For high-performance sealing and strain relief, the perfect mate for a TE Connectivity molded part in a wiring application is a Raychem brand adapter.
TE offers a variety of adapters for applications in many industries, including aerospace, marine, and mass transit.
These adapters are:

- Available in many configurations to match applications
- Easy to install
- Ideal for high-reliability applications
- Kitted for customer convenience.

In this section we present Raychem brand spincoupling adapters and Tinel-Lock adapters.
The Tinel-Lock adapter utilizes Raychem brand Tinel rings to terminate the overall shield to the adapter. The Tinel ring is a low-profile, high-strength, shape-memory-alloy shieldtermination device available in many sizes to accommodate various entry sizes and shield configurations.
Tinel-Lock adapters are ideal for lightweight aerospace applications requiring repeated high-to-low temperature cycles.

Note: Users should independently evaluate the suitability of the product for their application. Before ordering, check with TE for most current data.

Table of Contents

Adapter Fundamentals

Definitions .6-2
Types of Adapters .6-3, 6-4
Adapter Selection Process .6-5

Adapter Selection

Adapter Code .6-6 to 6-15
Adapter Family .6-16
Part Number . 6-17, 6-18
Material and Finish . 6-19
Entry Size .6-20 to 6-25
Tinel-Lock Ring .6-26
CRES-Lock Bands/BND Adapters .6-27
Adapter Products
Code 18 MIL-C-5015 (MS3100)
Braided Adapters .6-28, 6-29
Solid Adapters . 6-30, 6-31
Spin-Coupling Adapters . 6-32, 6-33
Tinel-Lock Adapters .6-34 to 6-36
Code 21 MIL-C-26482 Series 1
Braided Adapters . 37
Solid Adapters . 38
Spin-Coupling Adapters . 6 .39
Tinel-Lock Adapters . 6-40, 6-41
CRES-Lock Adapters/BND Adapters . 6-42, 6-43
Code 32 MIL-C-22992
Braided Adapters .6-44, 6-45
Spin-Coupling Adapters .6-46
Tinel-Lock Adapters . 6-47
CRES-Lock Adapters/BND Adapters .6-48, 6-49
Code 40 MIL-C-38999 Series III and IV
Braided Adapters .6-50, 6-51
Solid Adapters .6-52
Spin-Coupling Adapters .6-53
Tinel-Lock Adapters . 6-54, 6-55
CRES-Lock Adapters/BND Adapters .6-56, 6-57
Code 41 MIL-C-38999 Series I and II
Braided Adapters . 6-58, 6-59
Solid Adapters .6-60
Spin-Coupling Adapters .6-61
Tinel-Lock Adapters . 6-62, 6-63
CRES-Lock Adapters/BND Adapters . 6-64, 6-65
Code 54 MIL-C-5015 (MS3400), MIL-C-26482 Series 2.
MIL-C-83723 Series I and III, MIL C-81703 Series III
Braided Adapters . 6-66, 6-67
Solid Adapters .6-68
Spin-Coupling Adapters .6-69
Tinel-Lock Adapters .6-70, 6-71
CRES-Lock Adapters/BND Adapters . 6-72, 6-73
Code 76 BS 9522 F0017 (Pattern 105)
Spin-Coupling Adapters .6-74
Tinel-Lock Adapters . 6-75, 6-76
Raychem FlexiScreen Backshells .6-77, 6-78
HexaShield High-Performance EMC/EMI Adapters 6-79 to 6-84
Raychem Spin Lock Variable Angle Backshell .6-85, 6-86 to change.

Definitions

Introduction

For high-performance sealing and strain relief, the perfect mate for a TE molded part in a wiring application is a Raychem brand adapter.
TE offers a variety of Raychem brand adapters for applications in many industries, including aerospace, marine, and mass transit.
These adapters are:

- Available in many configurations to match applications
- Easy to install
- Ideal for high-reliability applications
- Kitted for customer convenience.

In this section we present Raychem brand spincoupling adapters and Tinel-Lock adapters.
The Tinel-Lock adapter utilizes TE Tinel ring to terminate the overall shield to the adapter. The Tinel ring is a low-profile, highstrength, shape-memoryalloy shield-termination device available in many sizes to accommodate various entry sizes and shield configurations.
Tinel-Lock adapters are ideal for lightweight aerospace applications requiring repeated high-to-low temperature cycles.

Adapter Family

TE offers several families (or series) of Raychem adapter products. Each Raychem adapter part number begins with an alphanumeric prefix denoting the Raychem product family.

Entry Size

Entry size is the diameter of the hole through which the cable enters into the adapter. For example, the 08 entry is 12.7 [0.5]. Entry sizes are specified on braided and Tinel-Lock adapters only.

Ring Designator

This is a two-letter code that is part of each Tinel-Lock adapter part number. It specifies the size of the Tinel-Lock ring suited to specific types of cable braid.

Shell Size

This is the size of a connector as specified by the connector manufacturer. It is normally a two-digit number between 08 and 24, although certain connectors are obtainable in either larger or smaller sizes and some use letter codes.

Order Number

This is a two-digit number that specifies the size of the adapter that will mate to the corresponding shell size of a connector. The order number is frequently the same as the connector shell size, but should be checked by reference to the appropriate product page(s) in this catalog.

6-2

Catalog 1654025	Dimensions are shown for Revised 3-13
	refernce purposes only.
Specifications subject	

Types of Adapters

Adapter Types

TE offers several types of Raychem brand adapters for unscreened and screened termination systems. The choice is largely dependent upon the screening level required and the braid termination method.
The four principal adapter types are:
■ Solid (fixed)

- Spin-Coupling
- Braided
- Tinel-Lock

Solid Adapters (Fixed)

Solid adapters are designed for use where no access is required; for example, when potting is necessary or a lower space profile is needed.

These adapters have a boot groove to accommodate a lipped heat-shrinkable boot. Repair cannot be made without removing the boot.

Spin-Coupling Adapters

Spin-coupling adapters are two-part components that have a rotatable coupling nut and a grooved body designed to accommodate lipped-type heat-shrinkable boots.
Spin-couplings with an appropriate molded part are used for environmental protection and strain relief of unscreened cable terminations. Cable repairs can be made without damaging the boot.

Braided Adapters

These are spin-coupling adapters that have a short length of tubular braided shield attached to the rear of the adapter. The braid is constructed from tinned copper wire and has a handling characteristic that enables it to be pulled down onto a wide range of cable diameters. This allows a standard entry size to be used with most cable sizes.
The shield is terminated to the cable braid using a SolderSleeve device, which provides screen continuity through to the connector. Straight, 45°, and 90° configurations are available. to change.

Types of Adapters (Continued)

Tinel-Lock Adapters

This termination system consists of a modified spin-coupling adapter with a Tinel-Lock ring. The Tinel-Lock ring is made from a special shape memory metal that shrinks uniformly when heated (see Application Tooling, section 10).

The Tinel-Lock ring is used to terminate copper cable braid directly onto the rear of the adapter. The adapter entry size and ring designator must be selected to suit the cable diameter and braid type.
The resulting 360° termination withstands severe shock, vibration, temperature cycling, and corrosion. Straight, 45°, and 90° configurations are available.

Roll-back Repair with Adapters

More than 85 percent of cable repairs are made within 75 mm [3.0] of the connectors-usually because of a broken pin or wire. By reheating the heatshrinkable boot and unscrewing the adapter coupling nut, the boot can be "rolled back," providing access to the rear of the connector for repair. This technique is applicable to spin-coupling, shielded, and Tinel-Lock adapters.

Adapter Fundamentals

Adapter Selection Process

Step-by-Step Selection Process

Selecting an adapter for your application involves a five-step process:

1. From the connector number, determine:

- Order number (shell size)
■ Material
- Plating

2. Decide what adapter type you need for the connector.
3. Determine the connector code for that adapter type. (Use Table A, B, or C on pages 6-6 to 6-15).
4. Determine the adapter family for that connector code. (Use Table D on page 6-16).
5. Build the adapter part number. (See page 6-17).
The chart below will lead you through these steps.

Adapter Selection Flowchart	Decide on Adapter Type		
	Select Adapter Code		
	Select Adapter Family		
$\underset{\text { Tinel }}{V}$	Shielded	Solid or Spin-Coupling	CRES-Lock Band
- Choose configuration	- Choose configuration	■ Select options	■ Choose configuration
■ Determine entry size	Determine entry size (based on cable diameter)	■ Select molded part	■ Determine entry size
			■ Select options
Choose Tinel-Lock ring depending on braid (Al or Bl ?)	Select options ■ Select molded part		

Table A. Adapter Code by Military Part Number

Selecting the Adapter Code

Tables A, B, and C that follow provide adapter codes for typical connectors.
If you know the military part number for the connector, you can obtain the adapter code from Table A that begins on this page.
If you know the manufacturer's prefix for the connector, you can obtain the adapter code from Table B that begins on page 6-10.
If you know the connector specification, you can obtain the adapter code from Table C on page 6-15

