATJ7 | LATJ6 | LATJ5 | LATJ4 | LATJ3 | LATJ2 | LATJ1 | LATJO | xxxx |
    | ODCJ | 0E86 | ODCJ15 | ODCJ14 | ODCJ13 | ODCJ12 | ODCJ11 | ODCJ10 | ODCJ9 | ODCJ8 | ODCJ7 | ODCJ6 | ODCJ5 | ODCJ4 | ODCJ3 | ODCJ2 | ODCJ1 | ODCJO | 0000 |
    | CNENJ | 0E88 | CNIEJ15 | CNIEJ14 | CNIEJ13 | CNIEJ12 | CNIEJ11 | CNIEJ10 | CNIEJ9 | CNIEJ8 | CNIEJ7 | CNIEJ6 | CNIEJ5 | CNIEJ4 | CNIEJ3 | CNIEJ2 | CNIEJ1 | CNIEJO | 0000 |
    | CNPUJ | 0E8A | CNPUJ15 | CNPUJ14 | CNPUJ13 | CNPUJ12 | CNPUJ11 | CNPUJ10 | CNPUJ9 | CNPUJ8 | CNPUJ7 | CNPUJ6 | CNPUJ5 | CNPUJ4 | CNPUJ3 | CNPUJ2 | CNPUJ1 | CNPUJO | 0000 |
    | CNPDJ | 0E8C | CNPDJ15 | CNPDJ14 | CNPDJ13 | CNPDJ12 | CNPDJ11 | CNPDJ10 | CNPDJ9 | CNPDJ8 | CNPDJ7 | CNPDJ6 | CNPDJ5 | CNPDJ4 | CNPDJ3 | CNPDJ2 | CNPDJ1 | CNPDJO | 0000 |
    | ANSELJ | 0E8E | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |

    TABLE 4-64: PORTK REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISK | 0E90 | TRISK15 | TRISK14 | TRISK13 | TRISK12 | TRISK11 | - | - | - | - | - | - | - | - | - | TRISK1 | TRISK0 | F803 |
    | PORTK | 0E92 | RK15 | RK14 | RK13 | RK12 | RK11 | - | - | - | - | - | - | - | - | - | RK1 | RK0 | xxxx |
    | LATK | 0E94 | LATK15 | LATK14 | LATK13 | LATK12 | LATK11 | - | - | - | - | - | - | - | - | - | LATK1 | LATK0 | xxxx |
    | ODCK | 0E96 | ODCK15 | ODCK14 | ODCK13 | ODCK12 | ODCK11 | - | - | - | - | - | - | - | - | - | ODCK1 | ODCKO | 0000 |
    | CNENK | 0E98 | CNIEK15 | CNIEK14 | CNIEK13 | CNIEK12 | CNIEK11 | - | - | - | - | - | - | - | - | - | CNIEK1 | CNIEKO | 0000 |
    | CNPUK | 0E9A | CNPUK15 | CNPUK14 | CNPUK13 | CNPUK12 | CNPUK11 | - | - | - | - | - | - | - | - | - | CNPUK1 | CNPUK0 | 0000 |
    | CNPDK | 0E9C | CNPDK15 | CNPDK14 | CNPDK13 | CNPDK12 | CNPDK11 | - | - | - | - | - | - | - | - | - | CNPDK1 | CNPDK0 | 0000 |
    | ANSELK | 0E9E | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |

    Legend: $\quad \mathrm{x}=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

    ### 4.2.7 PAGED MEMORY SCHEME

    The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 architecture extends the available data space through a paging scheme, which allows the available data space to be accessed using MOV instructions in a linear fashion for pre- and postmodified effective addresses (EA). The upper half of base data space address is used in conjunction with the data space page registers, the 10 -bit read page register (DSRPAG) or the 9-bit write page register (DSWPAG), to form an extended data space (EDS) address or Program Space Visibility (PSV) address. The data space page registers are located in the SFR space.

    Construction of the EDS address is shown in Figure 4-1. When DSRPAG<9> $=0$ and base address bit $\mathrm{EA}<15>=1$, DSRPAG<8:0> is concatenated onto $E A<14: 0>$ to form the 24 -bit EDS read address. Similarly when base address bit EA<15>=1, DSWPAG<8:0> is concatenated onto $\mathrm{EA}<14: 0>$ to form the 24-bit EDS write address.

    EXAMPLE 4-1: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION
    

    Note: DS read access when DSRPAG $=0 \times 000$ will force an Address Error trap.

    EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION
    

    The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The data space page registers DSxPAG, in combination with the upper half of data space address can provide up to 16 Mbytes of additional address space in the EDS and 12 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.
    The program space (PS) can be accessed with DSRPAG of $0 \times 200$ or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS, only. The data space and EDS can be read from and written to using DSRPAG and DSWPAG, respectively.
    EXAMPLE 4-3: PAGED DATA MEMORY SPACE
    

    Allocating different page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.
    When an EDS or PSV page overflow or underflow occurs, $\mathrm{EA}<15>$ is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

    - The initial address, prior to modification, addresses an EDS or PSV page.
    - The EA calculation uses pre- or post-modified register indirect addressing. However, this does not include register offset addressing.

    In general, when an overflow is detected, the DSxPAG register is incremented, and the $\mathrm{EA}<15>$ bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented, and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

    Exceptions to the operation described above arise when entering and exiting the boundaries of page 0 , EDS, and PSV spaces. Table 4-66 lists the effects of overflow and underflow scenarios at different boundaries.
    In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

    - Register indirect with register offset addressing
    - Modulo Addressing
    - Bit-reversed addressing


    ## TABLE 4-66: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS, and PSV SPACE BOUNDARIES

    | OIU, R/W | Operation | Before |  |  | After |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | DSxPAG | $\begin{array}{\|c\|} \hline \text { DS } \\ E A<15> \end{array}$ | Page Description | DSxPAG | $\begin{gathered} \text { DS } \\ E A<15> \end{gathered}$ | Page Description |
    | O, Read | $\begin{gathered} {[++W n]} \\ \text { or } \\ {[W n++]} \end{gathered}$ | DSRPAG = 0x1FF | 1 | EDS: Last page | DSRPAG = 0x1FF | 0 | See Note 1 |
    | O, Read |  | DSRPAG $=0 \times 2 \mathrm{FF}$ | 1 | PSV: Last Isw page | DSRPAG = 0x300 | 1 | PSV: First MSB page |
    | O, Read |  | DSRPAG $=0 \times 3 F F$ | 1 | PSV: Last MSB page | DSRPAG = 0x3FF | 0 | See Note 1 |
    | O, Write |  | DSWPAG = 0x1FF | 1 | EDS: Last page | DSWPAG $=0 \times 1 \mathrm{FF}$ | 0 | See Note 1 |
    | U, Read | $\begin{gathered} {[--W n]} \\ \text { or } \\ {[W n--]} \end{gathered}$ | DSRPAG = 0x001 | 1 | EDS page | DSRPAG = 0x001 | 0 | See Note 1 |
    | U, Read |  | DSRPAG $=0 \times 200$ | 1 | PSV: First Isw page | DSRPAG = 0x200 | 0 | See Note 1 |
    | U, Read |  | DSRPAG = 0x300 | 1 | PSV: First MSB page | DSRPAG $=0 \times 2 \mathrm{FF}$ | 1 | PSV: Last Isw page |

    Legend: $\mathrm{O}=$ Overflow, U = Underflow, $\mathrm{R}=$ Read, $\mathrm{W}=$ Write
    Note 1: The register indirect address now addresses a location in the base data space ( $0 \times 0000-0 \times 8000$ ).
    2: An EDS access with DSxPAG $=0 \times 000$ will generate an address error trap.
    3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
    4: Pseudo-linear addressing is not supported for large offsets.

    ### 4.2.8 EXTENDED X DATA SPACE

    The lower half of the base address space range between $0 \times 0000$ and $0 \times 7$ FFF is always accessible regardless of the contents of the data space page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS page 0 (i.e., EDS address range of $0 \times 000000$ to $0 \times 007 F F F$ with the base address bit $\mathrm{EA}<15>=0$ for this address range). However, page 0 cannot be accessed through upper 32 Kbytes, $0 \times 8000$ to 0xFFFF, of base data space in combination with DSRPAG $=0 \times 00$ or DSWPAG $=$ $0 \times 00$. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

    Note 1: DSxPAG should not be used to access page 0 . An EDS access with DSxPAG set to $0 x 000$ will generate an Address Error trap.
    2: Clearing DSxPAG in software has no effect.

    The remaining pages including both EDS and PSV pages are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, $0 \times 8000$ to $0 \times F F F F$, of the base address, where base address bit EA<15> = 1 .
    For example, when DSRPAG $=0 \times 01$ or DSWPAG $=0 \times 01$, accesses to the upper 32 Kbytes, $0 \times 8000$ to $0 x F F F F$, of the data space will map to the EDS address range of $0 \times 008000$ to $0 x 00 F F F F$. When DSRPAG $=0 \times 02$ or DSWPAG $=0 \times 02$, accesses to the upper 32 Kbytes of the data space will map to the EDS address range of $0 \times 010000$ to $0 x 017 \mathrm{FFF}$ and so on, as shown in the EDS memory map in Figure 4-7.
    For more information of the PSV page access using data space page registers refer to 4.5 "Program Space Visibility from Data Space" in Section 4. "Program Memory" (DS70613) of the "dsPIC33E/ PIC24E Family Reference Manual".

    FIGURE 4-7: EDS MEMORY MAP
    

    ### 4.2.9 EDS ARBITRATION AND BUS MASTER PRIORITY

    EDS accesses from bus masters in the system are arbitrated.

    The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA, the USB module, and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

    By default, the CPU is bus master 0 (MO) with the highest priority, and the ICD is bus master 4 (M4) with the lowest priority. The remaining bus masters (USB and DMA Controllers) are allocated to M2 and M3,
    respectively (M1 is reserved and cannot be used). The user application may raise or lower the priority of the masters to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest with M2 in between). Also, all the bus masters with priorities below that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-67.

    This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization, or dynamically in response to real-time events.

    TABLE 4-67: EDS BUS ARBITER PRIORITY

    | Priority | MSTRPR<15:0> Bit Setting ${ }^{(\mathbf{1})}$ |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | 0x0000 | $\mathbf{0 x 0 0 0 8}$ | $\mathbf{0 x 0 0 2 0}$ | $\mathbf{0 x 0 0 2 8}$ |
    | M0 (highest) | CPU | USB | DMA | USB |
    | M1 | Reserved | CPU | CPU | DMA |
    | M2 | USB | Reserved | Reserved | CPU |
    | M3 | DMA | DMA | USB | Reserved |
    | M4 (lowest) | ICD | ICD | ICD | ICD |

    Note 1: All other values of MSTRPR<15:0> are Reserved.

    FIGURE 4-8: ARBITER ARCHITECTURE
    

    ### 4.2.10 SOFTWARE STACK

    The W15 register serves as a dedicated software Stack Pointer (SP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other $W$ registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

    Note: To protect against misaligned stack accesses, W15<0> is fixed to ' 0 ' by the hardware.

