
Adafruit MPR121 12-Key Capacitive Touch Sensor Breakout Tutorial
Created by lady ada

Last updated on 2021-01-26 02:47:51 PM EST



2
3
6
7
7
7
8
8
8
9

10
11
11
14
14
14
16
16
18
20
21
21
22
23
24
24
24
24
25
26
26
28
29
29
29
29

Guide Contents

Guide Contents
Overview
Pinouts
Power Pins
I2C Pins
IRQ and ADDR Pins
Assembly

Prepare the header strip:
Add the breakout board:
And Solder!

Arduino
Download Adafruit_MPR121
Load Demo
Library Reference

Touch detection
Raw Data

Python & CircuitPython
CircuitPython Microcontroller Wiring
Python Computer Wiring
CircuitPython Installation of MPR121 Library
Python Installation of MPR121 Library
CircuitPython & Python Usage
Full Example Code
Python Docs
Raspberry Pi Virtual Keyboard
Wiring
Dependencies
Configuration
Usage

Launch In Background
Stop Background Process

Electrodes
Downloads

Datasheets & Files
STEMMA QT Revision Schematic and Fab Print

Original Breakout Board Schematic and Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 2 of 31



Overview

Add lots of touch sensors to your next microcontroller project with this easy-to-use 12-channel capacitive

touch sensor breakout board, starring the MPR121. This chip can handle up to 12 individual touch pads.

The MPR121 has support for only I2C, which can be implemented with nearly any microcontroller. You can

select one of 4 addresses with the ADDR pin, for a total of 48 capacitive touch pads on one I2C 2-wire

bus. Using this chip is a lot easier than doing the capacitive sensing with analog inputs: it handles all the

filtering for you and can be configured for more/less sensitivity.

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 3 of 31



This sensor comes as a tiny hard-to-solder chip so we put it onto a breakout board for you. Since it's a

3V-only chip, we added a 3V regulator and I2C level shifting so its safe to use with any 3V or 5V

microcontroller/processor like Arduino. We even added an LED onto the IRQ line so it will blink when

touches are detected, making debugging by sight a bit easier on you. Comes with a fully assembled

board, and a stick of 0.1" header so you can plug it into a breadboard. For contacts, we suggest using

copper foil or pyralux, then solder a wire that connects from the foil pad to the breakout.

As if that weren't enough, we've now also added  SparkFun

qwiic (https://adafru.it/Fpw) compatible STEMMA QT (https://adafru.it/Ft4) connectors for the I2C bus so

you don't even need to solder the I2C and power lines. Just wire up to your favorite micro using

a STEMMA QT adapter cable. (https://adafru.it/JnB) The Stemma QT connectors also mean the MPR121

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 4 of 31

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=stemma%20qt%20cable


can be used with our various associated accessories. (https://adafru.it/Ft6) QT Cable is not included, but

we have a variety in the shop (https://adafru.it/JnB).

� There are two versions of this board - the STEMMA QT version shown above, and the original

header-only version shown below. Code works the same on both!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 5 of 31

https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch


Pinouts

� The pins are in a slightly different order on the original board from the STEMMA QT version. They

function the same!

The little chip in the middle of the PCB is the actual MPR121 sensor that does all the capacitive sensing

and filtering. We add all the extra components you need to get started, and 'break out' all the other pins

you may want to connect to onto the PCB. For more details you can check out the schematics in the

Downloads page.

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 6 of 31



Power Pins
The sensor on the breakout requires 3V power. Since many customers have 5V microcontrollers like

Arduino, we tossed a 3.3V regulator on the board. Its ultra-low dropout so you can power it from 3.3V-5V

just fine.

Vin - this is the power pin. Since the chip uses 3 VDC, we have included a voltage regulator on

board that will take 3-5VDC and safely convert it down. To power the board, give it the same power

as the logic level of your microcontroller - e.g. for a 5V micro like Arduino, use 5V

3Vo - this is the 3.3V output from the voltage regulator, you can grab up to 100mA from this if you

like

GND - common ground for power and logic

 

I2C Pins
SCL - I2C clock pin, connect to your microcontroller's I2C clock line.

SDA - I2C data pin, connect to your microcontroller's I2C data line.