Adapter Code

Military Part No.	Connector Specification	Series/Class	Adapter Code
D38999/20	MIL-C-38999	Series III: Class C, F, K, W	40
D38999/24	MIL-C-38999	Series III: Class C, F, K, W	40
D38999/26	MIL-C-38999	Series III: Class C, F, K, W	40
D38999/40	MIL-C-38999	Series IV: Class C, F, W	40
D38999/42	MIL-C-38999	Series IV: Class C, F, W	40
D38999/44	MIL-C-38999	Series IV: Class C, F, W	Contact TE
D38999/46	MIL-C-38999	Series IV: Class F, W	40
D38999/47	MIL-C-38999	Series IV: Class C, W	40
M28840/10	MIL-C-28840	Class D, DS	30
M28840/11	MIL-C-28840	Class D, DS	30
M28840/14	MIL-C-28840	Class D, DS	30
M28840/16	MIL-C-28840	Class D, DS	30
M81511/01	MIL-C-81511	Series 2: Class A, E, F	61
M81511/03	MIL-C-81511	Series 2: Class A, E, F	61
M81511/05	MIL-C-81511	Series 2: Class A, E, F	61
M81511/06	MIL-C-81511	Series 2: Class A, E, F	61
M81511/21	MIL-C-81511	Series 1: Class A, E, F	61
M81511/23	MIL-C-81511	Series 1: Class A, E, F	61
M81511/25	MIL-C-81511	Series 1: Class A, E, F	61
M81511/26	MIL-C-81511	Series 1: Class A, E, F	61
M81511/31	MIL-C-81511	Series 2: Class C, P, T	61
M81511/32	MIL-C-81511	Series 2: Class C, P, T	61
M81511/33	MIL-C-81511	Series 2: Class C, P, T	61
M81511/34	MIL-C-81511	Series 2: Class C, P, T	61
M81511/35	MIL-C-81511	Series 1: Class C, P, T	61
M81511/36	MIL-C-81511	Series 1: Class C, P, T	61
M81511/37	MIL-C-81511	Series 1: Class C, P, T	61
M81511/38	MIL-C-81511	Series 1: Class C, P, T	61
M81511/41	MIL-C-81511	Series 3: Class A, E, F	61
M81511/45	MIL-C-81511	Series 3: Class A, E, F	61
M81511/46	MIL-C-81511	Series 3: Class A, E, F	61
M81511/49	MIL-C-81511	Series 3: Class A, E, F	61
M81511/51	MIL-C-81511	Series 4: Class A, E, F	61
M81511/53	MIL-C-81511	Series 4: Class A, E, F	61
M81511/55	MIL-C-81511	Series 4: Class A, E, F	61
M81511/56	MIL-C-81511	Series 4: Class A, E, F	61
M83723/01	MIL-C-83723	Series I: Class A, G, R	54
M83723/02	MIL-C-83723	Series I: Class A, G, R	54
M83723/03	MIL-C-83723	Series I: Class A, G, R	54
M83723/04	MIL-C-83723	Series I: Class A, G, R	54
M83723/05	MIL-C-83723	Series I: Class A, G, R	54
M83723/06	MIL-C-83723	Series I: Class A, G, R	54
M83723/07	MIL-C-83723	Series I: Class A, G, R	54
M83723/08	MIL-C-83723	Series I: Class A, G, R	54
M83723/13	MIL-C-83723	Series I: Class A, G, R	54
M83723/14	MIL-C-83723	Series I: Class A, G, R	54
M83723/17	MIL-C-83723	Series II: Class A, G, R	19
M83723/18	MIL-C-83723	Series II: Class A, G, R	19
M83723/19	MIL-C-83723	Series II: Class A, G, R	19
M83723/20	MIL-C-83723	Series II: Class A, G, R	19
M83723/23	MIL-C-83723	Series II: Class A, G, R	19
M83723/24	MIL-C-83723	Series II: Class A, G, R	19
M83723/27	MIL-C-83723	Series II, Class A, G, R	19
M83723/36	MIL-C-83723	Series I: Class A, G, R	54
M83723/37	MIL-C-83723	Series I: Class A, G, R	54
M83723/38	MIL-C-83723	Series I: Class A, G, R	54
M83723/39	MIL-C-83723	Series I: Class A, G, R	54
M83723/40	MIL-C-83723	Series I: Class A, G, R	54
M83723/41	MIL-C-83723	Series I: Class A, G, R	54
M83723/42	MIL-C-83723	Series I: Class G, R	54
M83723/43	MIL-C-83723	Series I: Class G, R	54

Adapter Selection

Table A. Adapter Code by Military Part Number (Continued)	Adapter Code (Continued)			
	Military Part No	Connector Specification	Series/Class	Adapter Code
	M83723/48	MIL-C-83723	Series I: Class G, R	54
	M83723/49	MIL-C-83723	Series I: Class G, R	54
	M83723/52	MIL-C-83723	Series II: Class K	19
	M83723/53	MIL-C-83723	Series II: Class K	19
	M83723/65	MIL-C-83723	Series III: Class H	54
	M83723/66	MIL-C-83723	Series III: Class A, G, R	54
	M83723/67	MIL-C-83723	Series III: Class A, G, R	54
	M83723/68	MIL-C-83723	Series III: Class A, G, R	54
	M83723/69	MIL-C-83723	Series III: Class A, G, R	54
	M83723/71	MIL-C-83723	Series III: Class A, G, R	54
	M83723/72	MIL-C-83723	Series III: Class A, G, R	54
	M83723/73	MIL-C-83723	Series III: Class A, G, R	54
	M83723/74	MIL-C-83723	Series III: Class A, G, R	54
	M83723/75	MIL-C-83723	Series III: Class A, G, R	54
	M83723/76	MIL-C-83723	Series III: Class A, G, R	54
	M83723/77	MIL-C-83723	Series III: Class G, R	54
	M83723/78	MIL-C-83723	Series III: Class G, R	54
	M83723/82	MIL-C-83723	Series III: Class A, G, K, R, S	54
	M83723/83	MIL-C-83723	Series III: Class A, G, K, R, S	54
	M83723/84	MIL-C-83723	Series III: Class A, G, K, R, S	54
	M83723/85	MIL-C-83723	Series III: Class A, G, K, R, S	54
	M83723/86	MIL-C-83723	Series III: Class A, G, K, R	54
	M83723/87	MIL-C-83723	Series III: Class A, G, K, R	54
	M83723/91	MIL-C-83723	Series III: Class G, R, W	54
	M83723/92	MIL-C-83723	Series III: Class G, R, W	54
	M83723/95	MIL-C-83723	Series III: Class A, G, K, R	54
	M83723/96	MIL-C-83723	Series III: Class A, G, K, R	54
	M83723/97	MIL-C-83723	Series III: Class S	54
	M83723/98	MIL-C-83723	Series III: Class S	54
	MS17343	MIL-C-22992	Class C, J, R	32
	MS17344	MIL-C-22992	Class C, J, R	32
	MS17345	MIL-C-22992	Class C, J, R	32
	MS17346	MIL-C-22992	Class C, R	32
	MS17347	MIL-C-22992	Class C, J, R	32
	MS17348	MIL-C-22992	Class C, R	32
	MS24264	MIL-C-26500 (AL)	Class F, G, R Type B\&T aluminum shell	51
	MS24264	MIL-C-26500 (SST)	Class E Type B\&T stainless steel shell	52
	MS24265	MIL-C-26500 (AL)	Class F, G, R Type B\&T aluminum shell	51
	MS24265	MIL-C-26500 (SST)	Class E Type B\&T stainless steel shell	52
	MS24266	MIL-C-26500 (SST)	Class E Type B\&T stainless steel shell	52
	MS24266	MIL-C-26500 (AL)	Class F, G, R Type B\&T aluminum shell	51
	MS27466	MIL-C-38999	Series I: Class E, P, T	41
	MS27467	MIL-C-38999	Series I: Class E, P, T	41
	MS27468	MIL-C-38999	Series I: Class E, P, T	41
	MS27469	MIL-C-38999	Series I: Class Y	Contact TE
	MS27472	MIL-C-38999	Series II: Class T	41
	MS27473	MIL-C-38999	Series II: Class E, P, T	41
	MS27474	MIL-C-38999	Series II: Class T	41
	MS27475	MIL-C-38999	Series II: Class Y	Contact TE
	MS27479	MIL-C-38999	Series II: Class T	41
	MS27480	MIL-C-38999	Series II: Class E, T	41
	MS27481	MIL-C-38999	Series II: Class T	41
	MS27482	MIL-C-38999	Series II: Class Y	Contact TE
	MS27484	MIL-C-38999	Series II: Class E, T	41
	MS27497	MIL-C-38999	Series II: Class T	41

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters USA: +1 8005226752 unless otherwise specified.

Adapter Selection

Table A. Adapter Code by Military Part Number
(Continued)
Adapter Code (Continued)

Adapter Selection
able A. Adapter Code by Military Part Number
(Continued)

Adapter Code (Continued)			
Military Part No.	Connector Specification	Series/Class	Adapter Code
NAS1643	MIL-C-81703	Series 3:	54
NAS1650	MIL-C-81703	Series 3:	54
NAS1651	MIL-C-81703	Series 3:	54
NAS1652	MIL-C-81703	Series 3:	54
NAS1653	MIL-C-81703	Series 3:	54
NAS1692	MIL-C-81703	Series 3:	54
NAS1693	MIL-C-81703	Series 3:	54
NAS1694	MIL-C-81703	Series 3:	54
NAS1799	MIL-C-81703	Series 3:	54
NAS1701	MIL-C-81703	Series 3:	54
NAS1702	MIL-C-81703	MIL-C-81703	Series 3:

Table B. Adapter Code by Manufacturer's Prefix

Adapter Code (Continued)