    W15 is initialized to $0 \times 1000$ during all Resets. This address ensures that the SP points to valid RAM in all dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices and permits stack availability for non-maskable trap exceptions. These can occur before the SP is initialized by the user software. You can reprogram the SP during initialization to any location within data space.
    The Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-9 illustrates how it pre-decrements for a stack pop (read) and postincrements for a stack push (writes).
    When the PC is pushed onto the stack, $\mathrm{PC}<15: 0>$ is pushed onto the first available stack word, then $\mathrm{PC}<22: 16>$ is pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-9. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

    Note 1: To main system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to the address range of $0 \times 0000$ to $0 x F F F F$. The same applies to W14 when used as a Stack Frame Pointer (SFA = 1).
    2: As the stack can be placed in and across $\mathrm{X}, \mathrm{Y}$, and DMA RAM spaces, care must be exercised regarding its use, particularly with regard to local automatic variables in a C development environment.

    FIGURE 4-9: CALL STACK FRAME
    

    ### 4.3 Instruction Addressing Modes

    The addressing modes shown in Table 4-68 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

    ### 4.3.1 FILE REGISTER INSTRUCTIONS

    Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, WO, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

    ### 4.3.2 MCU INSTRUCTIONS

    The three-operand MCU instructions are of the form:

    ## Operand 3 = Operand 1 <function> Operand 2

    where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb . Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

    - Register Direct
    - Register Indirect
    - Register Indirect Post-Modified
    - Register Indirect Pre-Modified
    - 5 -bit or 10 -bit Literal

    Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

    TABLE 4-68: FUNDAMENTAL ADDRESSING MODES SUPPORTED

    | Addressing Mode | Description |
    | :--- | :--- |
    | File Register Direct | The address of the file register is specified explicitly. |
    | Register Direct | The contents of a register are accessed directly. |
    | Register Indirect | The contents of Wn forms the Effective Address (EA). |
    | Register Indirect Post-Modified | The contents of Wn forms the EA. Wn is post-modified (incremented <br> or decremented) by a constant value. |
    | Register Indirect Pre-Modified | Wn is pre-modified (incremented or decremented) by a signed constant value <br> to form the EA. |
    | Register Indirect with Register Offset <br> (Register Indexed) | The sum of Wn and Wb forms the EA. |
    | Register Indirect with Literal Offset | The sum of Wn and a literal forms the EA. |

    ### 4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

    Move instructions (dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814) and the DSP accumulator class of instructions (dsPIC33EPXXXMU806/810/ 814 only) provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

    Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

    In summary, the following addressing modes are supported by move and accumulator instructions:

    - Register Direct
    - Register Indirect
    - Register Indirect Post-modified
    - Register Indirect Pre-modified
    - Register Indirect with Register Offset (Indexed)
    - Register Indirect with Literal Offset
    - 8-bit Literal
    - 16-bit Literal

    Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

    ### 4.3.4 MAC INSTRUCTIONS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

    The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY . N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

    The two-source operand prefetch registers must be members of the set $\{\mathrm{W} 8, \mathrm{~W} 9, \mathrm{~W} 10, \mathrm{~W} 11\}$. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within $X$ data space for $W 8$ and $W 9$ and $Y$ data space for $W 10$ and W11.

    Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

    In summary, the following addressing modes are supported by the MAC class of instructions:

    - Register Indirect
    - Register Indirect Post-Modified by 2
    - Register Indirect Post-Modified by 4
    - Register Indirect Post-Modified by 6
    - Register Indirect with Register Offset (Indexed)


    ### 4.3.5 OTHER INSTRUCTIONS

    Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

    ### 4.4 Modulo Addressing (dsPIC33EPXXXMU806/810/814 Devices Only)

    Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.
    Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the $X$ (which also provides the pointers into program space) and $Y$ data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.
    In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.
    The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

    ### 4.4.1 START AND END ADDRESS

    The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).
    Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

    The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32 K words (64 Kbytes).

    ### 4.4.2 W ADDRESS REGISTER SELECTION

    The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a $W$ register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

    - If $\mathrm{XWM}=15, \mathrm{X}$ RAGU and X WAGU Modulo Addressing is disabled.
    - If YWM = 15, Y AGU Modulo Addressing is disabled.
    The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON $<3: 0>$ (see Table 4-1). Modulo Addressing is enabled for $X$ data space when $X W M$ is set to any value other than ' 15 ' and the XMODEN bit is set at MODCON<15>.
    The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for $Y$ data space when YWM is set to any value other than ' 15 ' and the YMODEN bit is set at MODCON<14>.

    FIGURE 4-10: MODULO ADDRESSING OPERATION EXAMPLE
    

    ### 4.4.3 MODULO ADDRESSING APPLICABILITY

    Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

    - The upper boundary addresses for incrementing buffers
    - The lower boundary addresses for decrementing buffers
    It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

    Note: The modulo corrected effective address is written back to the register only when PreModify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

    ### 4.5 Bit-Reversed Addressing (dsPIC33EPXXXMU806/810/814 Devices Only)

    Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.
    The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

    ### 4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

    Bit-Reversed Addressing mode is enabled in any of these situations:

    - BWM bits (W register selection) in the MODCON register are any value other than ' 15 ' (the stack cannot be accessed using Bit-Reversed Addressing)
    - The BREN bit is set in the XBREV register
    - The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

    If the length of a bit-reversed buffer is $M=2^{N}$ bytes, the last ' $N$ ' bits of the data buffer start address must be zeros.
    $X B<14: 0>$ is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

    Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The $X B$ value is scaled accordingly to generate compatible (byte) addresses.

    When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or PostIncrement Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

    ## Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing assumes priority when active for the $X$ WAGU and $X$ WAGU, Modulo Addressing is disabled. However, Modulo Addressing continues to function in the X RAGU.

    If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the $W$ register that has been designated as the bit-reversed pointer.

    FIGURE 4-11: BIT-REVERSED ADDRESS EXAMPLE
    

    TABLE 4-69: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

    | Normal Address |  |  |  | Bit-Reversed Address |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | A3 | A2 | A1 | A0 | Decimal | A3 | A2 | A1 | A0 | Decimal |
    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
    | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 8 |
    | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 4 |
    | 0 | 0 | 1 | 1 | 3 | 1 | 1 | 0 | 0 | 12 |
    | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 1 | 0 | 2 |
    | 0 | 1 | 0 | 1 | 5 | 1 | 0 | 1 | 0 | 10 |
    | 0 | 1 | 1 | 0 | 6 | 0 | 1 | 1 | 0 | 6 |
    | 0 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 0 | 14 |
    | 1 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 1 | 1 |
    | 1 | 0 | 0 | 1 | 9 | 1 | 0 | 0 | 1 | 9 |
    | 1 | 0 | 1 | 0 | 10 | 0 | 1 | 0 | 1 | 5 |
    | 1 | 0 | 1 | 1 | 11 | 1 | 1 | 0 | 1 | 13 |
    | 1 | 1 | 0 | 0 | 12 | 0 | 0 | 1 | 1 | 3 |
    | 1 | 1 | 0 | 1 | 13 | 1 | 0 | 1 | 1 | 11 |
    | 1 | 1 | 1 | 0 | 14 | 0 | 1 | 1 | 1 | 7 |
    | 1 | 1 | 1 | 1 | 15 | 1 | 1 | 1 | 1 | 15 |

    ### 4.6 Interfacing Program and Data Memory Spaces

    The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 architecture uses a 24-bitwide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.
    Aside from normal execution, the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 architecture provides two methods by which program space can be accessed during operation:

    - Using table instructions to access individual bytes or words anywhere in the program space
    - Remapping a portion of the program space into the data space (Program Space Visibility)

    Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

    ## TABLE 4-70: PROGRAM SPACE ADDRESS CONSTRUCTION

    

    FIGURE 4-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION
    

    Note 1: The Least Significant bit (LSb) of program space addresses is always fixed as ' 0 ' to maintain word alignment of data in the program and data spaces.

    2: Table operations are not required to be word aligned. Table read operations are permitted in the configuration memory space.

    ### 4.6.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

    The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

    The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16 -bitwide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.
    Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

    - TBLRDL (Table Read Low):
    - In Word mode, this instruction maps the lower word of the program space location ( $\mathrm{P}<15: 0>$ ) to a data address ( $\mathrm{D}<15: 0>$ ).
    - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is ' 1 '; the lower byte is selected when it is ' 0 '.
    - TBLRDH (Table Read High):
    - In Word mode, this instruction maps the entire upper word of a program address ( $\mathrm{P}<23: 16>$ ) to a data address. The 'phantom' byte ( $D<15: 8>$ ), is always ' 0 '.
    - In Byte mode, this instruction maps the upper or lower byte of the program word to $\mathrm{D}<7: 0>$ of the data address, in the TBLRDL instruction. The data is always ' 0 ' when the upper 'phantom' byte is selected (Byte Select =1).
    In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".
    For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> $=0$, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

    FIGURE 4-13: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS
    

    ### 5.0 FLASH PROGRAM MEMORY

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70609) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.
    Flash memory can be programmed in two ways:

    - In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$ ) programming capability
    - Run-Time Self-Programming (RTSP)

    ICSP allows a dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming
    pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.
    RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 128 instructions ( 384 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

    ### 5.1 Table Instructions and Flash Programming

    Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.
    The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

    The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

    FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS
    

    ### 5.2 RTSP Operation

    The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (1024 instructions) at a time, and to program one row or one word at a time. Table 32-12 lists typical erase and programming times. The 8 -row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.
    The program memory implements holding buffers, which are located in the write latch area, that can contain 128 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.
    The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 128 TBLWTL and TBLWTH instructions are required to load the instructions.
    All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row. For more information on erasing and programming Flash memory, refer to Section 5. "Flash Programming" (DS70609) in the "dsPIC33E/PIC24E Family Reference Manual".

    ### 5.3 Programming Operations

    A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.
    The programming time depends on the FRC accuracy (see Table 32-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 32-12).

    EQUATION 5-1: PROGRAMMING TIME
    $T$
    $\overline{7.37 \mathrm{MHz} \times(\text { FRC Accuracy }) \% \times(\text { FRC Tuning }) \%}$

    For example, if the device is operating at $+125^{\circ} \mathrm{C}$, the FRC accuracy will be $\pm 5 \%$. If the TUN $<5: 0>$ bits (see Register 9-4) are set to 'b111111, the minimum row write time is equal to Equation 5-2.

    EQUATION 5-2: MINIMUM ROW WRITE TIME
    $T_{R W}=\frac{11064 \text { Cycles }}{7.37 \mathrm{MHz} \times(1+0.05) \times(1-0.00375)}=1.435 \mathrm{~ms}$

    The maximum row write time is equal to Equation 5-3.
    EQUATION 5-3: MAXIMUM ROW WRITE
    TIME
    $T_{R W}=\frac{11064 \text { Cycles }}{7.37 \mathrm{MHz} \times(1-0.05) \times(1-0.00375)}=1.586 \mathrm{~ms}$
    Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

    ### 5.4 Control Registers

    Four SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADRU, and NVMADR.