 

IRQ and ADDR Pins
ADDR is the I2C address select pin. By default this is pulled down to ground with a 100K resistor, for

an I2C address of 0x5A. You can also connect it to the 3Vo pin for an address of 0x5B, the SDA pin

for 0x5C or SCL for address 0x5D

INT (IRQ on original version) is the Interrupt Request signal pin. It is pulled up to 3.3V on the

breakout and when the sensor chip detects a change in the touch sense switches, the pin goes to

0V until the data is read over i2c

 
 

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 7 of 31



Assembly

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to solder if

you insert it into a breadboard - long pins down

Add the breakout board:
Place the breakout board over the pins so that the short pins

poke through the breakout pads

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 8 of 31

https://learn.adafruit.com//assets/18428
https://learn.adafruit.com//assets/18429


And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to

Excellent Soldering (https://adafru.it/aTk)).

You're done! Check your solder joints visually and continue onto the next steps

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 9 of 31

https://learn.adafruit.com//assets/18430
https://learn.adafruit.com//assets/18431
http://learn.adafruit.com/adafruit-guide-excellent-soldering


Arduino
You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For another kind of

microcontroller, just make sure it has I2C, then port the code - its pretty simple stuff!

Connect Vin to the power supply, 3-5V is fine. Use the

same voltage that the microcontroller logic is based off

of. For most Arduinos, that is 5V

Connect GND to common power/data ground

Connect the SCL pin to the I2C clock SCL pin on your

Arduino. On an UNO & '328 based Arduino, this is also

known as A5, on a Mega it is also known as digital 21

and on a Leonardo/Micro, digital 3

Connect the SDA pin to the I2C data SDA pin on your

Arduino. On an UNO & '328 based Arduino, this is also

known as A4, on a Mega it is also known as digital 20

and on a Leonardo/Micro, digital 2

The MPR121 ADDR pin is pulled to ground and has a default I2C address of 0x5A 

You can adjust the I2C address by connecting  ADDR to other pins:

ADDR not connected: 0x5A

ADDR tied to 3V: 0x5B

ADDR tied to SDA: 0x5C

ADDR tied to SCL: 0x5D

We suggest sticking with the default for the test demo, you can always change it later.

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 10 of 31

https://learn.adafruit.com//assets/98923
https://learn.adafruit.com//assets/98924
https://learn.adafruit.com//assets/98925


Download Adafruit_MPR121
To begin reading sensor data, you will need to download the Adafruit_MPR121 library from the Arduino

library manager.

Open up the Arduino library manager:

Seach for the Adafruit MPR121 library and install it

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Load Demo
Open up File->Examples->Adafruit_MPR121->MPR121test and upload to your Arduino wired up to the

sensor

Thats it! Now open up the serial terminal window at 9600 speed to begin the test.

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 11 of 31

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use


Make sure you see the "MPR121 found!" text which lets you know that the sensor is wired correctly.

Now touch the 12 pads with your fingertip to activate the touch-detection

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 12 of 31



For most people, that's all you'll need! Our code keeps track of the 12 'bits' for each touch and has logic to

let you know when a contect is touched or released.

If you're feeling more advanced, you can see the 'raw' data from the chip. Basically, what it does it keep

track of the capacitance it sees with "counts". There's some baseline count number that depends on the

temperature, humidity, PCB, wire length etc. Where's a dramatic change in number, its considered that a

person touched or released the wire.

Comment this "return" line to activate that mode:

  // comment out this line for detailed data from the sensor!
  return;

Then reupload. Open up the serial console again - you'll see way more text

Each reading has 12 columns. One for each sensor, #0 to #11. There's two rows, one for the 'baseline' and

one for the current filtered data reading. When the current reading is within about 12 counts of the

baseline, that's considered untouched. When the reading is more than 12 counts smaller than the

baseline, the chip reports a touch.

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 13 of 31



Most people don't need raw data too much, but it can be handy if doing intense debugging. It can be

helpful if you are tweaking your sensors to get good responsivity.

Library Reference
Since the sensors use I2C, there's no pins to be defined during instantiation. You can just use:

Adafruit_MPR121 cap = Adafruit_MPR121();

When you initialize the sensor, pass in the I2C address. It can range from 0x5A (default) to 0x5D

cap.begin(0x5A)

begin() returns true if the sensor was found on the I2C bus, and false if not.

Touch detection
99% of users will be perfectly happy just querying what sensors are currentlt touched. You can read all at

once with

cap.touched()

Which returns a 16 bit value. Each of the bottom 12 bits refers to one sensor. So if you want to test if the

#4 is touched, you can use

if (cap.touched() & (1 << 4)) { do something }

You can check its not touched with:

if (! (cap.touched() & (1 << 4)) ) { do something }

Raw Data
You can grab the current baseline and filtered data for each sensor with

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 14 of 31



filteredData(sensornumber);
baselineData(sensornumber);

It returns a 16-bit number which is the number of counts, there's no unit like "mg" or "capacitance". The

baseline is initialized to the current ambient readings when the sensor begin() is called - you can always

reinitialize by re-calling begin()! The baseline will drift a bit, that's normal! It is trying to compensate for

humidity and other environmental changes.