Manufacturer's Prefix	Manufacturer ${ }^{6}$	Connector Specification	Series/Class	Adapter Code
10-214	Bendix	MIL-C-5015	MS3100 Class A, E, R	18
10-475	Bendix	40M38277	-	41
10-720	Bendix	MIL-C-5015	MS3100 Class A, E, R	18
118	Amphenol	MIL-C-26482	Series 2	54
149	Deutsch	MIL-C-81703	Series 1	71
162GB	Amphenol	MIL-C-26482	Series 1	76, 77^{4}
164GB	Amphenol	BS9522 F0023	-	Contact TE
165	Amphenol	None	-	Contact TE
172	Amphenol	MIL-C-5015	-	Contact TE
179	Amphenol	MIL-C-5015	-	Contact TE
182	Amphenol	None	-	Contact TE
246	Amphenol	MIL-C-5015	MS3100 Class E, F, R	18
251	Cannon	MIL-C-26482	Series 1	21
2PPN	Plessey	MIL-C-26482	Series 1	21
2PPN-07	Plessey	MIL-C-26482	Series 1	24^{3}
2PSN	Plessey	BS9522 F0017	Patt 105	76, 77^{4}
2PSN-07	Plessey	MIL-C-26482	Series 1	24^{3}
348	Amphenol	MIL-C-81511	Series 1 and 2	61
381	Deutsch	40M39569	-	54
418	Amphenol	MIL-C-38999	Series I and II	41
45/PT	Socapex	MIL-C-26482	Series 1	21
450	Deutsch	MIL-C-26482	Series 1	21
451	Socapex	PRL 54125	-	21 or 24^{3}
460	Deutsch	MIL-C-26482	Series 1	21
48	Amphenol	MIL-C-26500	Alum Class F, G, R	51
486	Amphenol	MIL-C-26482	Series 2	54
518	Amphenol	MIL-C-83723	Series III	54
5MS	FKI ${ }^{2}$	Def. Stan. 59-35	Patt 121A	75
602	Amphenol	Def. Stan. 59-56	Patt 602	54
602GB	Amphenol	Def. Stan. 59-56	Patt 602	54
62AB-14	Amphenol	MIL-C-26482	Series 1	Contact TE
62GB	Amphenol	Def. Stan. 59-35	Patt 105	76, 77^{4}
650	Schaltbau	VG 95329	-	61
652	Amphenol	LN 29504	-	54
652	UMD	PRL 54125	-	21 or 24^{3}
674	Schaltbau	VG 95328	-	Contact TE
675	Schaltbau	VG 95328	-	Contact TE
679	Schaltbau	VG 95329	-	61
69	Amphenol	MIL-C-5015	MS3100 Class E, F, R	18
71	Bendix	MIL-C-5015	MS3100 Class A, E, R	18
711	Amphenol	BS9522 F0042	-	54
801	Amphenol	None	-	54
837	Deutsch	MIL-C-83723	Series III	54
83723	Souriau	MIL-C-83723	Series III	54
83730	Deutsch	MIL-C-83723	Series III	54
845	Souriau	NFL 54120	-	Contact TE
847	Souriau	NFL 54120	-	Contact TE
850	Souriau	MIL-C-26482	Series 1	21
851	Souriau	MIL-C-26482	Series 1	21
8520	Souriau	MIL-C-26482	Series 2	54
8525	Souriau	NAS 1599	-	54
8526	Souriau	PAN 6432-1	-	54
853	Souriau	MIL-C-83723	Series III	54
857	Souriau	LN 29728	-	54
89	Souriau	NFL 54140	-	54

${ }^{2}$ FKI was previously Thorn.
${ }^{3}$ Code 24 connectors have an internal accessory thread.
${ }^{4}$ Code 77 braided version.

Adapter Selection
B. Adapter Code by Manufacturer's Prefix
(Continued)
Adapter Code (Continued)

Manufacturer's Prefix	Manufacturer ${ }^{6}$	Connector Specification	Series/Class	Adapter Code
891	Souriau	MIL-C-5015	Class K	Contact TE
892	Souriau	MIL-C-5015	Class K	Contact TE
8LT	Souriau	MIL-C-38999	Series I	41
8ST	Souriau	VG 96912	Series 1	47
8T	Souriau	MIL-C-38999	Series II	41
9-815	Deutsch	MIL-C-81511	Series 3 and 4	61
91-483	Bendix	MIL-C-26482	Series 2	54
944	Matrix	MIL-C-5015	MS3400 Class L, U, W	54
951	Deutsch	LN 29500	-	Contact TE
97	Amphenol	MIL-C-5015	MS3100 Class A	18
981	Matrix	MIL-C-5015	MS3400	54
A815	Deutsch	MIL-C-81511	Series 3	61
AA70	Deutsch	Not known	-	71
AB05	AB Elec	Def. Stan. 59-35	Patt 105	76, 77^{4}
AB06	AB Elec	Def. Stan. 59-35	Patt 105	76, 77^{4}
ABB	AB Elec	BS9522 F0032	-	78
ABJ	AB Elec	MIL-C-38999	Series I and II	41
ADS	Deutsch	MIL-C-81703	-	71
AFD	Deutsch	MIL-C-83723	Series I	54
AFD5	Deutsch	MIL-C-26482	Series 2	54
B815	Deutsch	MIL-C-81511	Series 4	61
BE	Pyle	MIL-C-83723	Series III	54
BG	Bendix	MIL-C-26482	Series I	21
BL	G\&H Tech	MIL-C-38999	Series IV	40
BL	TRW	MIL-C-38999	Series IV	40
BT	Burndy	MIL-C-26482	Series 1	21
BT	Pyle	MIL-C-83723	Series III	54
BTK	Deutsch	MIL-C-26482	Series 1	21
BY1	Pyle	MIL-C-83723	Series III	54
C48	TRW	MIL-C-26500	Aluminum	51
CA (Bayonet)	Cannon	VG 95234	-	58
CA3101	Cannon	MIL-C-5015	MS3100 class E, F, R	18
CA3101	Cannon	MIL-C-5015	MS3100 Class A	18
CA3101KE	Cannon	MIL-C-5015	Class K	Contact TE
CA3106	Cannon	MS3106A	-	58
CIR	VEAM	VG 95234	-	64***, 66 ${ }^{* *}$, $78{ }^{*}$
CN0930	TRW	MIL-C-83723	Series III	54
CT	Burndy	MIL-C-38999	Series II	41
CT	Plessey	MIL-C-38999	Series II	41
CV-R	Cannon	MIL-C-83723	Series II	19
CV34	Cannon	MIL-C-5015	MS3400 Class L, U, W	54
CVA	Cannon	MIL-C-83723	Series II	19
CWL	Cannon	None	-	31
CWLD	Cannon	MIL-C-22992	Class C, J, R	32
D817	Deutsch	MIL-C-81703	Series 3	54
DA	Deutsch	None	-	71
DBAD	Deutsch	MIL-C-81703	-	Contact TE
DBAS	Deutsch	MIL-C-81703	Series 3	54
DD	Deutsch	MIL-C-81703	Series 2	71
DFE	Deutsch	MIL-C-26482	Series 2	54
DKM	Deutsch	VG 95328	-	Contact TE
DL	Deutsch	MIL-C-83723	Series III	54
DM	Deutsch	MIL-C-81703	Series 1	71
DPX	Cannon		-	Contact TE
DS	Deutsch	None	-	71
DTS	Deutsch	MIL-C-38999	Series III	40

* AB connectors only
** VEAM standard
***VEAM panel mount
${ }^{4}$ Code 77 braided version.

Table B. Adapter Code by Manufacturer's Prefix
(Continued)
Adapter Code (Continued)

Manufacturer's Prefix	Manufacturer ${ }^{6}$	Connector Specification	Series/Class	Adapter Code
EA	Pyle	None	-	54
EB	Pyle	NAS 1599	-	54
EEG	Pyle	MIL-C-83723	Series I	54
ES	Pyle	None	-	54
ESC004	Various	MIL-C-5015	Class K	Contact TE
ET	Pyle	NAS 1599	-	54
FC	Flight	MIL-C-5015	Rev E only	Contact TE
FDBA	Deutsch	LN 29504	-	54
FF	Flight	MIL-C-5015	MS3400 Class D, L, U, W	54
FH	Flight	MIL-C-83723	Series III	54
FPK	Pyle	MIL-C-26500	Class K	52
FP5K	Pyle	MIL-C-26500	Class K	Contact TE
FYL	Pyle	MIL-C-26500	Class K	52
G	Burndy	None	-	21
GC-E	General	MIL-C-26482	Series 1	21
GTA	Hughes	MIL-C-28840	-	30
GTC06	Amphenol	-	-	64
HAN	Deutsch	MIL-C-5015	MS3100 Class E, KE	Contact TE
HD	SAE	MIL-C-28840	-	30
HTMAS	Cannon	MIL-C-5015	Class K	Contact TE
HTMF	Cannon	MIL-C-83723	Series III: Class K	54
HTMS	AB Elec	MVEE 695	-	75
JT	Amphenol	MIL-C-38999	Series II	41
JT	Bendix/FKI	MIL-C-38999	Series II	41
JT	Socapex	MIL-C-38999	Series II	41
JT-R	FKI ${ }^{2}$	PAN 6433-1	-	41
JT-R	Teldix	PAN 6433-1	-	41
KFS	Cannon	MIL-C-28840	-	30
KJ	Cannon	MIL-C-38999	Series II	41
KJA	Cannon	MIL-C-38999	Series III	40
KJJ	Cannon	MIL-C-38999	Series II	Contact TE
KJJL	Cannon	MIL-C-38999	Series I	Contact TE
KJL	Cannon	MIL-C-38999	Series I	41
KPSE	Cannon	MIL-C-26482	Series 1	21
KPT	Cannon	MIL-C-26482	Series 1	21
KV-R	Cannon	NAS 1599	-	54
L	Burndy	MIL-C-26482	Series 1	21
LJT	Bendix	MIL-C-38999	Series I	41
LJT	Socapex	MIL-C-38999	Series I	41
LL3	Deutsch	MIL-C-81511	-	61
LL5/6	Deutsch	BS9540 F0001	Patt 602	Contact TE
LMB	Litton-Veam	Def. Stan. 59-35	Patt 121A	75
LPT	Deutsch	MIL-C-26482	Series 1	21
LS	Pyle	None	-	54
LTT	FKI ${ }^{2}$	BS9522 F0029	Patt 616	41
M-T	Burndy	MIL-C-26482	Series 1	21
M723	Matrix	MIL-C-83723	Series II	19
MB1	Matrix	MIL-C-26482	Series 2	54
MB3	Matrix	MIL-C-83723	Series III	54
MB9	Matrix	MIL-C-38999	Series I and II	41
MD	Matrix	MIL-C-26482	Series 2	54
MDR	Deutsch	None	-	71
MF	Cannon	MIL-C-83723	Series III	54
MK12	Plessey	Def. Stan. 59-35	Patt 603	76, 77^{4}
MK18	Plessey	Def. Stan. 59-35	Patt 608	79^{5}
MK38	Plessey	MIL-C-38999	Series I	41

${ }^{2}$ FKI was previously Thorn.
${ }^{4}$ Code 77 braided version.
${ }^{5}$ Free connectors only.