    The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.
    NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write $0 \times 55$ and $0 \times A A$ to the NVMKEY register.
    There are two NVM address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit effective address (EA) of the selected row or word for programming operations, or the selected page for erase operations.
    The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

    REGISTER 5-1: NVMCON: NON-VOLATILE MEMORY (NVM) CONTROL REGISTER

    | R/SO-0 ${ }^{(1)}$ | R/W-0 ${ }^{(1)}$ | R/W-0 ${ }^{(1)}$ | R/W-0 | U-0 | U-0 | U-0 | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | WR | WREN | WRERR | NVMSIDL ${ }^{(2)}$ | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |

    

    | Legend: | SO = Settable only bit |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

    bit 15 WR: Write Control bit
    1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete
    $0=$ Program or erase operation is complete and inactive
    bit 14 WREN: Write Enable bit
    1 = Enable Flash program/erase operations
    0 = Inhibit Flash program/erase operations
    bit 13 WRERR: Write Sequence Error Flag bit
    1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit)
    $0=$ The program or erase operation completed normally
    bit 12
    NVMSIDL: NVM Stop-in-Idle Control bit ${ }^{(2)}$
    1 = Discontinue primary and auxiliary Flash operation when the device enters Idle mode
    $0=$ Continue primary and auxiliary Flash operation when the device enters Idle mode
    bit 11-4
    Unimplemented: Read as ' 0 '
    bit 3-0 $\quad$ NVMOP<3:0>: NVM Operation Select bits ${ }^{(3,5)}$
    1111 = Reserved
    1110 = Reserved
    1101 = Bulk erase primary program Flash memory
    1100 = Reserved
    1011 = Reserved
    1010 = Bulk erase auxiliary program Flash memory
    0011 = Memory page erase operation
    $0010=$ Memory row program operation
    $0001=$ Memory word program operation ${ }^{(6)}$
    0000 = Program a single Configuration register byte

    Note 1: These bits can only be reset on POR.
    2: If this bit is set, upon exiting Idle mode there is a delay (TVREG) before Flash memory becomes operational.
    3: All other combinations of $\mathrm{NVMOP}<3: 0>$ are unimplemented.
    4: The entire segment is erased with the exception of IVT.
    5: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
    6: Two adjacent words are programmed during execution of this operation.

    ## REGISTER 5-2: NVMADRU: NON-VOLATILE MEMORY UPPER ADDRESS REGISTER

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit $15 \times$ bit 8 |  |  |  |  |  |  |  |
    | R/W-x |
    | NVMADRU<7:0> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | 0 ' $=$ Bit is cleared |

    bit 15-8 Unimplemented: Read as ' 0 '
    bit 7-0 NVMADRU<7:0>: Non-volatile Memory Upper Write Address bits
    Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

    REGISTER 5-3: NVMADR: NON-VOLATILE MEMORY ADDRESS REGISTER

    | R/W-x | R/W-x | R/W-x | R/W-x | $R / W-x$ | $R / W-x$ | $R / W-x$ |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ R/W-x |  |  |  |  |
    | :--- | :--- | :--- | :--- |
    |  |  | NVMADR<15:8> |  |
    | bit 15 |  |  |  |


    | R/W-x | R/W-x | R/W-x | R/W-x | $R / W-x$ | $R / W-x$ | $R / W-x$ |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ R/W-x |  |  |  |  |
    | :--- | :--- | :--- | :--- |
    |  |  | NVMADR<7:0> |  |
    | bit 7 |  |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $0 '=B i t$ is cleared |

    bit 15-0 NVMADR<15:0>: Non-volatile Memory Write Address bits
    Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

    REGISTER 5-4: NVMKEY: NON-VOLATILE MEMORY KEY REGISTER

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  | bit 8 |  |  |  |  |


    | W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | NVMKEY<7:0> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  |  |

    ## Legend:

    $R=$ Readable bit
    $-n=$ Value at POR
    W = Writable bit
    $\mathrm{U}=$ Unimplemented bit, read as ' 0 '
    ' 1 ' = Bit is set
    ' 0 ' = Bit is cleared
    $x=$ Bit is unknown

    | bit 15-8 | Unimplemented: Read as ' 0 ' |
    | :--- | :--- |
    | bit 7-0 | NVMKEY<7:0>: Key Register (write-only) bits |

    ### 6.0 RESETS

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70602) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

    - POR: Power-on Reset
    - BOR: Brown-out Reset
    - MCLR: Master Clear Pin Reset
    - SWR: RESET Instruction
    - WDTO: Watchdog Timer Reset
    - CM: Configuration Mismatch Reset
    - TRAPR: Trap Conflict Reset
    - IOPUWR: Illegal Condition Device Reset
    - Illegal Opcode Reset
    - Uninitialized W Register Reset
    - Security Reset

    A simplified block diagram of the Reset module is shown in Figure 6-1.
    Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

    ## Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

    All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).
    A POR clears all the bits, except for the POR and BOR bits ( $\mathrm{RCON}<1: 0>$ ), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

    The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

    Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

    FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM
    

    REGISTER 6-1: RCON: RESET CONTROL REGISTER ${ }^{(1)}$

    | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | | |
|---|---|---|---|---|---|---|---|---|---|
    | TRAPR | IOPUWR | - | - | VREGSF | - | CM | VREGS |
    | bit 15 |  |  |  |  |  |  |  |
    | R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 <br> EXTR SWR SWDTEN ${ }^{(2)}$ WDTO SLEEP IDLE BOR POR <br> bit 7        |  |  |  |  |  |  |  |$. l$| bit 0 |
    | :--- | :--- |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | ' 0 ' $=$ Bit is cleared |$\quad x=$ Bit is unknown

    bit 15
    TRAPR: Trap Reset Flag bit
    1 = A Trap Conflict Reset has occurred
    0 = A Trap Conflict Reset has not occurred
    bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit
    1 = An illegal opcode detection, an illegal address mode or uninitialized $W$ register used as an Address Pointer caused a Reset
    $0=$ An illegal opcode or uninitialized W Reset has not occurred
    bit 13-12 Unimplemented: Read as ' 0 '
    bit 11 VREGSF: Flash Voltage Regulator Standby During Sleep bit
    1 = Flash Voltage regulator is active during Sleep
    0 = Flash Voltage regulator goes into Standby mode during Sleep
    bit 10 Unimplemented: Read as ' 0 '
    bit 9 CM: Configuration Mismatch Flag bit
    1 = A configuration mismatch Reset has occurred.
    $0=$ A configuration mismatch Reset has NOT occurred
    bit $8 \quad$ VREGS: Voltage Regulator Standby During Sleep bit
    1 = Voltage regulator is active during Sleep
    $0=$ Voltage regulator goes into Standby mode during Sleep
    bit 7 EXTR: External Reset ( $\overline{\mathrm{MCLR}})$ Pin bit
    1 = A Master Clear (pin) Reset has occurred
    0 = A Master Clear (pin) Reset has not occurred
    bit 6 SWR: Software Reset (Instruction) Flag bit
    1 = A RESET instruction has been executed
    0 = A RESET instruction has not been executed
    bit 5 SWDTEN: Software Enable/Disable of WDT bit ${ }^{(2)}$
    1 = WDT is enabled
    $0=$ WDT is disabled
    bit 4 WDTO: Watchdog Timer Time-out Flag bit
    1 = WDT time-out has occurred
    0 = WDT time-out has not occurred
    bit 3 SLEEP: Wake-up from Sleep Flag bit
    1 = Device has been in Sleep mode
    $0=$ Device has not been in Sleep mode

    Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
    2: If the FWDTEN Configuration bit is ' 1 ' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

    ## REGISTER 6-1: RCON: RESET CONTROL REGISTER ${ }^{(1)}$ (CONTINUED)

    bit 2 IDLE: Wake-up from Idle Flag bit
    1 = Device was in Idle mode
    0 = Device was not in Idle mode
    bit 1
    BOR: Brown-out Reset Flag bit
    1 = A Brown-out Reset has occurred
    0 = A Brown-out Reset has not occurred
    bit 0
    POR: Power-on Reset Flag bit
    1 = A Power-on Reset has occurred
    0 = A Power-on Reset has not occurred

    Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
    2: If the FWDTEN Configuration bit is ' 1 ' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

    NOTES:

    ### 7.0 INTERRUPT CONTROLLER

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70600) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 CPU.

    The interrupt controller has the following features:

    - Up to eight processor exceptions and software traps
    - Eight user-selectable priority levels
    - Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
    - Fixed priority within a specified user priority level
    - Fixed interrupt entry and return latencies


    ### 7.1 Interrupt Vector Table

    The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location 000004 h . The IVT contains seven non-maskable trap vectors and up to 114 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).
    Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

    ### 7.2 Reset Sequence

    A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices clear their registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

    Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

    FIGURE 7-1: dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 INTERRUPT VECTOR TABLE
    

    Note 1: Reset locations are also located in the auxiliary Flash memory at the address 0x7FC000 and 0x7FC002. Reset Target Vector Select bit (RSTPRI) controls whether primary or auxiliary Flash Reset location is used.

    ## TABLE 7-1: INTERRUPT VECTOR DETAILS

    | Interrupt Source | Vector <br> Number | IRQ | IVT <br> Address | Interrupt Bit Location |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | Flag | Enable | Priority |
    | Highest Natural Order Priority |  |  |  |  |  |  |
    | INT0 - External Interrupt 0 | 8 | 0 | 0x000014 | IFS0<0> | IEC0<0> | IPC0<2:0> |
    | IC1 - Input Capture 1 | 9 | 1 | 0x000016 | IFSO<1> | IEC0<1> | IPC0<6:4> |
    | OC1 - Output Compare 1 | 10 | 2 | 0x000018 | IFS0<2> | IEC0<2> | IPC0<10:8> |
    | T1 - Timer1 | 11 | 3 | 0x00001A | IFS0<3> | IEC0<3> | IPC0<14:12> |
    | DMA0 - DMA Channel 0 | 12 | 4 | 0x00001C | IFS0<4> | IEC0<4> | IPC1<2:0> |
    | IC2 - Input Capture 2 | 13 | 5 | 0x00001E | IFS0<5> | IEC0<5> | IPC1<6:4> |
    | OC2 - Output Compare 2 | 14 | 6 | 0x000020 | IFS0<6> | IEC0<6> | IPC1<10:8> |
    | T2 - Timer2 | 15 | 7 | 0x000022 | IFSO<7> | IEC0<7> | IPC1<14:12> |
    | T3 - Timer3 | 16 | 8 | 0x000024 | IFS0<8> | IEC0<8> | IPC2<2:0> |
    | SPI1E - SPI1 Fault | 17 | 9 | 0x000026 | IFS0<9> | IEC0<9> | IPC2<6:4> |
    | SPI1 - SPI1 Transfer Done | 18 | 10 | 0x000028 | IFS0<10> | IEC0<10> | IPC2<10:8> |
    | U1RX - UART1 Receiver | 19 | 11 | 0x00002A | IFS0<11> | IEC0<11> | IPC2<14:12> |
    | U1TX - UART1 Transmitter | 20 | 12 | 0x00002C | IFS0<12> | IEC0<12> | IPC3<2:0> |
    | AD1 - ADC1 Convert Done | 21 | 13 | 0x00002E | IFS0<13> | IEC0<13> | IPC3<6:4> |
    | DMA1 - DMA Channel 1 | 22 | 14 | 0x000030 | IFS0<14> | IEC0<14> | IPC3<10:8> |
    | NVM - NVM Write Complete | 23 | 15 | 0x000032 | IFS0<15> | IEC0<15> | IPC3<14:12> |
    | SI2C1 - I2C1 Slave Event | 24 | 16 | 0x000034 | IFS1<0> | IEC1<0> | IPC4<2:0> |
    | MI2C1 - I2C1 Master Event | 25 | 17 | 0x000036 | IFS1<1> | IEC1<1> | IPC4<6:4> |
    | CM - Comparator Combined Event | 26 | 18 | 0x000038 | IFS1<2> | IEC1<2> | IPC4<10:8> |
    | CN - Input Change Interrupt | 27 | 19 | 0x00003A | IFS1<3> | IEC1<3> | IPC4<14:12> |
    | INT1 - External Interrupt 1 | 28 | 20 | 0x00003C | IFS1<4> | IEC1<4> | IPC5<2:0> |
    | AD2 - ADC2 Convert Done | 29 | 21 | 0x00003E | IFS1<5> | IEC1<5> | IPC5<6:4> |
    | IC7 - Input Capture 7 | 30 | 22 | 0x000040 | IFS1<6> | IEC1<6> | IPC5<10:8> |
    | IC8 - Input Capture 8 | 31 | 23 | 0x000042 | IFS1<7> | IEC1<7> | IPC5<14:12> |
    | DMA2 - DMA Channel 2 | 32 | 24 | 0x000044 | IFS1<8> | IEC1<8> | IPC6<2:0> |
    | OC3 - Output Compare 3 | 33 | 25 | 0x000046 | IFS1<9> | IEC1<9> | IPC6<6:4> |
    | OC4 - Output Compare 4 | 34 | 26 | 0x000048 | IFS1<10> | IEC1<10> | IPC6<10:8> |
    | T4 - Timer4 | 35 | 27 | 0x00004A | IFS1<11> | IEC1<11> | IPC6<14:12> |
    | T5 - Timer5 | 36 | 28 | 0x00004C | IFS1<12> | IEC1<12> | IPC7<2:0> |
    | INT2 - External Interrupt 2 | 37 | 29 | 0x00004E | IFS1<13> | IEC1<13> | IPC7<6:4> |
    | U2RX - UART2 Receiver | 38 | 30 | 0x000050 | IFS1<14> | IEC1<14> | IPC7<10:8> |
    | U2TX - UART2 Transmitter | 39 | 31 | 0x000052 | IFS1<15> | IEC1<15> | IPC7<14:12> |
    | SPI2E - SPI2 Fault | 40 | 32 | 0x000054 | IFS2<0> | IEC2<0> | IPC8<2:0> |
    | SPI2 - SPI2 Transfer Done | 41 | 33 | 0x000056 | IFS2<1> | IEC2<1> | IPC8<6:4> |
    | C1RX - CAN1 RX Data Ready | 42 | 34 | 0x000058 | IFS2<2> | IEC2<2> | IPC8<10:8> |
    | C1-CAN1 Event | 43 | 35 | 0x00005A | IFS2<3> | IEC2<3> | IPC8<14:12> |
    | DMA3 - DMA Channel 3 | 44 | 36 | 0x00005C | IFS2<4> | IEC2<4> | IPC9<2:0> |
    | IC3 - Input Capture 3 | 45 | 37 | 0x00005E | IFS2<5> | IEC2<5> | IPC9<6:4> |
    | IC4 - Input Capture 4 | 46 | 38 | 0x000060 | IFS2<6> | IEC2<6> | IPC9<10:8> |
    | IC5 - Input Capture 5 | 47 | 39 | 0x000062 | IFS2<7> | IEC2<7> | IPC9<14:12> |
    | IC6 - Input Capture 6 | 48 | 40 | 0x000064 | IFS2<8> | IEC2<8> | IPC10<2:0> |
    | OC5 - Output Compare 5 | 49 | 41 | 0x000066 | IFS2<9> | IEC2<9> | IPC10<6:4> |
    | OC6 - Output Compare 6 | 50 | 42 | 0x000068 | IFS2<10> | IEC2<10> | IPC10<10:8> |