If you need to change the threshholds for touch detection, you can do that with

setThreshholds(uint8_t touch, uint8_t release)

By default, the touch threshhold is 12 counts, and the release is 6 counts. It's reset to these values

whenever you call begin() by the way.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 15 of 31



Python & CircuitPython
It's easy to use the MPR121 sensor with Python or CircuitPython and the Adafruit CircuitPython

MPR121 (https://adafru.it/v5e) module.  This module allows you to easily write Python code that reads

capacitive touch from the sensor.

You can use this sensor with any CircuitPython microcontroller board or with a computer that has GPIO

and Python thanks to Adafruit_Blinka, our CircuitPython-for-Python compatibility

library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring
First wire up a MPR121 to your board exactly as shown on the previous pages for Arduino. Here's an

example of wiring a Feather M0 to the sensor with I2C:

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 16 of 31

https://github.com/adafruit/Adafruit_CircuitPython_MPR121
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux


Board 3V to sensor VIN

Board GND to sensor GND

Board SCL to sensor SCL

Board SDA tosensor SDA

Here's an example of the MPR121 shield connected to a Metro M0:

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 17 of 31

https://learn.adafruit.com//assets/98926
https://learn.adafruit.com//assets/98927
https://learn.adafruit.com//assets/98928


Solder the headers onto the shield, then simply connect it to

your Metro M0.

� This shield may not work with the Metro M4! It is not designed to work with it and may cause

undesired behavior from the M4 microcontroller board. If you want to use this shield with

CircuitPython for a project, use the Metro M0!

Python Computer Wiring
Since there's dozens of Linux computers/boards you can use, we will show wiring for Raspberry Pi. For

other platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN). 

Here's the Raspberry Pi wired with I2C:

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 18 of 31

https://learn.adafruit.com//assets/82953
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux


Pi 3V3 to sensor VIN

Pi GND to sensor GND

Pi SCL to sensor SCL

Pi SDA to sensor SDA

You can also use the MPR121 Pi HAT with a Raspberry Pi:

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 19 of 31

https://learn.adafruit.com//assets/98929
https://learn.adafruit.com//assets/98930
https://learn.adafruit.com//assets/98931


Simply solder (https://adafru.it/drI) the header provided

with the HAT onto the HAT, and attach the HAT to the

Pi.

CircuitPython Installation of MPR121 Library
You'll need to install the Adafruit CircuitPython MPR121 (https://adafru.it/v5e) library on your CircuitPython

board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board.

Next you'll need to install the necessary libraries to use the

hardware. Carefully follow the steps to find and install these

libraries from Adafruit's CircuitPython library

bundle (https://adafru.it/uap).  Our CircuitPython starter guide

has a great page on how to install the library

bundle (https://adafru.it/ABU).

For non-Express boards like the Trinket M0 or Gemma M0,

you'll need to manually install the necessary libraries from the

bundle:

adafruit_mpr121.mpy

adafruit_bus_device

Before continuing, make sure your board's lib folder has the

adafruit_mpr121.mpy and adafruit_bus_device files and

folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 20 of 31

https://learn.adafruit.com//assets/83698
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://github.com/adafruit/Adafruit_CircuitPython_MPR121
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com//assets/83699
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl


Python Installation of MPR121 Library
You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This

may also require enabling I2C on your platform and verifying you are running Python 3. Since each

platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get

your computer ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-mpr121

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to

use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage
To demonstrate the usage of the sensor, we'll initialize it and read capacitive touch from the board's

Python REPL.

If you're using an I2C connection, run the following code to import the necessary modules and initialize

the I2C connection with the sensor:

import time
import board
import busio
import adafruit_mpr121
i2c = busio.I2C(board.SCL, board.SDA)
mpr121 = adafruit_mpr121.MPR121(i2c)

Now you're ready to read capacitive touch from the sensor. Use the following syntax to check a specific

pin.

mpr121[i].value - Return True  if the specified pin is being touched, otherwise returns False .

Use a value 0 to 11 for [i] and it will return a boolean True  or False  value depending on if the input is

currently being touched or not.

For example, to print when pin 0 is touched, run the following code, and then touch pin 0:

while True:
    if mpr121[0].value:
        print("Pin 0 touched!")