Adapter Selection

Table B. Adapter Code by Manufacturer's Prefix
(Continued)
Adapter Code (Continued)

Manufacturer's Prefix	Manufacturer ${ }^{6}$	Connector Specification	Series/Class	Adapter Code
MK25	Plessey	MIL-C-38999	Series II	41
MK7	Plessey	DEF 5325-2	Patt 104	Contact TE
MK8	Plessey	Def. Stan. 59-35	Patt 105	76, 77^{4}
ML94	Matrix	MIL-C-38999	Series IV	40
MQ3	Matrix	MIL-C-83723	Series III	54
MT3	Matrix	MIL-C-83723	Series III	54
MT93	Matrix	MIL-C-38999	Series III	40
P5	Plessey	NFL 54125	-	76 or $24^{3}, 77^{4}$
PAT104D	AB Elec	Def. Stan. 59-35	Patt 104	Contact TE
PT	Socapex	MIL-C-26482	Series 1	76, 77^{4}
PT	Teldix	MIL-C-26482	Series 1	76, 77^{4}
PT-CE	Bendix	None	-	22
PT-G	Teldix	VG 95328	-	Contact TE
PT-SE	Socapex	MIL-C-26482	Series 1	76, 77^{4}
PT-SE	Teldix	MIL-C-26482	Series 1	76, 77^{4}
PT07	Bendix	MIL-C-26482	Series 1	24^{3}
PT07SE	FKI ${ }^{2}$	MIL-C-26482	Series 1	24^{3}
PT33	FKI^{2}	BS9522 F0017	Patt 105	76, 77^{4}
PT33SE	FKI^{2}	BS9522 N0001	Patt 603	76, 77^{4}
PT44	FKI^{2}	BS9522 F0017	Patt 105	76, 77^{4}
PT44SE	FKI ${ }^{2}$	BS9522 N0001	Patt 603	76, 77^{4}
PT55	FKI^{2}	BS9522 F0017	Patt 105	76, 77^{4}
PT55SE	FKI^{2}	BS9522 N0001	Patt 603	76, 77^{4}
PT77	FKI ${ }^{2}$	BS9522 F0017	Patt 105	$76,77^{4}$
PT77SE	FKI^{2}	BS9522 N0001	Patt 603	76, $77{ }^{4}$
PTG55	FKI^{2}	BS9522 F0017	Patt 105	76, 77^{4}
PTG55SE	FKI ${ }^{2}$	BS9522 N0001	Patt 603	76, 77^{4}
PTS-DR	Bendix	MIL-C-26482	Series 2	54
PV7	Cannon	MIL-C-26482	Series 2	54
PVJ	Cannon	MIL-C-26482	Series 2	54
PVW	Cannon	-	-	54
PVX	Cannon	Def. Stan. 59-56	Patt 602	54
QDP	Bendix	None	-	32
QRP	AB Elec	-	-	78
QWL	Bendix	None	-	31
QWLD	Bendix	MIL-C-22992	Class C, J, R	32
RD1	Raychem	MIS-20065	-	54
RR	Deutsch	Def. Stan. 59-56	Patt 602	54
RR20	Deutsch	PAN 6432-2	-	54
RR50	Deutsch	PAN 6432-1	-	54
RR70	Deutsch	PAN 6432-2	-	54
RSM	Deutsch	None	-	71
RTK	Deutsch	None	-	71
SA	SAE	MIL-C-5015	MS3400	54
SB	Bendix	MIL-C-5015	Class E	18
SB-104	AB Elec	Def. Stan. 59-35	Patt 104	Contact TE
SB-M4	AB Elec	Def. Stan. 59-35	Patt 104	Contact TE
SB-MS	AB	BS9522 F0030	-	75
SC	Bendix	MIL-C-5015	MS3100 Class A	18
SCB	SICEM	VG 95234	-	Contact TE
SF	Bendix	MIL-C-5015	MS3100 Class E	18
SG	Bendix	MIL-C-5015	MS3100 Class E	18
SJT	Various	PAN 6433-2	-	47
SJT07	Various	PAN 6433-2	-	Contact TE
SLPT	Deutsch	MIL-C-26482	Series 1	76, 77^{4}

${ }^{2}$ FKI was previously Thorn.
${ }^{3}$ Code 24 connectors have an internal accessory thread.
Code 77 braided version

Table B. Adapter Code by Manufacturer's Prefix
(Continued)

${ }^{1}$ May be a number or letter depending upon connector style.
${ }^{2}$ FKI was previously Thorn.
${ }^{3}$ Code 24 connectors have an internal accessory thread.
${ }^{4}$ Code 77 braided version.
${ }^{5}$ Free connectors only.
Some of the connector manufacturers names may have changed and may not exist.
They are listed here to assist users who know them as listed names.

Adapter Selection

Table C. Adapter Code by Connector Specification

Adapter Code (Continued)

Connector Specification	Series/Class	Adapter Code
40M38277	-	41
40M39569	-	54
BS9520	G0001	41
BS9520	G0002	41
BS9520	G0003	40
BS9522 F0012	Patt 615	47
BS9522 F0014	Patt 104	Contact TE
BS9522 F0017	Patt 105	76
BS9522 F0020	Patt 608	79^{2}
BS9522 F0023	-	Contact TE
BS9522 F0029	Patt 616	41
BS9522 F0030	Patt 121A	75
BS9522 F0032	Patt 121B	78
BS9522 F0042	-	54
BS9522 N0001	Patt 603	76
BS9522 N0003	Patt 614	41
BS9540 F0001	Patt 602	54
LN 29500	-	21
LN 29504	-	54
LN 29728	-	54
LN 29729	-	47
MIL-C-22992	Class C, J, R	32
MIL-C-26482	Series 1	21, $24{ }^{1}$
MIL-C-26482	Series 2	54
MIL-C-26500	Aluminum, Class F, G, R	51
MIL-C-26500	Stainless steel, Class E, K	52
MIL-C-28840	Class D	30
MIL-C-38999	Series I and II	41
MIL-C-38999	Series III and IV	40
MIL-C-5015	MS3400	54
MIL-C-5015	MS3100	18, 15 (with endbell)
MIL-C-5015	5MS	75
MIL-C-81511	Series 1, 2, 3, and 4	61
MIL-C-81703	Series 1, 2	71
MIL-C-81703	Series 3	54
MIL-C-83723	Series II	19
MIL-C-83723	Series I and III	54
MIL-C-85049/59	-	32
MIL-C-85049/60	-	54
MIL-C-85049/62	-	41
MIL-C-85049/69	-	40
MIS-20065	-	54
MVEE	5MS	75
NAS 1599	-	54
NFL 54120	-	Contact TE
NFL 54140	-	54
PAN 6432-1	-	54
PAN 6432-2	-	54
PAN 6433-1	-	41
PAN 6433-2	-	47
PRL 54125	-	21, 24^{1}
VG 95234	-	64***, 66 ${ }^{* *}$, 78*
VG 95328	-	Contact TE
VG 95329	-	61
VG 96912	Series 2	41
VG 96912	Series 1	47

${ }^{1}$ Code 24 connectors have an internal accessory thread.
${ }^{2}$ Free connectors only.

* AB connectors only
** VEAM standard
***VEAM panel mount

Catalog 1654025

Adapter Family

Selecting the Adapter Family

Using Table D below and the adapter code you selected in Table A, B, or C, select the adapter family for the adapter type you chose
(spin-coupling or
Tinel-Lock).
With the alphanumeric
prefix for that family you can
then build the part number
for your TE adapter.

Table D. Identification of
Adapter Family Prefix by
Adapter Code

TE Connector Code	Boot Adapter		Shielded Adapter			Tinel-Lock Adapter Straight, 45°, and 90°	CRES-Lock Band Strap Adapter
	Solid (Fixed)	Spin-Coupling	Straight	45°	90°		
15	210M5	202M5	219M0	219M1	219M2	TXR 15	-
18	218M5	218M6	218M7	218M8	218M9	TXR 18	BND 18
19	201M7	201M4	-	-	-	-	-
21	203M6	203M9	206M0	206M1	206M2zx	TXR 21	BND 21
24	208M5	208M6	216M0	216M1	206M5	-	-
30	211M8	211M9	211M5	211M6	211M7	TXR 30	-
32	-	204M3	207M3	212M4	212M5	TXR 32	BND 32
40	209M3	209M4	208M7	208M8	208M9	TXR 40	BND 40
41	202M1	202M2	204M0	204M1	204M2	TXR 41	BND 41
47	202M8	202M7	210M0	210M1	210M2	TXR 47	BND 47
51	207M4	205M5	207M0	207M1	207M2	TXR 51	-
52	208M3	209M6	208M0	208M1	208M2	TXR 52	-
54	201M9	201M1	203M0	203M1	203M2	TXR 54	BND 54
61	202M3	202M4	205M0	205M1	205M2	TXR 61	-
71	203M5	202M9	217M0	217M1	217M2	TXR 71	-
75	228M5	228M7	227M0	227M1	227M2	TXR 75	-
76	225M6	225M5	-	-	-	TXR 76	-
77	228M6	228M8	228M0	228M1	228M2	-	-
78	225M4	225M3	225M0	225M1	225M2	TXR 78	-
79	-	229M3	229M1	229M2	229M0	TXR 79	-
80	215M4	213M5	213M6	213M7	213M8	TXR 80	-
81	214M3	214M4	214M5	214M6	214M7	TXR 81	-

Part Number

Having Selected the Right Adapter Type and Adapter Family, You Can Now Construct a Part Number for the Adapter.