    Note 1: This interrupt source is available on dsPIC33EPXXXMU806/810/814 devices only.

    TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

    | Interrupt Source | Vector <br> Number | IRQ | IVT <br> Address | Interrupt Bit Location |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | Flag | Enable | Priority |
    | OC7 - Output Compare 7 | 51 | 43 | 0x00006A | IFS2<11> | IEC2<11> | IPC10<14:12> |
    | OC8 - Output Compare 8 | 52 | 44 | 0x00006C | IFS2<12> | IEC2<12> | IPC11<2:0> |
    | PMP - Parallel Master Port | 53 | 45 | 0x00006E | IFS2<13> | IEC2<13> | IPC11<6:4> |
    | DMA4 - DMA Channel 4 | 54 | 46 | 0x000070 | IFS2<14> | IEC2<14> | IPC11<10:8> |
    | T6 - Timer6 | 55 | 47 | 0x000072 | IFS2<15> | IEC2<15> | IPC11<14:12> |
    | T7 - Timer7 | 56 | 48 | 0x000074 | IFS3<0> | IEC3<0> | IPC12<2:0> |
    | SI2C2 - I2C2 Slave Event | 57 | 49 | 0x000076 | IFS3<1> | IEC3<1> | IPC12<6:4> |
    | MI2C2 - I2C2 Master Event | 58 | 50 | 0x000078 | IFS3<2> | IEC3<2> | IPC12<10:8> |
    | T8 - Timer8 | 59 | 51 | 0x00007A | IFS3<3> | IEC3<3> | IPC12<14:12> |
    | T9 - Timer9 | 60 | 52 | 0x00007C | IFS3<4> | IEC3<4> | IPC13<2:0> |
    | INT3 - External Interrupt 3 | 61 | 53 | 0x00007E | IFS3<5> | IEC3<5> | IPC13<6:4> |
    | INT4 - External Interrupt 4 | 62 | 54 | 0x000080 | IFS3<6> | IEC3<6> | IPC13<10:8> |
    | C2RX - CAN2 RX Data Ready | 63 | 55 | 0x000082 | IFS3<7> | IEC3<7> | IPC13<14:12> |
    | C2-CAN2 Event | 64 | 56 | 0x000084 | IFS3<8> | IEC3<8> | IPC14<2:0> |
    | PSEM - PWM Special Event Match ${ }^{(1)}$ | 65 | 57 | 0x000086 | IFS3<9> | IEC3<9> | IPC14<6:4> |
    | QEI1 - QEI1 Position Counter Compare ${ }^{(1)}$ | 66 | 58 | 0x000088 | IFS3<10> | IEC3<10> | IPC14<10:8> |
    | DCIE - DCI Fault Interrupt | 67 | 59 | 0x00008A | IFS3<11> | IEC3<11> | IPC14<14:12> |
    | DCI - DCI Transfer Done | 68 | 60 | 0x00008C | IFS3<12> | IEC3<12> | IPC15<2:0> |
    | DMA5 - DMA Channel 5 | 69 | 61 | 0x00008E | IFS3<13> | IEC3<13> | IPC15<6:4> |
    | RTC - Real-Time Clock and Calendar | 70 | 62 | 0x000090 | IFS3<14> | IEC3<14> | IPC15<10:8> |
    | Reserved | 71-72 | 63-64 | $\begin{aligned} & 0 \times 000092- \\ & 0 \times 000094 \end{aligned}$ | - | - | - |
    | U1E - UART1 Error Interrupt | 73 | 65 | 0x000096 | IFS4<1> | IEC4<1> | IPC16<6:4> |
    | U2E - UART2 Error Interrupt | 74 | 66 | 0x000098 | IFS4<2> | IEC4<2> | IPC16<10:8> |
    | CRC - CRC Generator Interrupt | 75 | 67 | 0x00009A | IFS4<3> | IEC4<3> | IPC16<14:12> |
    | DMA6 - DMA Channel 6 | 76 | 68 | 0x00009C | IFS4<4> | IEC4<4> | IPC17<2:0> |
    | DMA7 - DMA Channel 7 | 77 | 69 | 0x00009E | IFS4<5> | IEC4<5> | IPC17<6:4> |
    | C1TX - CAN1 TX Data Request | 78 | 70 | 0x0000A0 | IFS4<6> | IEC4<6> | IPC17<10:8> |
    | C2TX - CAN2 TX Data Request | 79 | 71 | 0x0000A2 | IFS4<7> | IEC4<7> | IPC17<14:12> |
    | Reserved | 80 | 72 | 0x0000A4 | - | - | - |
    | PSESM - PWM Secondary Special Event Match ${ }^{(1)}$ | 81 | 73 | 0x0000A6 | IFS4<9> | IEC4<9> | IPC18<6:4> |
    | Reserved | 82 | 74 | 0x0000A8 | - | - | - |
    | QEI2 - QEI2 Position Counter Compare ${ }^{(1)}$ | 83 | 75 | 0x0000AA | IFS4<11> | IEC4<11> | IPC18<14:12> |
    | Reserved | 84-88 | 76-80 | $\begin{aligned} & \text { 0x0000AC- } \\ & \text { 0x0000B4 } \end{aligned}$ | - | - | - |
    | U3E - UART3 Error Interrupt | 89 | 81 | 0x0000B6 | IFS5<1> | IEC5<1> | IPC20<6:4> |
    | U3RX - UART3 Receiver | 90 | 82 | 0x0000B8 | IFS5<2> | IEC5<2> | IPC20<10:8> |
    | U3TX - UART3 Transmitter | 91 | 83 | 0x0000BA | IFS5<3> | IEC5<3> | IPC20<14:12> |
    | Reserved | 92 | 84 | 0x0000BC | - | - | - |
    | Reserved | 93 | 85 | 0x0000BE | - | - | - |
    | USB1 - USB OTG Interrupt | 94 | 86 | 0x0000C0 | IFS5<6> | IEC5<6> | IPC21<10:8> |
    | U4E - UART4 Error Interrupt | 95 | 87 | 0x0000C2 | IFS5<7> | IEC5<7> | IPC21<14:12> |

    Note 1: This interrupt source is available on dsPIC33EPXXXMU806/810/814 devices only.

    TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

    | Interrupt Source | Vector <br> Number | IRQ | IVT <br> Address | Interrupt Bit Location |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | Flag | Enable | Priority |
    | U4RX - UART4 Receiver | 96 | 88 | 0x0000C4 | IFS5<8> | IEC5<8> | IPC22<2:0> |
    | U4TX - UART4 Transmitter | 97 | 89 | 0x0000C6 | IFS5<9> | IEC5<9> | IPC22<6:4> |
    | SPI3E - SPI3 Fault | 98 | 90 | 0x0000C8 | IFS5<10> | IEC5<10> | IPC22<10:8> |
    | SPI3 - SPI3 Transfer Done | 99 | 91 | 0x0000CA | IFS5<11> | IEC5<11> | IPC22<14:12> |
    | OC9 - Output Compare 9 | 100 | 92 | 0x0000CC | IFS5<12> | IEC5<12> | IPC23<2:0> |
    | IC9 - Input Capture 9 | 101 | 93 | 0x0000CE | IFS5<13> | IEC5<13> | IPC23<6:4> |
    | PWM1 - PWM Generator $1^{(1)}$ | 102 | 94 | 0x0000D0 | IFS5<14> | IEC5<14> | IPC23<10:8> |
    | PWM2 - PWM Generator ${ }^{(1)}$ | 103 | 95 | 0x0000D2 | IFS5<15> | IEC5<15> | IPC23<14:12> |
    | PWM3 - PWM Generator $3^{(\mathbf{1})}$ | 104 | 96 | 0x0000D4 | IFS6<0> | IEC6<0> | IPC24<2:0> |
    | PWM4 - PWM Generator $4^{(1)}$ | 105 | 97 | 0x0000D6 | IFS6<1> | IEC6<1> | IPC24<6:4> |
    | PWM5 - PWM Generator $5^{(\mathbf{1})}$ | 106 | 98 | 0x0000D8 | IFS6<2> | IEC6<2> | IPC24<10:8> |
    | PWM6 - PWM Generator $6^{(1)}$ | 107 | 99 | 0x0000DA | IFS6<3> | IEC6<3> | IPC24<14:12> |
    | PWM7 - PWM Generator $7^{(1)}$ | 108 | 100 | 0x0000DC | IFS6<4> | IEC6<4> | IPC25<2:0> |
    | Reserved | 109-125 | 101-117 | $\begin{aligned} & \text { 0x0000DE- } \\ & 0 \times 0000 \mathrm{FC} \end{aligned}$ | - | - | - |
    | DMA8 - DMA Channel 8 | 126 | 118 | 0x000100 | IFS7<6> | IEC7<6> | IPC29<10:8> |
    | DMA9 - DMA Channel 9 | 127 | 119 | 0x000102 | IFS7<7> | IEC7<7> | IPC29<14:12> |
    | DMA10 - DMA Channel 10 | 128 | 120 | 0x000104 | IFS7<8> | IEC7<8> | IPC30<2:0> |
    | DMA11 - DMA Channel 11 | 129 | 121 | 0x000106 | IFS7<9> | IEC7<9> | IPC30<6:4> |
    | SPI4E - SPI4 Fault | 130 | 122 | 0x000108 | IFS7<10> | IEC7<10> | IPC30<10:8> |
    | SPI4 - SPI4 Transfer Done | 131 | 123 | 0x00010A | IFS7<11> | IEC7<11> | IPC30<14:12> |
    | OC10 - Output Compare 10 | 132 | 124 | 0x00010C | IFS7<12> | IEC7<12> | IPC31<2:0> |
    | IC10 - Input Capture 10 | 133 | 125 | 0x00010E | IFS7<13> | IEC7<13> | IPC31<6:4> |
    | OC11 - Output Compare11 | 134 | 126 | 0x000110 | IFS7<14> | IEC7<14> | IPC31<10:8> |
    | IC11- Input Capture 11 | 135 | 127 | 0x000112 | IFS7<15> | IEC7<15> | IPC31<14:12> |
    | OC12 - Output Compare 12 | 136 | 128 | 0x000114 | IFS8<0> | IEC8<0> | IPC32<2:0> |
    | IC12 - Input Capture 12 | 137 | 129 | 0x000116 | IFS8<1> | IEC8<1> | IPC32<6:4> |
    | DMA12 - DMA Channel 12 | 138 | 130 | 0x000118 | IFS8<2> | IEC8<2> | IPC32<10:8> |
    | DMA13- DMA Channel 13 | 139 | 131 | 0x00011A | IFS8<3> | IEC8<3> | IPC32<14:12> |
    | DMA14 - DMA Channel 14 | 140 | 132 | 0x00011C | IFS8<4> | IEC8<4> | IPC33<2:0> |
    | Reserved | 141 | 133 | 0x00011E | - | - | - |
    | OC13- Output Compare 13 | 142 | 134 | 0x000120 | IFS8<6> | IEC8<6> | IPC33<10:8> |
    | IC13 - Input Capture 13 | 143 | 135 | 0x000122 | IFS8<7> | IEC8<7> | IPC33<14:12> |
    | OC14 - Output Compare14 | 144 | 136 | 0x000124 | IFS8<8> | IEC8<8> | IPC34<2:0> |
    | IC14 - Input Capture 14 | 145 | 137 | 0x000126 | IFS8<9> | IEC8<9> | IPC34<6:4> |
    | OC15 - Output Compare 15 | 146 | 138 | 0x000128 | IFS8<10> | IEC8<10> | IPC34<10:8> |
    | IC15 - Input Capture 15 | 147 | 139 | 0x00012A | IFS8<11> | IEC8<11> | IPC34<14:12> |
    | OC16- Output Compare 16 | 148 | 140 | 0x00012C | IFS8<12> | IEC8<12> | IPC35<2:0> |
    | IC16 - Input Capture 16 | 149 | 141 | 0x00012E | IFS8<13> | IEC8<13> | IPC35<6:4> |
    | ICD - ICD Application | 150 | 142 | 0x000130 | IFS8<14> | IEC8<14> | IPC35<10:8> |
    | Reserved | 151-245 | 142-237 | $\begin{aligned} & 0 \times 000130- \\ & 0 \times 0001 \mathrm{FE} \end{aligned}$ | - | - | - |
    | Lowest Natural Order Priority |  |  |  |  |  |  |

    Note 1: This interrupt source is available on dsPIC33EPXXXMU806/810/814 devices only.

    ### 7.3 Interrupt Control and Status Registers

    dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices implement the following registers for the interrupt controller:

    - INTCON1
    - INTCON2
    - INTCON3
    - INTCON4
    - INTTREG


    ### 7.3.1 INTCON1 THROUGH INTCON4

    Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.
    INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources.
    The INTCON2 register controls external interrupt request signal behavior and the use of the alternate vector table. This register also contains the General Interrupt Enable bit (GIE).
    INTCON3 contains the status flags for the USB, DMA, and DO stack overflow status trap sources.
    The INTCON4 register contains the software generated hard trap status bit (SGHT).

    ### 7.3.2 IFSx

    The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

    ### 7.3.3 IECx

    The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

    ### 7.3.4 IPCx

    The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

    ### 7.3.5 INTTREG

    The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<7:0>) and Interrupt level bit (ILR<3:0>) fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.
    The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INTO (External Interrupt 0 ) is shown as having vector number 8 and a natural order priority of 0 . Thus, the INTOIF bit is found in IFSO<0>, the INTOIE bit in IECO<0> and the INTOIP bits in the first position of IPC0 (IPC0<2:0>).

    ### 7.3.6 STATUS/CONTROL REGISTERS

    Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to Section 2. "CPU" (DS70359) in the "dsPIC33E/ PIC24E Family Reference Manual".

    - The CPU STATUS register, SR, contains the IPL<2:0> bits ( $\mathrm{SR}<7: 5>$ ). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
    - The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.
    All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.


    ## REGISTER 7-1: SR: CPU STATUS REGISTER ${ }^{(1)}$

    | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/C-0 | R/C-0 | R -0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | OA | OB | SA | SB | OAB | SAB | DA | DC |
    | bit 15 |  |  | bit 8 |  |  |  |  |


    | R/W-0 ${ }^{(3)}$ | R/W-0 ${ }^{(3)}$ | $\mathrm{R} / \mathrm{W}-0^{(3)}$ | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | IPL<2:0> ${ }^{(2)}$ |  | RA | N | OV | Z | C |
    | bit $7 \times$ bit 0 |  |  |  |  |  |  |  |


    | Legend: | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{C}=$ Clearable bit |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared |

    bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ${ }^{(2,3)}$
    111 = CPU Interrupt Priority Level is 7 (15, user interrupts disabled)
    110 = CPU Interrupt Priority Level is 6 (14)
    101 = CPU Interrupt Priority Level is 5 (13)
    100 = CPU Interrupt Priority Level is 4 (12)
    011 = CPU Interrupt Priority Level is 3 (11)
    010 = CPU Interrupt Priority Level is 2 (10)
    001 = CPU Interrupt Priority Level is 1 (9)
    000 = CPU Interrupt Priority Level is 0 (8)
    Note 1: For complete register details, see Register 3-1: "SR: CPU Status Register".
    2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON $<3>$ ) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1 .
    3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) $=1$.

    REGISTER 7-2: CORCON: CORE CONTROL REGISTER ${ }^{(1)}$

    | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R-0 | R-0 | R-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | VAR | - | US<1:0> | EDT |  | DL<2:0> |  |  |
    | bit 15 |  |  |  | bit 8 |  |  |  |


    | R/W-0 | R/W-0 | R/W-1 | R/W-0 | R/C-0 | R-0 | R/W-0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | SATA | SATB | SATDW | ACCSAT | IPL3 $^{(2)}$ | SFA | RND | IF |
    | bit 7 |  |  |  |  |  |  |  |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | ' 1 ' $=$ Bit is set | $' 0$ ' = Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

    bit 15
    VAR: Variable Exception Processing Latency Control bit
    1 = Variable exception processing enabled
    $0=$ Fixed exception processing enabled
    bit 3
    IPL3: CPU Interrupt Priority Level Status bit 3 ${ }^{(2)}$
    $1=$ CPU interrupt priority level is greater than 7
    $0=$ CPU interrupt priority level is 7 or less

    Note 1: For complete register details, see Register 3-2: "CORCON: Core Control Register".
    2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

    ## REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

    | R/W-0 |
    | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | NSTDIS | OVAERR $^{(\mathbf{1})}$ | OVBERR $^{(\mathbf{1})}$ | COVAERR $^{(\mathbf{1})}$ | COVBERR $^{(\mathbf{1})}$ | OVATE $^{(\mathbf{1})}$ | OVBTE $^{(\mathbf{1})}$ | COVTE $^{(\mathbf{1 )}}$ |
    | bit 15 |  |  |  |  |  |  |  |


    | R/W-0 | U-0 | | | | | | |
|---|---|---|---|---|---|---|---|
    | SFTACERR |  |  |  |  |  |  |  |
    | (1) | DIVOERR | DMACERR | MATHERR | ADDRERR | STKERR | OSCFAIL | - |
    | bit 7 |  |  |  | bit 0 |  |  |  |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

    bit 15 NSTDIS: Interrupt Nesting Disable bit 1 = Interrupt nesting is disabled
    $0=$ Interrupt nesting is enabled
    bit 14 OVAERR: Accumulator A Overflow Trap Flag bit ${ }^{(1)}$
    1 = Trap was caused by overflow of Accumulator A
    $0=$ Trap was not caused by overflow of Accumulator A
    bit 13 OVBERR: Accumulator B Overflow Trap Flag bit ${ }^{(1)}$
    1 = Trap was caused by overflow of Accumulator B
    $0=$ Trap was not caused by overflow of Accumulator B
    bit 12 COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit ${ }^{(1)}$
    1 = Trap was caused by catastrophic overflow of Accumulator A
    0 = Trap was not caused by catastrophic overflow of Accumulator A
    bit 11 COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit ${ }^{(\mathbf{1})}$
    1 = Trap was caused by catastrophic overflow of Accumulator B
    $0=$ Trap was not caused by catastrophic overflow of Accumulator B
    bit 10 OVATE: Accumulator A Overflow Trap Enable bit ${ }^{(1)}$
    1 = Trap overflow of Accumulator A
    0 = Trap is disabled
    bit $9 \quad$ OVBTE: Accumulator B Overflow Trap Enable bit ${ }^{(1)}$
    1 = Trap overflow of Accumulator B
    $0=$ Trap is disabled
    bit 8 COVTE: Catastrophic Overflow Trap Enable bit ${ }^{(1)}$
    $1=$ Trap on catastrophic overflow of Accumulator A or B enabled
    0 = Trap is disabled
    bit $7 \quad$ SFTACERR: Shift Accumulator Error Status bit ${ }^{(1)}$
    1 = Math error trap was caused by an invalid accumulator shift
    0 = Math error trap was not caused by an invalid accumulator shift
    bit 6 DIVOERR: Divide-by-zero Error Status bit
    1 = Math error trap was caused by a divide by zero
    0 = Math error trap was not caused by a divide by zero
    bit 5 DMACERR: DMAC Trap Flag bit
    1 = DMAC trap has occurred
    0 = DMAC trap has not occurred
    bit 4 MATHERR: Math Error Status bit
    1 = Math error trap has occurred
    $0=$ Math error trap has not occurred

    Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.

    ## REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

    bit 3 ADDRERR: Address Error Trap Status bit
    1 = Address error trap has occurred
    0 = Address error trap has not occurred
    bit 2 STKERR: Stack Error Trap Status bit
    1 = Stack error trap has occurred
    0 = Stack error trap has not occurred
    bit 1
    OSCFAIL: Oscillator Failure Trap Status bit
    1 = Oscillator failure trap has occurred
    $0=$ Oscillator failure trap has not occurred
    bit $0 \quad$ Unimplemented: Read as ' 0 '
    Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.

    REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

    | R/W-1 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | GIE | DISI | SWTRAP | - | - | - | - | - |
    | bit 15 bit 8 |  |  |  |  |  |  |  |
    | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
    | - | - | - | INT4EP | INT3EP | INT2EP | INT1EP | INTOEP |
    | bit $7 \times$ bit 0 |  |  |  |  |  |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |$\quad x=$ Bit is unknown

    bit 15 GIE: Global Interrupt Enable bit
    1 = Interrupts and Associated IE bits are enabled
    0 = Interrupts are disabled, but traps are still enabled
    bit 14
    DISI: DISI Instruction Status bit
    1 = DISI instruction is active
    $0=$ DISI instruction is not active
    bit 13
    bit 12-5
    bit 4
    bit 3
    bit 2
    bit 1
    bit 0

    SWTRAP: Software Trap Status bit
    1 = Software trap is enabled
    0 = Software trap is disabled
    Unimplemented: Read as ' 0 '
    INT4EP: External Interrupt 4 Edge Detect Polarity Select bit
    1 = Interrupt on negative edge
    0 = Interrupt on positive edge
    INT3EP: External Interrupt 3 Edge Detect Polarity Select bit
    1 = Interrupt on negative edge
    $0=$ Interrupt on positive edge
    INT2EP: External Interrupt 2 Edge Detect Polarity Select bit
    1 = Interrupt on negative edge
    $0=$ Interrupt on positive edge
    INT1EP: External Interrupt 1 Edge Detect Polarity Select bit
    1 = Interrupt on negative edge
    $0=$ Interrupt on positive edge
    INTOEP: External Interrupt 0 Edge Detect Polarity Select bit
    1 = Interrupt on negative edge
    $0=$ Interrupt on positive edge

    REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 bit 8 |  |  |  |  |  |  |  |
    | U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 |
    | - | UAE | DAE | DOOVR | - | - | - | - |
    | bit $7 \times$ bit 0 |  |  |  |  |  |  |  |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

    bit 15-7 Unimplemented: Read as ' 0 '
    bit $6 \quad$ UAE: USB Address Error Soft Trap Status bit 1 = USB address error (soft) trap has occurred $0=$ USB address error (soft) trap has not occurred
    bit 5 DAE: DMA Address Error Soft Trap Status bit 1 = DMA Address error soft trap has occurred 0 = DMA Address error soft trap has not occurred
    bit 4 DOOVR: Do Stack Overflow Soft Trap Status bit
    1 = Do stack overflow soft trap has occurred
    0 = Do stack overflow soft trap has not occurred
    bit 3-0 Unimplemented: Read as ' 0 '

    REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |


    | U-0 U-0 |  |  |  |  |  |  |  |  | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | SGHT |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  | bit 0 |  |  |  |  |  |  |  |  |  |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

    bit 15-1 Unimplemented: Read as ' 0 ’
    bit $0 \quad$ SGHT: Software Generated Hard Trap Status bit
    1 = Software generated hard trap has occurred
    0 = Software generated hard trap has not occurred

    REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

    | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - |  | ILR<3:0> |  |  |
    | bit 15 |  |  |  | bit 8 |  |  |  |


    | R-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | VECNUM $<7: 0>$ |  |  |  |  |  |
    | bit 7 |  |  |  |  | bit 0 |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |$\quad x=$ Bit is unknown


    | bit 15-12 | Unimplemented: Read as ' 0 ' |
    | :---: | :---: |
    | bit 11-8 | ILR<3:0>: New CPU Interrupt Priority Level bits |
    |  | 1111 = CPU Interrupt Priority Level is 15 |
    |  | - |
    |  | - |
    |  | - |
    |  | 0001 = CPU Interrupt Priority Level is 1 |
    |  | $0000=$ CPU Interrupt Priority Level is 0 |
    | bit 7-0 | VECNUM<7:0>: Vector Number of Pending Interrupt bits |
    |  | 11111111 = Interrupt vector pending is number 263 |
    |  |  |
    |  | - |
    |  | - |
    |  | $00000001=$ Interrupt vector pending is number 9 |
    |  | $00000000=$ Interrupt vector pending is number 8 |

    NOTES:

    ### 8.0 DIRECT MEMORY ACCESS (DMA)

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70348) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The DMA controller transfers data between peripheral data registers and data space SRAM. The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 DMA subsystem uses dualported SRAM memory (DPSRAM) and register structures that allow the DMA to operate across its own, independent address and data buses with no impact on CPU operation. This architecture eliminates the need for cycle stealing, which halts the CPU when a higher priority DMA transfer is requested. Both the CPU and DMA controller can write and read to/from
    addresses within data space without interference, such as CPU stalls, resulting in maximized, real-time performance. Alternatively, DMA operation and data transfer to/from the memory and peripherals are not impacted by CPU processing. For example, when a Run-Time Self-Programming (RTSP) operation is performed, the CPU does not execute any instructions until RTSP is finished. This condition, however, does not impact data transfer to/from memory and the peripherals.
    In addition, DMA can access entire data memory space (SRAM and DPSRAM). The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempt to access non-dual-ported SRAM, resulting in potential DMA or CPU stalls.

    The DMA controller supports up to 15 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA controller include:

    - ECAN ${ }^{\text {™ }}$
    - Data Converter Interface (DCI)
    - Analog-to-Digital Converter (ADC)
    - Serial Peripheral Interface (SPI)
    - UART
    - Input Capture
    - Output Compare
    - Parallel Master Port (PMP)

    Refer to Table 8-1 for a complete list of supported peripherals.

    FIGURE 8-1: DMA CONTROLLER
    

    In addition, DMA transfers can be triggered by Timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receive a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which it generates an interrupt to the CPU to indicate that the block is available for processing.
    The DMA controller provides these functional capabilities:

    - Up to 15 DMA channels
    - Register Indirect With Post-increment Addressing mode
    - Register Indirect Without Post-increment Addressing mode
    - Peripheral Indirect Addressing mode (peripheral generates destination address)
    - CPU interrupt after half or full-block transfer complete
    - Byte or word transfers
    - Fixed priority channel arbitration
    - Manual (software) or Automatic (peripheral DMA requests) transfer initiation
    - One-Shot or Auto-Repeat block transfer modes
    - Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
    - DMA request for each channel can be selected from any supported interrupt source
    Debug support features
    The peripherals that can utilize DMA are listed in Table 8-1.


    ## TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

    | Peripheral to DMA Association | DMAxREQ Register IRQSEL<7:0> Bits | DMAxPAD Register (Values to Read from Peripheral) | DMAxPAD Register (Values to Write to Peripheral) |
    | :---: | :---: | :---: | :---: |
    | INT0 - External Interrupt 0 | 00000000 | - | - |
    | IC1 - Input Capture 1 | 00000001 | $0 \times 0144$ (IC1BUF) | - |
    | IC2 - Input Capture 2 | 00000101 | 0x014C (IC2BUF) | - |
    | IC3 - Input Capture 3 | 00100101 | $0 \times 0154$ (IC3BUF) | - |
    | IC4 - Input Capture 4 | 00100110 | 0x015C (IC4BUF) | - |
    | OC1 - Output Compare 1 | 00000010 | - | $\begin{gathered} 0 \times 0906 \text { (OC1R) } \\ 0 \times 0904 \text { (OC1RS) } \end{gathered}$ |
    | OC2 - Output Compare 2 | 00000110 | - | $\begin{gathered} \hline 0 \times 0910 \text { (OC2R) } \\ 0 \times 090 E \text { (OC2RS) } \end{gathered}$ |
    | OC3 - Output Compare 3 | 00011001 | - | $\begin{gathered} \hline \text { 0x091A (OC3R) } \\ 0 \times 0918 \text { (OC3RS) } \end{gathered}$ |
    | OC4 - Output Compare 4 | 00011010 | - | $\begin{gathered} \hline 0 \times 0924 \text { (OC4R) } \\ 0 \times 0922 \text { (OC4RS) } \end{gathered}$ |
    | TMR2 - Timer2 | 00000111 | - | - |
    | TMR3 - Timer3 | 00001000 | - | - |
    | TMR4 - Timer4 | 00011011 | - | - |
    | TMR5 - Timer5 | 00011100 | - | - |
    | SPI1 Transfer Done | 00001010 | 0x0248 (SPI1BUF) | 0x0248 (SPI1BUF) |
    | SPI2 Transfer Done | 00100001 | 0x0268 (SPI2BUF) | 0x0268 (SPI2BUF) |
    | SPI3 Transfer Done | 01011011 | 0x02A8 (SPI3BUF) | $0 \times 02 A 8$ (SPI3BUF) |
    | SPI4 Transfer Done | 01111011 | 0x02C8 (SPI4BUF) | 0x02C8 (SPI4BUF) |
    | UART1RX - UART1 Receiver | 00001011 | 0x0226 (U1RXREG) | - |
    | UART1TX - UART1 Transmitter | 00001100 | - | 0x0224 (U1TXREG) |
    | UART2RX - UART2 Receiver | 00011110 | 0x0236 (U2RXREG) | - |
    | UART2TX - UART2 Transmitter | 00011111 | - | 0x0234 (U2TXREG) |
    | UART3RX - UART3 Receiver | 01010010 | 0x0256 (U3RXREG) | - |
    | UART3TX - UART3 Transmitter | 01010011 | - | 0x0254 (U3TXREG) |
    | UART4RX - UART4 Receiver | 01011000 | 0x02B6 (U4RXREG) | - |

    TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS (CONTINUED)

    | Peripheral to DMA Association | DMAxREQ Register <br> IRQSEL<7:0> Bits | DMAxPAD Register <br> (Values to Read from <br> Peripheral) | DMAxPAD Register <br> (Values to Write to <br> Peripheral) |
    | :--- | :---: | :---: | :---: |
    | UART4TX - UART4 Transmitter | 01011001 | - | $0 \times 02 B 4$ (U4TXREG) |
    | ECAN1 - RX Data Ready | 00100010 | $0 \times 0440$ (C1RXD) | - |
    | ECAN1 - TX Data Request | 01000110 | - | $0 \times 0442$ (C1TXD) |
    | ECAN2 - RX Data Ready | 00110111 | $0 \times 0540$ (C2RXD) | - |
    | ECAN2 - TX Data Request | 01000111 | - | $0 \times 0542$ (C2TXD) |
    | DCI - DCI Transfer Done | 00111100 | $0 \times 0290$ (RXBUF0) | $0 \times 0298$ (TXBUF0) |
    | ADC1 - ADC1 Convert Done | 00001101 | $0 \times 0300$ (ADC1BUF0) | - |
    | ADC2 - ADC2 Convert Done | 00010101 | $0 \times 0340$ (ADC2BUF0) | - |
    | PMP - PMP Data Move | 00101101 | $0 x 0608$ (PMDIN1) | $0 \times 0608$ (PMDIN1) |

    ## FIGURE 8-2: DMA CONTROLLER BLOCK DIAGRAM

    

    ### 8.1 DMAC Registers

    Each DMAC Channel $x$ (where $x=0$ through 14) contains the following registers:

    - 16-bit DMA Channel Control register (DMAxCON)
    - 16-bit DMA Channel IRQ Select register (DMAxREQ)
    - 32-bit DMA RAM Primary Start Address register (DMAxSTA)
    - 32-bit DMA RAM Secondary Start Address register (DMAxSTB)
    - 16-bit DMA Peripheral Address register (DMAxPAD)
    - 14-bit DMA Transfer Count register (DMAxCNT)

    Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA, and DSADR) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.
    The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

    ## REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

    | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 |
    | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | CHEN | SIZE | DIR | HALF | NULLW | - | - | - |
    | bit 15 |  |  | bit 8 |  |  |  |  |


    | $\mathrm{U}-0$ | $\mathrm{U}-0$ | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | AMODE<1:0> | - | - | MODE<1:0> |  |
    | bit 7 |  |  |  |  |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |


    | bit 15 | CHEN: Channel Enable bit <br> 1 = Channel enabled <br> $0=$ Channel disabled |
    | :---: | :---: |
    | bit 14 | SIZE: Data Transfer Size bit <br> 1 = Byte <br> $0=$ Word |
    | bit 13 | DIR: Transfer Direction bit (source/destination bus select) <br> 1 = Read from DPSRAM (or RAM) address, write to peripheral address <br> $0=$ Read from Peripheral address, write to DPSRAM (or RAM) address |
    | bit 12 | HALF: Block Transfer Interrupt Select bit <br> 1 = Initiate interrupt when half of the data has been moved <br> $0=$ Initiate interrupt when all of the data has been moved |
    | bit 11 | NULLW: Null Data Peripheral Write Mode Select bit <br> 1 = Null data write to peripheral in addition to DPSRAM (or RAM) write (DIR bit must also be clear) <br> 0 = Normal operation |
    | bit 10-6 | Unimplemented: Read as '0' |
    | bit 5-4 | AMODE<1:0>: DMA Channel Addressing Mode Select bits <br> 11 = Reserved <br> 10 = Peripheral Indirect Addressing mode <br> $01=$ Register Indirect without Post-Increment mode <br> $00=$ Register Indirect with Post-Increment mode |
    | bit 3-2 | Unimplemented: Read as '0' |
    | bit 1-0 | MODE<1:0>: DMA Channel Operating Mode Select bits <br> 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) <br> $10=$ Continuous, Ping-Pong modes enabled <br> 01 = One-Shot, Ping-Pong modes disabled <br> $00=$ Continuous, Ping-Pong modes disabled |

    ## REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

    | R/S-0 | U-0 | | | | | | |
|---|---|---|---|---|---|---|---|
    | FORCE |  |  |  |  |  |  |  |
    | bit 15 | - | - | - | - | - | - | - |
    | R/W-0 |
    | Bit 8 |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  |  |


    | Legend: |  |  | | |
|---|---|---|---|---|
    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad x=$ Bit is unknown |  |
    | :--- |

    bit $15 \quad$ FORCE: Force DMA Transfer bit ${ }^{(\mathbf{1})}$
    1 = Force a single DMA transfer (Manual mode)
    $0=$ Automatic DMA transfer initiation by DMA Request
    bit 14-8 Unimplemented: Read as ' 0 '
    bit 7-0 IRQSEL<7:0>: DMA Peripheral IRQ Number Select bits
    $00000000=$ INTO - External Interrupt 0
    00000001 = IC1 - Input Capture 1
    00000010 = OC1 - Output Compare 1
    00000101 = IC2 - Input Capture 2
    00000110 = OC2 - Output Compare 2
    00000111 = TMR2 - Timer2
    00001000 = TMR3 - Timer3
    00001010 = SPI1 - Transfer Done
    00001011 = UART1RX - UART1 Receiver
    00001100 = UART1TX - UART1 Transmitter
    00001101 = ADC1 - ADC1 Convert done
    00010101 = ADC2 - ADC2 Convert Done
    00011001 = OC3 - Output Compare 3
    00011010 = OC4 - Output Compare 4
    00011011 = TMR4 - Timer4
    $00011100=$ TMR5 - Timer5
    00011110 = UART2RX - UART2 Receiver
    00011111 = UART2TX - UART2 Transmitter
    00100001 = SPI2 Transfer Done
    00100010 = ECAN1 - RX Data Ready
    00100101 = IC3 - Input Capture 3
    00100110 = IC4 - Input Capture 4
    00101101 = PMP Data mode
    00110111 = ECAN2 - RX Data Ready
    00111100 = DCI - DCI Transfer Done
    01000110 = ECAN1 - TX Data Request
    01000111 = ECAN2 - TX Data Request
    01010010 = UART3RX - UART3 Receiver
    01010011 = UART3TX - UART3 Transmitter
    $01011000=$ UART4RX - UART4 Receiver
    01011001 = UART4TX - UART4 Transmitter
    01011011 = SPI3 - Transfer Done
    01111011 = SPI 4 - Transfer Done
    Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).

    REGISTER 8-3: DMAxSTAH: DMA CHANNEL x START ADDRESS REGISTER A (HIGH)

    | U-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 | bit 8 |  |  |  |  |  |  |
    | R/W-0 |
    | STA 7 | STA<23:16> |  |  |  |  |  |  |
    | bit |  |  |  |  |  |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad x=$ Bit is unknown


    | bit 15-8 | Unimplemented: Read as ' 0 ' |
    | :--- | :--- |
    | bit 7-0 | STA<23:16>: Primary Start Address bits (source or destination) |

    REGISTER 8-4: DMAxSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

    | R/W-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | STA<15:8> |  |  |  |  |  |
    | bit 15 |  |  |  |  |  | bit 8 |  |


    | R/W-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ R/W-0 |  | STA<7:0> |  |  |
    | :--- | :--- | :--- | :--- |
    | bit 7 |  |  |  |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' $=$ Bit is cleared |

    bit 15-0
    STA<15:0>: Primary Start Address bits (source or destination)

    REGISTER 8-5: DMAxSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)

    | U-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  | bit 8 |
    | R/W-0 |
    | STB<23:16> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |$\quad x=$ Bit is unknown


    | bit 15-8 | Unimplemented: Read as ' 0 ' |
    | :--- | :--- |
    | bit $7-0$ | STB<23:16>: Primary Start Address bits (source or destination) |

    REGISTER 8-6: DMAxSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

    | R/W-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  |  | STB<15:8> |  |  |  |  |
    | bit 15 |  |  |  |  |  | bit 8 |  |


    | R/W-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | STB<7:0> |  |  |  |  |  |
    | bit 7 |  |  |  |  |  | bit 0 |  |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |

    bit 15-0 STB<15:0>: Secondary Start Address Offset bits (source or destination)

    REGISTER 8-7: DMAXPAD: DMA CHANNEL $\times$ PERIPHERAL ADDRESS REGISTER ${ }^{(1)}$

    | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PAD<15:8> |  |  |  |  |  |  |  |
    | bit 15 |  |  |  |  |  |  | bit 8 |
    | R/W-0 |
    | PAD<7:0> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    ## Legend:

    $R=$ Readable bit
    $\mathrm{W}=$ Writable bit
    $\mathrm{U}=$ Unimplemented bit, read as ' 0 '
    $-n=$ Value at POR
    ' 1 ' = Bit is set
    ' 0 ' = Bit is cleared
    $x=$ Bit is unknown
    bit 15-0 PAD<15:0>: Peripheral Address Register bits
    Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

    ## REGISTER 8-8: DMAxCNT: DMA CHANNEL $\times$ TRANSFER COUNT REGISTER ${ }^{(1)}$

    | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - |  | $C N T<13: 8>{ }^{(2)}$ |  |  |  |  |
    | bit 15 |  |  |  |  | bit 8 |  |  |


    | R/W-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | $C N T<7: 0>(\mathbf{2 )}$ |  |  |  |  |  |
    | bit 7 |  |  |  |  |  | bit 0 |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |$\quad x=$ Bit is unknown


    | bit 15-14 | Unimplemented: Read as ‘ 0 ' |
    | :--- | :--- |
    | bit 13-0 | CNT<13:0>: DMA Transfer Count Register bits ${ }^{(2)}$ |

    Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
    2: The number of DMA transfers $=C N T<13: 0>+1$.

    ## REGISTER 8-9: DSADRH: MOST RECENT DMA DPSRAM HIGH ADDRESS REGISTER

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |


    | R-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | DSADR<23:16> |  |  |  |  |  |
    | bit 7 |  |  |  |  | bit 0 |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad x=$ Bit is unknown


    | bit 15-8 | Unimplemented: Read as ‘ 0 ' |
    | :--- | :--- |
    | bit $7-0$ | DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits |

    REGISTER 8-10: DSADRL: MOST RECENT DMA DPSRAM LOW ADDRESS REGISTER

    | R-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | DSADR<15:8> |  |  |  |  |  |  |  |
    | bit 15 |  |  |  |  |  |  | bit 8 |
    | R-0 |
    | DSADR<7:0> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |

    bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

    ## REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

    | U-0 | R-0 | | | | | | |
|---|---|---|---|---|---|---|---|
    | - | PWCOL14 | PWCOL13 | PWCOL12 | PWCOL11 | PWCOL10 | PWCOL9 | PWCOL8 |
    | bit 15 |  |  |  |  |  |  |  |


    | R-0 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PWCOL7 | PWCOL6 | PWCOL5 | PWCOL4 | PWCOL3 | PWCOL2 | PWCOL1 | PWCOL0 |
    | bit 7 |  |  |  | bit 0 |  |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as '0' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |$\quad x=$ Bit is unknown

    bit 15 Unimplemented: Read as ' 0 '
    bit 14 PWCOL14: Channel 14 Peripheral Write Collision Flag bit
    $1=$ Write collision detected
    $0=$ No write collision detected
    bit 13 PWCOL13: Channel 13 Peripheral Write Collision Flag bit
    $1=$ Write collision detected
    $0=$ No write collision detected
    bit 12 PWCOL12: Channel 12 Peripheral Write Collision Flag bit
    $1=$ Write collision detected
    $0=$ No write collision detected
    bit 11 PWCOL11: Channel 11 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected
    bit 10 PWCOL10: Channel 10 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected
    bit $9 \quad$ PWCOL9: Channel 9 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected
    bit 8 PWCOL8: Channel 8 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected
    bit $7 \quad$ PWCOL7: Channel 7 Peripheral Write Collision Flag bit 1 = Write collision detected $0=$ No write collision detected
    bit 6 PWCOL6: Channel 6 Peripheral Write Collision Flag bit 1 = Write collision detected
    $0=$ No write collision detected
    bit 5 PWCOL5: Channel 5 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected
    bit 4 PWCOL4: Channel 4 Peripheral Write Collision Flag bit
    $1=$ Write collision detected
    $0=$ No write collision detected
    bit 3 PWCOL3: Channel 3 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected

    ## REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER (CONTINUED)

    bit 2 PWCOL2: Channel 2 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected
    bit 1
    PWCOL1: Channel 1 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected
    bit 0
    PWCOLO: Channel 0 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected

    REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

    | U-0 | R-0 | | | | | | |
|---|---|---|---|---|---|---|---|
    | - | RQCOL14 | RQCOL13 | RQCOL12 | RQCOL11 | RQCOL10 | RQCOL9 | RQCOL8 |
    | bit 15 |  |  |  |  |  |  |  |


    | R-0 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | RQCOL7 | RQCOL6 | RQCOL5 | RQCOL4 | RQCOL3 | RQCOL2 | RQCOL1 | RQCOL0 |
    | bit 7 |  |  |  | bit 0 |  |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | 0 ' $=$ Bit is cleared |$\quad x=$ Bit is unknown

    bit 15 Unimplemented: Read as ' 0 '
    bit 14 RQCOL14: Channel 14 Transfer Request Collision Flag bit 1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit 13 RQCOL13: Channel 13 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit 12 RQCOL12: Channel 12 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit 11 RQCOL11: Channel 11 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit 10 RQCOL10: Channel 10 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit $9 \quad$ RQCOL9: Channel 9 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit $8 \quad$ RQCOL8: Channel 8 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit $7 \quad$ RQCOL7: Channel 7 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit 6 RQCOL6: Channel 6 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit $5 \quad$ RQCOL5: Channel 5 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit 4 RQCOL4: Channel 4 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected
    bit 3 RQCOL3: Channel 3 Transfer Request Collision Flag bit
    1 = User FORCE and Interrupt-based request collision detected
    $0=$ No request collision detected

    REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER (CONTINUED)

    | bit 2 | RQCOL2: Channel 2 Transfer Request Collision Flag bit |
    | :--- | :--- |
    |  | $1=$ User FORCE and Interrupt-based request collision detected |
    | bit 1 | $0=$ No request collision detected |
    |  | RQCOL1: Channel 1 Transfer Request Collision Flag bit |
    | bit 0 | $1=$ User FORCE and Interrupt-based request collision detected |
    |  | $0=$ No request collision detected |
    |  | RQCOLO: Channel 0 Transfer Request Collision Flag bit <br> $1=$ <br>  |
    |  | $0=$ Nser FORCE and Interrupt-based request collision detected |

    ## REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE DMA STATUS REGISTER

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  | bit 8 |
    | U-0 | U-0 | U-0 | U-0 | R-1 | R-1 | R-1 | R-1 |
    | - | - | - | - |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |$\quad x=$ Bit is unknown


    | bit 15-4 | Unimplemented: Read as ' 0 ' <br> bit 3-0 |
    | :--- | :--- |
    |  | LSTCH<3:0>: Last DMAC Channel Active Status bits |
    | $1111=$ No DMA transfer has occurred since system Reset |  |
    | $1110=$ Last data transfer was handled by Channel 14 |  |
    | $1101=$ Last data transfer was handled by Channel 13 |  |
    | $1100=$ Last data transfer was handled by Channel 12 |  |
    | $1011=$ Last data transfer was handled by Channel 11 |  |
    | $1010=$ Last data transfer was handled by Channel 10 |  |
    | $1001=$ Last data transfer was handled by Channel 9 |  |
    | $1000=$ Last data transfer was handled by Channel 8 |  |
    | $0111=$ Last data transfer was handled by Channel 7 |  |
    |  | $0110=$ Last data transfer was handled by Channel 6 |
    |  | $0101=$ Last data transfer was handled by Channel 5 |
    |  | $0100=$ Last data transfer was handled by Channel 4 |
    | $0011=$ Last data transfer was handled by Channel 3 |  |
    | $0010=$ Last data transfer was handled by Channel 2 |  |
    | $0001=$ Last data transfer was handled by Channel 1 |  |
    |  | $0000=$ Last data transfer was handled by Channel 0 |

    REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

    | U-0 | R-0 | | | | | | |
|---|---|---|---|---|---|---|---|
    | - | PPST14 | PPST13 | PPST12 | PPST11 | PPST10 | PPST9 | PPST8 |
    | bit 15 |  |  |  |  |  |  |  |


    | R-0 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PPST7 | PPST6 | PPST5 | PPST4 | PPST3 | PPST2 | PPST1 | PPST0 |
    | bit 7 |  |  |  | bit 0 |  |  |  |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

    bit 15 Unimplemented: Read as ' 0 '
    bit $14 \quad$ PPST14: Channel 14 Ping-Pong Mode Status Flag bit 1 = DMASTB14 register selected
    $0=$ DMASTA14 register selected
    bit 13 PPST13: Channel 13 Ping-Pong Mode Status Flag bit
    $1=$ DMASTB13 register selected
    0 = DMASTA13 register selected
    bit $12 \quad$ PPST12: Channel 12 Ping-Pong Mode Status Flag bit
    1 = DMASTB12 register selected
    0 = DMASTA12 register selected
    bit 11
    bit 10
    bit $9 \quad$ PPST9: Channel 9 Ping-Pong Mode Status Flag bit
    1 = DMASTB9 register selected
    $0=$ DMASTA9 register selected
    bit $8 \quad$ PPST8: Channel 8 Ping-Pong Mode Status Flag bit
    1 = DMASTB8 register selected
    $0=$ DMASTA8 register selected
    bit $7 \quad$ PPST7: Channel 7 Ping-Pong Mode Status Flag bit 1 = DMASTB7 register selected
    $0=$ DMASTA7 register selected
    bit $6 \quad$ PPST6: Channel 6 Ping-Pong Mode Status Flag bit $1=$ DMASTB6 register selected
    0 = DMASTA6 register selected
    bit $5 \quad$ PPST5: Channel 5 Ping-Pong Mode Status Flag bit 1 = DMASTB5 register selected
    $0=$ DMASTA5 register selected
    bit $4 \quad$ PPST4: Channel 4 Ping-Pong Mode Status Flag bit
    $1=$ DMASTB4 register selected
    0 = DMASTA4 register selected
    bit $3 \quad$ PPST3: Channel 3 Ping-Pong Mode Status Flag bit
    1 = DMASTB3 register selected
    $0=$ DMASTA3 register selected

    REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER (CONTINUED)
    bit $2 \quad$ PPST2: Channel 2 Ping-Pong Mode Status Flag bit
    $1=$ DMASTB2 register selected
    0 = DMASTA2 register selected
    bit 1 PPST1: Channel 1 Ping-Pong Mode Status Flag bit 1 = DMASTB1 register selected $0=$ DMASTA1 register selected
    bit $0 \quad$ PPSTO: Channel 0 Ping-Pong Mode Status Flag bit $1=$ DMASTB0 register selected
    $0=$ DMASTA0 register selected

    ### 9.0 OSCILLATOR CONFIGURATION

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70580) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The
    dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 oscillator system provides:

    - Four external and internal oscillator options
    - Auxiliary oscillator that provides clock source to the USB module
    - On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
    - On-the-fly clock switching between various clock sources
    - Doze mode for system power savings
    - Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
    - Nonvolatile Configuration bits for clock source selection
    A simplified diagram of the oscillator system is shown in Figure 9-1.


    ## FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

    

    ### 9.1 CPU Clocking System

    The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family of devices provide seven system clock options:

    - Fast RC (FRC) Oscillator
    - FRC Oscillator with Phase-Locked Loop (PLL)
    - Primary (XT, HS or EC) Oscillator
    - Primary Oscillator with PLL
    - Secondary (LP) Oscillator
    - Low-Power RC (LPRC) Oscillator
    - FRC Oscillator with postscaler

    Instruction execution speed or device operating frequency, FcY, is given by Equation 9-1.

    ## EQUATION 9-1: DEVICE OPERATING FREQUENCY

    $\square$
    Figure 9-2 is a block diagram of the PLL module.
    Equation 9-2 provides the relation between input frequency (FIN) and output frequency (FOSC).
    Equation 9-3 provides the relation between input frequency (FIN) and VCO frequency (FVCO).

    FIGURE 9-2: PLL BLOCK DIAGRAM
    

    ## EQUATION 9-2: Fosc CALCULATION

    $$
    F O S C=F I N \times\left(\frac{M}{N 1 \times N 2}\right)=F_{I N} \times\left(\frac{(P L L D I V+2)}{(P L L P R E+2) \times 2(P L L P O S T+1)}\right)
    $$

    Where,

    $$
    \begin{aligned}
    & N 1=P L L P R E+2 \\
    & N 2=2 \times(P L L P O S T+1) \\
    & M=P L L D I V+2
    \end{aligned}
    $$

    ## EQUATION 9-3: Fvco CALCULATION

    $F V C O=F_{I N} \times\left(\frac{M}{N 1}\right)=F_{I N} \times\left(\frac{(P L L D I V+2)}{(P L L P R E+2)}\right)$

    Figure 9-3 illustrates a block diagram of the Auxiliary
    PLL module.
    FIGURE 9-3: APLL BLOCK DIAGRAM
    

    Equation 9-4 shows the relationship between the Auxiliary PLL input clock frequency (FAIN) and the Avco frequency (FAVCO).

    EQUATION 9-4: AFvco CALCULATION
    FAVCO $=$ FAIN $\times\left(\frac{M}{N 1}\right)$

    TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

    | Oscillator Mode | Oscillator <br> Source | POSCMD<1:0> | FNOSC<2:0> | See <br> Note |
    | :--- | :---: | :---: | :---: | :---: |
    | Fast RC Oscillator with Divide-by-N (FRCDIVN) | Internal | xx | 111 | $\mathbf{1 , 2}$ |
    | Fast RC Oscillator with Divide-by-16 (FRCDIV16) | Internal | xx | 110 | $\mathbf{1}$ |
    | Low-Power RC Oscillator (LPRC) | Internal | xx | 101 | $\mathbf{1}$ |
    | Secondary (Timer1) Oscillator (Sosc) | Secondary | xx | 100 | $\mathbf{1}$ |
    | Primary Oscillator (HS) with PLL (HSPLL) | Primary | 10 | 011 | - |
    | Primary Oscillator (XT) with PLL (XTPLL) | Primary | 01 | 011 | - |
    | Primary Oscillator (EC) with PLL (ECPLL) | Primary | 00 | 011 | $\mathbf{1}$ |
    | Primary Oscillator (HS) | Primary | 10 | 010 | $-\mathbf{1}$ |
    | Primary Oscillator (XT) | Primary | 01 | 010 | - |
    | Primary Oscillator (EC) | Primary | 00 | 010 | $\mathbf{1}$ |
    | Fast RC Oscillator (FRC) with Divide-by-N and PLL <br> (FRCPLL) | Internal | xx | 001 | $\mathbf{1}$ |
    | Fast RC Oscillator (FRC) | Internal | xx | 000 | $\mathbf{1}$ |

    Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.
    2: This is the default oscillator mode for an unprogrammed (erased) device.

    REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER ${ }^{(1,3)}$

    | U-0 | R-0 | R-0 | R-0 | U-0 | R/W-y | R/W-y | R/W-y |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - |  | COSC<2:0> | - |  | NOSC<2:0> ${ }^{(2)}$ |  |  |
    | bit 15 |  |  |  | bit 8 |  |  |  |


    | R/W-0 | R/W-0 | R-0 | U-0 | R/C-0 | U-0 | R/W-0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | CLKLOCK | IOLOCK | LOCK | - | CF | - | LPOSCEN | OSWEN |
    | bit 7 |  |  |  |  |  |  | bit 0 |
    | Legend: |  | $y=$ Value set from Configuration bits on POR |  |  |  |  |  |
    | $\mathrm{R}=$ Readable bit |  | W = Writable bit |  | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |  |  |  |
    | -n = Value at POR |  | ' 1 ' = Bit is set |  | ' 0 ' = Bit is cleared |  | $x=$ Bit is unknown |  |

    ```
 bit 15 Unimplemented: Read as ' 0'
 bit 14-12 COSC<2:0>: Current Oscillator Selection bits (read-only)
 111 = Fast RC Oscillator (FRC) with Divide-by-N
 110 = Fast RC Oscillator (FRC) with Divide-by-16
 101 = Low-Power RC Oscillator (LPRC)
 100 = Secondary Oscillator (Sosc)
 011 = Primary Oscillator (XT, HS, EC) with PLL
 010 = Primary Oscillator (XT, HS, EC)
 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL
 000 = Fast RC Oscillator (FRC)
 bit 11 Unimplemented: Read as '0'
 bit 10-8 NOSC<2:0>: New Oscillator Selection bits ```