If you don't see any messages when you touch the inputs, you might need to ground yourself to the

board by touching the GND pin on the board with one finger and then touching the input pads with

another finger.  

Also make sure nothing is touching the pins when you first run the code, or else it might confuse the

MPR121's touch detection (unmount the board's file system from your operating system, then press the

board's reset button to reset the script and run it again with nothing touching the pins). The pins are

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 21 of 31

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux


calibrated on start-up, and will not react properly if you're touching the pins when the board starts up.

To print when any pin is touched, run the following code and then touch any capacitive touch pin:

while True:
    for i in range(12):
        if mpr121[i].value:
            print('Input {} touched!'.format(i))

The example doesn't show its usage, but if you want to check all of the inputs at once you can use

touched_pins . This function returns a 12 member tuple of the current state for each of the 12 pins. True  is

touched and False  is not touched. For example, to test if pin 0 and 11 are being touched with one call you

could run code like:

# Use touched_pins to get current state of all pins.
touched = mpr121.touched_pins
# Test if 0 and 11 are touched.
if touched[0] and touched[11]:
    print('Input 0 and 11 touched!')

That's all there is to using the MPR121 module with CircuitPython!

Full Example Code
Temporarily unable to load content:

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 22 of 31



Python Docs
Python Docs (https://adafru.it/Cbi)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 23 of 31

https://circuitpython.readthedocs.io/projects/mpr121/en/latest/


Raspberry Pi Virtual Keyboard
One great use for the MPR121 is as a capacitive touch keyboard, where pressing a touch input causes a

key to be pressed on a Raspberry Pi. This is kind of like a MaKey MaKey (http://adafru.it/1068), but built

right into the Pi using just the MPR121 and some special software.  You could for example configure the

MPR121 to act as a giant gamepad that controls games on the Raspberry Pi!

Wiring
To use the MPR121 as a virtual keyboard you'll first want to make sure you've followed the earlier pages in

this guide to connect the MPR121 to the Raspberry Pi and install the software.

Dependencies
Now open a terminal on the Raspberry Pi using SSH and execute the following commands to install a few

dependencies required by the virtual keyboard script:

sudo apt-get update
sudo apt-get install libudev-dev
sudo pip3 install python-uinput
sudo pip3 install adafruit-circuitpython-mpr121

Configuration
After the dependencies are installed navigate to the MPR121 library examples folder again.  Open the

pi_keyboard.py script in a text editor such as nano by executing:

nano pi_keyboard.py

Now scroll down to the key configuration near the top of the file:

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 24 of 31

https://www.adafruit.com/products/1068


KEY_MAPPING = {                                                                                                   
                                                                                                                  
                                           
    0: uinput.KEY_UP,                                                                                             
                                                                                                                  
                                           
    1: uinput.KEY_DOWN,                                                                                           
                                                                                                                  
                                           
    2: uinput.KEY_LEFT,                                                                                           
                                                                                                                  
                                           
    3: uinput.KEY_RIGHT,                                                                                          
                                                                                                                  
                                           
    4: uinput.KEY_B,                                                                                              
                                                                                                                  
                                           
    5: uinput.KEY_A,                                                                                              
                                                                                                                  
                                           
    6: uinput.KEY_ENTER,                                                                                          
                                                                                                                  
                                           
    7: uinput.KEY_SPACE,                                                                                          
                                                                                                                  
                                           
}

The KEY_MAPPING  variable is a dictionary that maps an input number on the MPR121 to a keyboard

button that will be sent when the input is pressed.

For example the code above configures input 0 to the UP key, input 1 to the DOWN key, input 2 to the

LEFT key, etc.

Adjust the inputs and key codes depending on your needs.  Most of the key codes are self explanatory

(i.e. the key code for the letter Q is uinput.KEY_Q ), but if you are unsure of an input you can find the name

of a keycode in the Linux input header here (https://adafru.it/eik).  Take the key name and add uinput.  to

the front of it to get the key code that should be in the configuration above.

If you need to add more inputs you can add them as new lines after input 7 above.  Be careful to make

sure each new line ends in a comma so the python dictionary is defined correctly.

After you've configured your key mapping save the file by pressing Ctrl-O and Enter, then quit by

pressing Ctrl-X.

Usage
Now run the program by executing:

sudo python3 pi_keyboard.py

After a moment you should see a message displayed that tells you to press Ctrl-C to quit the program.  If

you press inputs to the MPR121 they should send the keys you've configured to the Raspberry Pi!