1. Start with the alphanumeric prefix you selected in Table D. This will be the basis of your part number.	- Order number ■ Manufacturer's prefix - Material - Finish	Using the right codes and designators helps ensure that the adapter you select will meet the application requirements.
2. Add to the prefix the codes and designators required for your adapter type and application. These may include several or all of the following:	■ Entry size ■ Ring designator ■ Option codes	To determine which codes and designators you will need, use the Part numbering system shown below. To select the right codes and designators, turn to the pages that follow.

Part Numbering System

- Standard braid length (6") requires no modification code.
- Nonstandard braid length is stated in inches ($12=12$ " length)
*For full range of options, consult TE.
Adapter family
Material (A - aluminium alloy; S = stainless steel)
Finish
Angle ($00=$ straight; $45=45^{\circ} ; 90=90^{\circ}$) \qquad
18 only)
Order number
\square
Entry size
Ring designator
Options*
*For full range of options, consult TE.

Part Number (Continued)

CRES-Lock Band
Strap Adapters Part Numbering System

Notes:

1. See Drawings BND-1225S or BND-XX25S for information on bands. Adapter dimensions for "A" designation may be different than those listed in this catalog. Contact Tyco Electronics for Specification Control Drawing (SCD) for these adapters.
2. Alternative equivalent material specifications to those shown may be supplied at Tyco Electronics' discretion.
3. For standard entry sizes see relevant specification control drawing. For entry sizes larger than standard (Type II Adapters), see sheets 3 and 4.

D - Drain holes modificationF - Internal abrasion resistant coatingH - Helical conduit threadJ - Chain attachment assemblyL - Lock wire holes manufacturer's optionInclude mod if requiredStandard on codes 40 and 54Optional O-Ring materialOmit for standard silicone (ZZ-R-765, grade 70: S59)C - Neoprene per AMS3209U - Fluorosilicone per MIL-R-25988, class 1N - Nitrile (Buna N) per AMS3215V - Fluorocarbon per MIL-R-83248, class 1P - Pre-coiled bandstrap option(See drawings BND-1225P or BND-XX25P)S - Self-locking spin nut

Band Strap Adapter Modification Option Field (Omit if not required)

Material and Finish

Selecting the Material and Finish

To ensure optimum compatibility, select the adapter material and finish to match those of the connector.

Most circular connectors are manufactured from aluminum with a cadmium finish.

Material Codes

Material Description	Material Code Solid, Spin-Coupling, and Shielded Adapters	Tinel-Lock Adapters	Typical Applications
Aluminum alloy	19	A	Standard material for normal applications
Stainless steel	62	S	Corrosion-resistant and high-temperature (firewall) applications
Nickel aluminum bronze	01	B	Exposed marine environments
*Other materials available upon request.			

Finish Codes

Finish* Description	Color	Finish Code	Typical Applications
Cadmium, per QQ-P-416, Type II, Class 3 over electroless nickel (500-hour salt-spray-resistant finish)	Olive drab	B	Corrosion resistance for exposed environments
Electroless nickel, per AMS-C-26074, Class 4, Grade B	Bright Silver	C	High conductivity for optimum screening performance
Anodized, hard, per MIL-A-8625, Type III, Class 2	Black	G	Nonconductive finish for aluminum adapters
Passivated, per QQ-P-35 or MIL-S-5002	-	J	Surface treatment for corrosion-resistant steel
Unplated, shotblast	Black	Z	Nonreflective finish for nickel aluminum bronze adapters
Zinc Nickel		Cadmium free plating	
*Other finishes available upon request.			

Catalog 1654025	Dimensions are shown for	Dimensions are in millimeters.	USA: +18005226752	For additional support numbers
Revised 3-13	reference purposes only.	unless otherwise specified.	Asia Pacific: +8604008206015 please visit www.te.com	
www.te.com	Specifications subject			
to change.				

Entry Size

Determining the Wire Bundle Size

The entry size of an adapter is based on the size of the wire bundle. If you don't know the size of the wire bundle, measure a prototype or calculate the size.

Calculation of the wire bundle size is based on three values:

■ Cable outside diameter (COD)
■ Cable jacket thickness ■ Jacketed cable diameter Instructions for calculating these values follow.

COD Calculation

To calculate the cable outside diameter, first determine whether the wires in the bundle are of the same size or of different sizes.

COD Calculation for Wires of the Same Size

For bundles with wires that are all of the same size, follow these steps:

1. Determine the number of wires in the wire bundle.
2. Find the multiplication factor for that number in Table E shown on the next page.
3. Find the wire diameter in the Wire and Cable section (Section 9) of this catalog.
4. Multiply the wire diameter (from Step 3) by the multiplication factor (from Step 2) as shown below.

Formula: D = Fd

```
Where:
D = Bundle diameter
F = Multiplication factor
d = Wire diameter
```

Example: A bundle of wires containing $27 \times 44 A 0111-22$
$F=6.00$ (the multiplication
factor for 27 wires from Table E)
$d=1.19 \mathrm{~mm}(.049 \mathrm{in})^{\star}$
$\mathrm{D}=6 \times 1.19 \mathrm{~mm}(6 \times .049$
in)
$D=7.14 \mathrm{~mm}$ (. 294 in)
*Diameter of 44A0111-22 wire obtained from the Wire and Cable Section 9 of this catalog
COD Calculation for Wires of Different Sizes

To determine the wire bundle diameter when using wires of different sizes, follow these steps:

1. Determine the number of wires in the wire bundle.
2. Find the diameter of the wires in the Wire and Cable section of this catalog.
3. Calculate the cable outside diameter by using this formula:

$$
\mathrm { D } = 1 . 2 \longdiv { \mathrm { N } 1 \mathrm { d } 1 2 + \mathrm { N } 2 \mathrm { d } 2 2 + \mathrm { N } 3 \mathrm { d } 3 2 }
$$

Where:
D = Bundle diameter
$\mathrm{N}=$ Number of wires
d = Diameter of wires
Example: A bundle of wires
containing
$3 \times 44 A 0111-221^{*}$ (1.192mm dia.)
$5 \times 44 A 0111-201^{*}$ (1.42mm dia.)
$1 \times 44 A 0111-181^{*}(1.65-$ mm dia.)
$D=1.2 \sqrt{3 \times 1.192^{2}+5 \times 1.42^{2}+1 \times 1.65^{2}}$
$D=1.2 \sqrt{3 \times 1.4+5 \times 2.02+1 \times 2.7}$
$D=1.2 \sqrt{4.2+10.1+2.7}$
$D=1.2 \sqrt{17}$
$D=1.2 \times 4.12$
$D=4.95 \mathrm{~mm}$
*For wire information see the Wire and Cable Section 9 of this catalog.

Catalog 1654025	Dimensions are shown for reference purposes only. Revised 3-13
Specifications subject	

Adapter Selection

Table E. Multiplication Factors for Wire Bundles with Equal Size Wires
This table provides multiplication factors for wire bundles of 1 to 61 wires.

To determine the approximate diameter of a wire bundle when the wires are all the same size, find the factor for the number of wires in the bundle and multiply the wire diameter by that factor.

Entry Size (Continued)

Number of Wires	Multiplication Factor	Number of Wires	Multiplication Factor
1	1.00	32	6.70
2	1.60	33	6.70
3	2.00	34	7.00
4	2.41	35	7.00
5	2.70	36	7.00
6	3.00	37	7.00
7	3.00	38	7.31
8	3.60	39	7.31
9	4.00	40	7.31
10	4.00	41	7.61
11	4.00	42	7.61
12	4.00	43	7.61
13	4.41	44	7.61
14	4.41	45	8.00
15	4.70	46	8.00
16	4.70	47	8.00
17	5.00	48	8.00
18	5.00	49	8.41
19	5.00	50	8.41
20	5.31	51	8.41
21	5.31	52	8.41
22	5.61	53	8.70
23	5.61	54	8.70
24	5.61	55	8.70
25	6.00	56	8.70
26	6.00	57	9.00
27	6.00	58	9.00
28	6.41	59	9.00
29	6.41	60	9.00
30	6.41	61	9.00
31	6.70	-	-

Entry Size (Continued)

Cable Jacket Thickness

 CalculationTo determine the wall thickness of a jacket over a wire bundle:

1. Use the chart in Figure 1 to determine the unresolved recovery of the tubing jacket
2. Use the chart in Figure 3 to determine the wall thickness reduction factor.
3. Calculate the jacket wall thickness by multiplying the fully shrunk wall thickness (as detailed in the Tubing section - Section 3 - of this catalog) by the wall thickness reduction factor.

Step 1. Determine the Unresolved Recovery of the Tubing Jacket.

1. Locate the recovered and expanded diameters of the chosen tubing size on the chart in Figure 1.
2. Lay a straight edge between the two values and pencil in a straight line connecting them.
3. Find the wire bundle diameter on the Expanded Diameter scale of the chart in Figure 1.
4. From the wire bundle diameter value, draw a straight horizontal line across the chart.
5. From the intersection of the line from step 3 and the line from step 2, read down vertically to the "Unresolved Recovery" for this combination.

Dimensions are shown for reference purposes only. Specifications subject to change.

Entry Size (Continued)

Figure 3.

Step 2. Find the Wall Thickness Reduction Factor.

1. On the Unresolved Recovery scale of the chart in Figure 3 above, find the unresolved recovery value determined in Step 1.
2. From the unresolved recovery value, draw a straight line across the chart to the curved line.
3. At the point where that line intersects the chart's curved line, read vertically down to the wall thickness reduction factor.
Example shown:
Unresolved recovery = 50\%
Reduction factor $=0.68$

Step 3. Calculate the Jacket Wall Thickness.
Multiply the fully shrunk wall thickness of the tubing by the reduction factor.
Example:
Fully shrunk
wall thickness
of tubing $\quad=1.45 \mathrm{~mm}$
Wall thickness reduction factor (from Figure 3)

$$
=0.68
$$

Jacket wall thickness

$$
\begin{gathered}
=1.4 \times 0.68 \\
=0.99 \mathrm{~mm}
\end{gathered}
$$

Note:
If the cable is to be shielded (screened), an addition must be made to the wire bundle diameter for the braid. In the example, 0.8 mm would be added to the wire bundle diameter for a single layer of RAY 101 (36 AWG) braid to make a total wire bundle diameter of 13.8 mm.
Catalog 1654025
Revised 3-13 Revised 3-13 www.te.com Specifications subject to change.

Entry Size (Continued)

Figure 4. Entry Size by Cable Outside Diameter (in millimeters)

Determining the Entry Size

Once you have the wire bundle size, you can use the chart in Figure 4 to select the entry size. This chart shows the minimum entry sizes for cables from 3 to 38 mm [. 118 to 1.496 in] in diameter. In other words, the white spaces on the chart represent all of the cable outside diameters each entry size will fit.

Follow these steps:

1. Find the cable diameter on the chart.
2. Note the lowest entry size that will fit the cable diameter

Braided Adapters

The extreme flexibility of the braid on these adapters accommodates a large range of cable diameters. It is therefore recommended that the standard entry size for any given adapter part number be specified as indicated on the relevant data sheet. Nonstandard entry sizes are available on special order.
Use the selection chart in Figure 4 to ensure that the standard entry size will pass over the jacketed cable diameter.

Tinel-Lock Adapters

With Tinel-Lock adapters, the cable braid must be opened up to fit onto the outside diameter of the adapter entry. For optimum performance, select the smallest entry size that will pass over the jacketed cable diameter. Repair of the connector will be easier using the boot and shield rollback if a slightly larger than minimum entry size is used.
The selection chart in Figure 4 shows the minimum entry sizes for cable diameters in the range of 3 mm to 38 mm . This will ensure that the jacketed cable passes through the adapter for easy assembly.

It should be checked to be sure the braid will open sufficiently to fit the entry size selected and to ensure that the braid and boot can be rolled back.

Catalog 1654025	Dimensions are shown for Revised 3-13
reference purposes only.	
Specifications subject	

Entry Size (Continued)

Ray 101 Tinned-Copper Braid

TE manufactures a range of Raychem tubular braided shields (sometimes called "screens") that are used for shielding hand-built harnesses

These braids are specially designed to have:

■ Good surface transfer impedance

- Large opening ratio
- Good handling characteristics
- Compatibility with

Tinel-Lock adapters

Ray 101 Data

Part No.	Number of Carriers	Number of Ends/ Carrier	Individual Strand Size (mm/AWG)	Wire Bundle Diameter Range			Tinel Adapter Entry Size (Single-Layer Braid)
				Min.	Max.	Wall Thickness (Nom.)	
RAY 101-3.0	16	10	0.1 [38]	2.5 [.10]	5.0 [.20]	N/A	N/A
RAY 101-4.0	24	7	0.13 [36]	3.5 [.14]	7.5 [.30]	0.4 [.02]	04*
RAY 101-6.0	24	9	0.13 [36]	4.0 [.16]	9.5 [.37]	0.4 [.02]	, 05, 06*, 07
RAY 101-7.5	24	14	0.13 [36]	6.0 [.24]	14.0 [.55]	0.4 [.02]	05, 06, 07, 10*
RAY 101-10.0	36	12	0.13 [36]	8.0 [.31]	22.0 [.87]	0.4 [.02]	07, 08, 10 12*
RAY 101-12.5	36	15	0.13 [36]	10.0 [.39]	24.0 [.94]	0.4 [.02]	08, 10, 12,14, 16*
RAY 101-20.0	48	16	0.13 (36]	16.0 [.63]	38.0 [1.50]] 0.4 [.02]	12, 14, 16, 18, 20, 22

*Combination is not preferred; use only if absolutely necessary

Dimensions are shown for reference purposes only. Specifications subject to change.

Tinel-Lock Ring

Tinel-Lock Ring and Braid

The Tinel-Lock ring designator must be specified according to the type of cable braid used, and is added to the part number after the adapter entry size. There are two types of ring, Al and BI , for each entry size.
Tinel rings are marked with thermochromic paint, which
 changes color when the correct installation temperature is reached. Bl-type rings are identified with a red spot.
Braid type, material, and construction are variable Refer to drawing CHOO-0250-008 for Tinel-Lock adapters.

Braid Type	Ring Designator
Single layer 36 AWG	AI
Single layer 34 AWG	AI
Single layer 32 AWG	BI
Single layer 30 AWG	BI
Double layer 36 AWG	BI
Double layer 34 AWG	BI

A or B = Size of Braid I = Insulating Layer

Table F.
Wire Gauge (AWG) to
Diameter Cross-Reference
Use this table to establish wire gauge if not known.

Wire Gauge (AWG)	Diameter
40	$0.079[0.0031]$
39	$0.089[0.0035]$
38	$0.102[0.0040]$
37	$0.114[0.0045]$
36	$0.127[0.0050]$
35	$0.142[0.0056]$
34	$0.160[0.0063]$
33	$0.180[0.0071]$
32	$0.203[0.0080]$
31	$0.226[0.0089]$
30	$0.254[0.0100]$
29	$0.287[0.0113]$
28	$0.320[0.0126]$

*Note: It may be necessary to use an ' A ' rather than a ' B " ring on entry sizes 04-07 when terminating a multicore cable with double layer machined braid. Braid applied by machine provides less size flexibility than pull-on braid at the smaller entry sizes. If disturbance during assembly causes loss of braid lay, grip of the tinel ring may be affected. Evaluation is recommended. Contact TE for more information.

| Available in: | Americas | Europe |
| :---: | :---: | :---: |\quad Asia Pacific | a |
| :---: |

CRES-Lock Bands

The CRES-Lock band strap designator must be specified when using a band adapter. There are two forms of band that are available - precoiled and straight. Straight is a standard configuration and does not require any notation. If precoiled bands
are required, an option P must be used. Refer to CH00-0250-016 drawing for more detailed information. CRES-Lock band strap comes in 12 inch length. These fit all entry sizes for both the CRES-Lock adapter.

Part Number	Entry SIzes	A Ref. $\mathbf{\pm 1 . 5}[\pm \mathbf{0 . 0 6]}$
BND-1225S	03 to 24	$\mathbf{3 0 5 . 0}$ $\operatorname{} 2.00$
		$\mathbf{3 0 4 . 8}$

Available in: \quad Americas \quad Asia Pacific \quad Europe

Code 18 MIL-C-5015 (MS3100)

Braided Adapters

218M8XX-XXXXX

218M7XX-XXXXX

218M9XX-XXXXX

Manufacturer Code	Connector Manufacturer MS3100/3101/3106
A	Amphenol-Class A
B	Bendix-Class A/E/R
C	Cannon-Class A/E/R
D^{\star}	Unknown-Class A/E/R
R	Amphenol-Class R
-	Manufacturer code not required

*Additional pieces supplied when manufacturer is unknown.
All thread sizes for order number apply
Available in: Americas \quad Europe Asia Pacific

Catalog 1654025
Revised 3-13
www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change

Braided Adapters

(continued)

Table of Dimensions

Order No.	Shell Size	Manufacturer Code	Max. Entry Size, Type $1^{\text {** }}$	Thread	Dimensions		
					C Max.	D Max.	E Max.
08	8S	B	04	.375-32 UNEF	20.3 [0.80]	23.4 [0.92]	31.2 [1.23]
08	8S	C	04	.438-28 UNEF	20.3 [0.80]	23.4 [0.92]	31.2 [1.23]
08	8S	A, R	04	.438-27 UNS	20.3 [0.80]	23.4 [0.92]	31.2 [1.23]
08	8S	D	04	See * above.	20.3 [0.80]	23.4 [0.92]	31.2 [1.23]
10	10S	-	06	.500-28 UNEF	21.1 [0.83]	24.1 [0.95]	31.2 [1.23]
11	10SL	C	07	.562-24 UNEF	21.1 [0.83]	24.1 [0.83]	31.2 [1.23]
11	10SL	A, B, R	07	.625-24 UNEF	21.1 [0.83]	24.1 [0.95]	31.2 [1.23]
11	10SL	D	07	See * above.	21.1 [0.83]	24.1 [0.95]	31.2 [1.23]
12	12 \& 12S	B, C	08	.625-24 UNEF	21.1 [0.83]	24.1 [0.95]	31.2 [1.23]
12	12 \& 12S	A, R	08	.688-24 UNEF	21.8 [0.86]	24.9 [0.98]	33.0 [1.30]
12	12 \& 12S	D	08	See * above.	21.8 [0.86]	24.9 [0.98]	33.0 [1.30]
14	14 \& 14S	-	10	.750-20 UNEF	21.8 [0.86]	24.9 [0.98]	33.0 [1.30]
16	16 \& 16S	-	12	.875-20 UNEF	22.6 [0.89]	25.9 [1.02]	36.1 [1.42]
18	18	-	12	1.000-20 UNEF	23.4 [0.92]	26.7 [1.05]	37.6 [1.48]
20	20	A, B, C	16	1.125-18 UNEF	24.1 [0.95]	27.4 [1.08]	39.4 [1.55]
20	20	R	16	1.125-24 UNS	24.1 [0.95]	27.4 [1.08]	39.4 [1.55]
20	20	D	16	See * above.	24.1 [0.95]	27.4 [1.08]	39.4 [1.55]
22	22	-	18	1.250-18 UNEF	24.9 [0.98]	28.2 [1.11]	40.9 [1.61]
24	24	-	20	1.375-18 UNEF	24.9 [0.98]	28.2 [1.11]	42.4 [1.67]
28	28	-	24	1.625-18 UNEF	27.4 [1.08]	29.7 [1.17]	47.2 [1.86]
32	32	B, C	24	1.875-16 UN	28.2 [1.11]	31.2 [1.23]	48.8 [1.92]
32	32	A, R	24	1.906-18 UN	28.2 [1.11]	31.2 [1.23]	48.8 [1.92]
32	32	D	24	See * above.	28.2 [1.11]	31.2 [1.23]	48.8 [1.92]
36	36	B	24	2.062-16 UNS	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
36	36	R	24	2.062-20 UNS	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
36	36	C	24	2.125-16 UN	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
36	36	A	24	2.125-18 UNS	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
36	36	D	24	See * above.	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
40	40	B	24	2.312-16 UNS	32.3 [1.27]	33.0 [1.30]	55.1 [2.17]
40	40	A, C, R	24	2.375-16 UN	32.3 [1.27]	33.0 [1.30]	55.1 [2.17]
40	40	D	24	See * above.	32.3 [1.27]	33.0 [1.30]	55.1 [2.17]
44	44	-	24	2.625-16 UN	34.0 [1.34]	34.5 [1.36]	61.5 [2.42]
48	48	C	24	2.812-18 UNS	34.0 [1.34]	34.5 [1.36]	61.5 [2.42]
48	48	A, R	24	2.875-16 UN	34.0 [1.34]	34.5 [1.36]	61.5 [2.42]
48	48	D	24	See * above.	34.0 [1.34]	34.5 [1.36]	61.5 [2.42]