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 25 of 31

http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/include/linux/input.h?v=2.6.11.8


Note that you won't see any output from the program when keys are pressed, unless you first enable

logging by un-commenting the following line:

# Uncomment to enable debug message logging (might slow down key detection).                                      
                                                                                                                  
                                           
logging.basicConfig(level=logging.DEBUG)

Quit the program by pressing Ctrl-C.

Launch In Background
Running the program by itself is great, but you probably want to run the program in the background while

a game or other application runs and takes input from the MPR121 key presses.  To do this you can launch

the program into the background by executing at the terminal:

sudo python keyboard.py &

You should see a response such as:

[1] 2251

This tells you the program is launched in the background and is currently running under the process ID

2251.  Try to remember the process ID as it will help you shut down the program later (but don't worry, I'll

show you how to shut down the program even if you forget the ID).

Now run a game or other program that relies on keyboard input. Try pressing inputs on the MPR121 and

you should see them register as keyboard presses!

Stop Background Process
To stop the background process you'll need to tell Linux to kill the python keyboard.py process that was

launched in the background earlier.  If you remember the process ID number you can skip below to the

kill command.  However if you forgot the process ID number you can find it by executing a command like

this to search all running processes for the keyboard.py script:

ps aux | grep keyboard.py

You should see a list of processes such as:

root      2251  0.5  0.3   5136  1488 pts/0    S    09:13   0:00 sudo python keyboard.py
root      2252 13.2  1.4  18700  5524 pts/0    Sl   09:13   0:00 python keyboard.py
pi        2294  0.0  0.2   4096   804 pts/0    S+   09:13   0:00 grep --color=auto keyboard.py

The first line with sudo python keyboard.py  is the background process that was launched earlier.  You can

kill this process by running:

sudo kill 2251

If you run the ps  command above again you should now see the Python keyboard.py processes have

terminated.

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 26 of 31



That's all there is to using the MPR121 virtual keyboard on a Raspberry Pi.  Have fun using the capacitive

touch buttons to control your own games and programs!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 27 of 31



Electrodes

Once you have the MPR121 breakout working you'll want to construct electrodes. These are large

conductive piece of copper, foil, paint, etc that will act as the "thing you touch"

Remember that electrodes must be electrically conductive! We suggest copper foil tape, conductive

fabrics, ITO, pyralux flex PCB, etc. We have tons of great conductive materials in our Materials category.

Some can be soldered to, others can be clipped to with alligator chips. (https://adafru.it/dKI)

Remember, it doesn't have to be metal to be electrically conductive. Other things that work are tap or salt

water, many kinda of food, even fruit!

We suggest soldering a wire to the electrode pad on the breakout and then soldering or clipping it to

whatever you want your electrode to be.

� The wires and electrodes themselves have a certain amount of 'inherent capacitcance'!

This means that whenever you attach an alligator clip, or a large piece of copper, or whatever your

electrode is, the capacitive sense chip will detect it and may think you're touching it. What you have to do

is recalibrate the sensor. The easiest way to do that is to restart the python sketch since calibration is

done when the chip is initialized. So, basically...

connect all your wires, electrodes, fruit, etc... then start up the capacitive touch program!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 28 of 31

https://www.adafruit.com/categories/190


Downloads
Datasheets & Files

MPR121 Datasheet (https://adafru.it/dKG)

EagleCAD PCB files on GitHub (https://adafru.it/pJa)

Fritzing object in Adafruit Fritzing library  (https://adafru.it/c7M)

STEMMA QT Revision Schematic and Fab Print

Original Breakout Board Schematic and Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 29 of 31

http://www.adafruit.com/datasheets/MPR121.pdf
https://github.com/adafruit/Adafruit-MPR121-PCB
https://github.com/adafruit/Fritzing-Library/


 

© Adafruit Industries https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-
tutorial Page 30 of 31



© Adafruit Industries Last Updated: 2021-01-26 02:47:51 PM EST Page 31 of 31


	Guide Contents
	Overview
	Pinouts
	Power Pins
	I2C Pins
	IRQ and ADDR Pins
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Arduino
	Download Adafruit_MPR121
	Load Demo
	Library Reference
	Touch detection
	Raw Data

	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of MPR121 Library
	Python Installation of MPR121 Library
	CircuitPython & Python Usage
	Full Example Code
	Python Docs
	Raspberry Pi Virtual Keyboard
	Wiring
	Dependencies
	Configuration
	Usage
	Launch In Background
	Stop Background Process

	Electrodes
	Downloads
	Datasheets & Files

	STEMMA QT Revision Schematic and Fab Print
	Original Breakout Board Schematic and Fab Print