**For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

Entry Size Dimensions

Entry		Dimensions	
Size	Z Dia. $\mathbf{+ 0 . 2 5 - 0 . 5}$	Y Dia. $\pm \mathbf{0 . 3 8}$	W Max.
04	$6.35[0.250]$	$11.58[0.456]$	$31.2[1.23]$
05	$7.92[0.312]$	$13.08[0.515]$	$32.8[1.29]$
06	$9.53[0.375]$	$14.76[0.581]$	$34.3[1.35]$
07	$11.13[0.438]$	$16.33[0.643]$	$36.1[1.42]$
08	$12.70[0.500]$	$17.91[0.705]$	$37.6[1.48]$
10	$15.88[0.625]$	$21.11[0.831]$	$40.6[1.60]$
12	$19.05[0.750]$	$24.21[0.953]$	$43.9[1.73]$
14	$22.23[0.875]$	$27.46[1.081]$	$47.0[1.85]$
16	$25.40[1.000]$	$30.61[1.205]$	$50.8[2.00]$
18	$28.58[1.125]$	$35.08[1.381]$	$54.1[2.13]$
20	$31.75[1.250]$	$38.25[1.506]$	$57.2[2.25]$
22	$34.93[1.375]$	$41.43[1.631]$	-
24	$38.10[1.500]$	$44.60[1.756]$	-

Adapter Products
Code 18 MIL-C-5015 (MS3100) (Continued)

Solid Adapters

Manufacturer Code	Connector Manufacturer MS3100/3101/3106
A	Amphenol-Class A
B	Bendix-Class A/E/R
C	Cannon-Class A/E/R
D^{*}	Unknown-Class A/E/R
R	Amphenol-Class R
-	Manufacturer code not required
*Additional pieces supplied when manufacturer is unknown.	
All thread sizes for order number apply.	

Table of Dimensions

Order No.	Shell Size	Manufacturer Code	Thread	Dimensions	
				$\mathrm{Y} \pm 0.5$	Z Min.
08	8S	B	.375-32 UNEF	13.2 [0.52]	6.22 [0.24]
08	8S	C	.438-28 UNEF	13.2 [0.52]	7.80 [0.31]
08	8S	A, R	.438-27 UNS	13.2 [0.52]	7.80 [0.31]
08	8S	D	See * above.	13.2 [0.52]	7.80 [0.31]
10	10S	-	.500-28 UNEF	15.0 [0.59]	9.40 [0.37]
11	10SL	C	.562-24 UNEF	15.0 [0.59]	11.00 [0.43]
11	10SL	A, B, R	.625-24 UNEF	19.3 [0.76]	12.57 [0.49]
11	10SL	D	See * above.	19.3 [0.76]	11.00 [0.43]
12	12 \& 12S	B, C	.625-24 UNEF	19.3 [0.76]	12.57 [0.49]
12	12 \& 12S	A, R	.688-24 UNEF	19.3 [0.76]	14.15 [0.56]
12	12 \& 12S	D	See * above.	19.3 [0.76]	12.57 [0.49]
14	14 \& 14S	-	.750-20 UNEF	20.9 [0.82]	15.75 [0.62]
16	16 \& 16S	-	.875-20 UNEF	24.1 [0.95]	18.92 [0.74]
18	18	-	1.000-20 UNEF	26.1 [1.03]	20.50 [0.81]
20	20	A, B, C	1.125-18 UNEF	34.0 [1.34]	25.27 [0.99]
20	20	R	1.125-24 UNS	34.0 [1.34]	25.27 [0.99]
20	20	D	See * above.	34.0 [1.34]	25.27 [0.99]
22	22	-	1.250-18 UNEF	36.3 [1.43]	28.45 [1.12]
24	24	-	1.375-18 UNEF	40.5 [1.59]	31.62 [1.24]
28	28	-	1.625-18 UNEF	43.0 [1.69]	34.80 [1.37]
32	32	B, C	1.875-16 UN	48.4 [1.91]	41.15 [1.62]
32	32	A, R	1.906-18 UN	48.4 [1.91]	41.15 [1.62]
32	32	D	See * above.	48.4 [1.91]	41.15 [1.62]
36	36	B	2.062-16 UNS	54.7 [2.15]	47.50 [1.87]
36	36	R	2.062-20 UNS	54.7 [2.15]	47.50 [1.87]
36	36	C	2.125-16 UN	54.7 [2.15]	47.50 [1.87]
36	36	A	2.125-18 UNS	54.7 [2.15]	47.50 [1.87]
36	36	D	See * above.	54.7 [2.15]	47.50 [1.87]
40	40	B	2.312-16 UNS	60.6 [2.39]	53.85 [2.12]
40	40	A, C, R	2.375-16 UN	60.6 [2.39]	53.85 [2.12]
40	40	D	See * above.	60.6 [2.39]	53.85 [2.12]
44	44	-	2.625-16 UN	67.1 [2.64]	60.20 [2.37]
48	48	C	2.812-18 UNS	73.5 [2.89]	66.55 [2.62]
48	48	A, R	2.875-16 UN	73.5 [2.89]	66.55 [2.62]
48	48	D	See * above.	73.5 [2.89]	66.55 [2.62]

Available in:	Americas	Europe	Asia Pacific
	\square	\square	

Adapter Products
Code 18 MIL-C-5015 (MS3100) (Continued)

Solid Adapters

(continued)

Molded Part Selection Guide (Solid)

Y Diameter	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (min.) } \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \end{gathered}$
13.2 [0.52]	202W232	-	4.3 [0.19]	-	-	-
13.2 [0.52]	202K121	222K121	5.6 [0.22]	202D211	222D211	6.4 [0.25]
15.0 [0.59]	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
19.2 [0.76]	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
20.9 [0.82]	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
24.1 [0.95]	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
26.1 [1.03]	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
34.0 [1.34]	202K163	222K163	9.9 [0.33]	202D253	222D253	10.4 [0.41]
36.2 [1.43]	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
40.5 [1.59]	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
43.0 [1.69]	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
48.4 [1.91]	202K185	222K185	16.8 [0.66]	202D274	222D274	14.3 [0.56]
54.7 [2.15]	202K185	222K185	16.8 [0.66]	202D274	222D274	14.3 [0.56]
60.6 [2.39]	-	-	-	202D285	222D285	17.5 [0.68]
67.1 [2.64]	-	-	-	202D296	222D296	19.6 [0.76]
73.5 [2.89]	-	-	-	202D299	222D299	22.9 [0.89]

Uniboot Parts

\mathbf{Y} Diameter	Part No.	Cable OD (Min.)
$13.2[0.52]$	$202 C 611$	$4.8[0.19]$
$15.0[0.59]$	$202 C 621$	$8.1[0.32]$
$19.3[0.76]$	$202 C 621$	$8.1[0.32]$
$20.9[0.82]$	$202 C 632$	$12.7[0.50]$
$24.1[0.95]$	$202 C 632$	$12.7[0.50]$
$26.1[1.03]$	$202 C 642$	$17.5[0.69]$
$34.0[1.34]$	$202 C 653$	$22.4[0.88]$
$36.3[1.43]$	$202 C 653$	$22.4[0.88]$
$40.5[1.59]$	$202 C 653$	$22.4[0.88]$
$43.0[1.69]$	$202 C 663$	$22.9[0.90]$
$48.4[1.91]$	$202 C 663$	$22.9[0.90]$
$54.7[2.15]$	$202 C 663$	$22.9[0.90]$
$60.6[2.39]$	$202 C 663$	$22.9[0.90]$
$67.1[2.64]$	$202 C 663$	$22.9[0.90]$
$73.5[2.89]$	$202 C 663$	$22.9[0.90]$

Adapter Products

Spin-Coupling Adapters

Code 18 MIL-C-5015 (MS3100) (Continued)

Table of Dimensions

Order No.	Shell Size	Manufacturer Code	Thread	Dimensions	
				$\mathrm{Y} \pm 0.5$	Z Min.
08	8S	B	.375-32 UNEF	13.2 [0.52]	6.22 [0.24]
08	8S	C	.438-28 UNEF	13.2 [0.52]	7.80 [0.31]
08	8S	A, R	.438-27 UNS	13.2 [0.52]	7.80 [0.31]
08	8S	D	See * above.	13.2 [0.52]	7.80 [0.31]
10	10S	-	.500-28 UNEF	15.0 [0.59]	9.40 [0.37]
11	10SL	C	.562-24 UNEF	15.0 [0.59]	11.00 [0.43]
11	10SL	A, B, R	.625-24 UNEF	19.3 [0.76]	12.57 [0.49]
11	10SL	D	See * above.	19.3 [0.76]	11.00 [0.43]
12	12 \& 12S	B, C	.625-24 UNEF	19.3 [0.76]	12.57 [0.49]
12	12 \& 12S	A, R	.688-24 UNEF	19.3 [0.76]	14.15 [0.56]
12	12 \& 12S	D	See * above.	19.3 [0.76]	12.57 [0.49]
14	14 \& 14S	-	.750-20 UNEF	20.9 [0.82]	15.75 [0.62]
16	16 \& 16S	-	.875-20 UNEF	24.1 [0.95]	18.92 [0.74]
18	18	-	1.000-20 UNEF	26.1 [1.03]	20.50 [0.81]
20	20	A, B, C	1.125-18 UNEF	34.0 [1.34]	25.27 [0.99]
20	20	R	1.125-24 UNS	34.0 [1.34]	25.27 [0.99]
20	20	D	See * above.	34.0 [1.34]	25.27 [0.99]
22	22	-	1.250-18 UNEF	36.3 [1.43]	28.45 [1.12]
24	24	-	1.375-18 UNEF	40.5 [1.59]	31.62 [1.24]
28	28	-	1.625-18 UNEF	43.0 [1.69]	34.80 [1.37]
32	32	B, C	1.875-16 UN	48.4 [1.91]	41.15 [1.62]
32	32	A, R	1.906-18 UN	48.4 [1.91]	41.15 [1.62]
32	32	D	See * above.	48.4 [1.91]	41.15 [1.62]
36	36	B	2.062-16 UNS	54.7 [2.15]	47.50 [1.87]
36	36	R	2.062-20 UNS	54.7 [2.15]	47.50 [1.87]
36	36	C	2.125-16 UN	54.7 [2.15]	47.50 [1.87]
36	36	A	2.125-18 UNS	54.7 [2.15]	47.50 [1.87]
36	36	D	See * above.	54.7 [2.15]	47.50 [1.87]
40	40	B	2.312-16 UNS	60.6 [2.39]	53.85 [2.12]
40	40	A, C, R	2.375-16 UN	60.6 [2.39]	53.85 [2.12]
40	40	D	See * above	60.6 [2.39]	53.85 [2.12]
44	44	-	2.625-16 UN	67.1 [2.64]	60.20 [2.37]
48	48	C	2.812-18 UNS	73.5 [2.89]	66.55 [2.62]
48	48	A, R	2.875-16 UN	73.5 [2.89]	66.55 [2.62]
48	48	D	See * above	73.5 [2.89]	66.55 [2.62]

Available in:	Americas	Europe	Asia Pacific
	\square	\square	

Adapter Products
Code 18 MIL-C-5015 (MS3100) (Continued)
Molded Part Selection Guide (Spin-Coupling)

Y Diameter	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \end{gathered}$
13.2 [0.52]		202W232	4.3 [0.19]			
13.2 [0.52]	202K121	222K121	5.6 [0.22]	202D211	222D211	6.4 [0.25]
15.0 [0.59]	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
19.2 [0.76]	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
20.9 [0.82]	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
24.1 [0.95]	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
26.1 [1.03]	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
34.0 [1.34]	202K163	222K163	9.9 [0.33]	202D253	222D253	10.4 [0.41]
36.2 [1.43]	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
40.5 [1.59]	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
43.0 [1.69]	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
48.4 [1.91]	202K185	222K185	16.8 [0.66]	202D274	222D274	14.3 [0.56]
54.7 [2.15]	202K185	222K185	16.8 [0.66]	202D274	222D274	14.3 [0.56]

Uniboot Parts

\mathbf{Y} Diameter	Part No.	Cable OD $($ Min. $)$
$13.2[0.52]$	$202 C 611$	$4.8[0.19]$
$15.0[0.59]$	$202 C 621$	$8.1[0.32]$
$19.3[0.76]$	$202 C 621$	$8.1[0.32]$
$20.9[0.82]$	$202 C 632$	$12.7[0.50]$
$24.1[0.95]$	$202 C 632$	$12.7[0.50]$
$26.1[1.03]$	$202 C 642$	$17.5[0.69]$
$34.0[1.34]$	$202 C 653$	$22.4[0.88]$
$36.3[1.43]$	$202 C 653$	$22.4[0.88]$
$40.5[1.59]$	$202 C 653$	$22.4[0.88]$
$43.0[1.69]$	$202 C 663$	$22.9[0.90]$
$48.4[1.91]$	$202 C 663$	$22.9[0.90]$
$54.7[2.15]$	$202 C 663$	$22.9[0.90]$

Dimensions are in millimeters unless otherwise specified.

Tinel-Lock Adapters

TXR18XX45-XXXXXX

TXR18XX90-XXXXXX

Manufacturer Code	Connector Manufacturer MS3100/3101/3106
A	Amphenol-Class A
B	Bendix-Class A/E/R
C	Cannon-Class A/E/R
D^{*}	Unknown-Class A/E/R
R	Amphenol-Class R
-	Manufacturer code not required

*Additional pieces supplied when manufacturer is unknown.
All thread sizes for order number apply.

Available in:	Americas	Europe	Asia Pacific
	\square	\square	\square

Dimensions are shown for reference purposes only. Specifications subject to change.

For additional support numbers please visit www.te.com

Adapter Products
Code 18 MIL-C-5015 (MS3100) (Continued)

Tinel-Lock Adapters

(continued)

Table of Dimensions

Order No.	Shell Size	Manufacturer Code	Max. Entry Size, Type 1**	Thread	Dimensions		
					C Max.	D Max.	E Max.
08	8S	B	04	.375-32 UNEF	20.3 [0.80]	23.4 [0.92]	31.2 [1.23]
08	8S	C	04	.438-28 UNEF	20.3 [0.80]	23.4 [0.92]	31.2 [1.23]
08	8S	A, R	04	.438-27 UNS	20.3 [0.80]	23.4 [0.92]	31.2 [1.23]
08	8S	D	04	*	20.3 [0.80]	23.4 [0.92]	31.2 [1.23]
10	10 S	-	06	.500-28 UNEF	21.1 [0.83]	24.1 [0.95]	31.2 [1.23]
11	10SL	C	07	.562-24 UNEF	21.1 [0.83]	24.1 [0.83]	31.2 [1.23]
11	10SL	A, B, R	07	.625-24 UNEF	21.1 [0.83]	24.1 [0.95]	31.2 [1.23]
11	10SL	D	07	*	21.1 [0.83]	24.1 [0.95]	31.2 [1.23]
12	12 \& 12S	B, C	08	.625-24 UNEF	21.1 [0.83]	24.1 [0.95]	31.2 [1.23]
12	12 \& 12S	A, R	08	.688-24 UNEF	21.8 [0.86]	24.9 [0.98]	33.0 [1.30]
12	12 \& 12S	D	08	*	21.8 [0.86]	24.9 [0.98]	33.0 [1.30]
14	14 \& 14S	-	10	.750-20 UNEF	21.8 [0.86]	24.9 [0.98]	33.0 [1.30]
16	16 \& 16S	-	12	.875-20 UNEF	22.6 [0.89]	25.9 [1.02]	36.1 [1.42]
18	18	-	12	1.000-20 UNEF	23.4 [0.92]	26.7 [1.05]	37.6 [1.48]
20	20	A, B, C	16	1.125-18 UNEF	24.1 [0.95]	27.4 [1.08]	39.4 [1.55]
20	20	R	16	1.125-24 UNS	24.1 [0.95]	27.4 [1.08]	39.4 [1.55]
20	20	D	16	*	24.1 [0.95]	27.4 [1.08]	39.4 [1.55]
22	22	-	18	1.250-18 UNEF	24.9 [0.98]	28.2 [1.11]	40.9 [1.61]
24	24	-	20	1.375-18 UNEF	24.9 [0.98]	28.2 [1.11]	42.4 [1.67]
28	28	-	22	1.625-18 UNEF	27.4 [1.08]	29.7 [1.17]	47.2 [1.86]
32	32	B, C	24	1.875-16 UN	28.2 [1.11]	31.2 [1.23]	48.8 [1.92]
32	32	A, R	24	1.906-18 UN	28.2 [1.11]	31.2 [1.23]	48.8 [1.92]
32	32	D	24	*	28.2 [1.11]	31.2 [1.23]	48.8 [1.92]
36	36	B	24	2.062-16 UNS	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
36	36	R	24	2.062-20 UNS	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
36	36	C	24	2.125-16 UN	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
36	36	A	24	2.125-18 UNS	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
36	36	D	24	*	31.2 [1.23]	32.3 [1.27]	52.1 [2.05]
40	40	B	24	2.312-16 UNS	32.3 [1.27]	33.0 [1.30]	55.1 [2.17]
40	40	A, C, R	24	2.375-16 UN	32.3 [1.27]	33.0 [1.30]	55.1 [2.17]
40	40	D	24	*	32.3 [1.27]	33.0 [1.30]	55.1 [2.17]
44	44	-	24	2.625-16 UN	34.0 [1.34]	34.5 [1.36]	61.5 [2.42]
48	48	C	24	2.812-18 UNS	34.0 [1.34]	34.5 [1.36]	61.5 [2.42]
48	48	A, R	24	2.875-16 UN	34.0 [1.34]	34.5 [1.36]	61.5 [2.42]
48	48	D	24	*	34.0 [1.34]	34.5 [1.36]	61.5 [2.42]

* Additional pieces, etc. (from page 6-36)
**For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

Adapter Products
Code 18 MIL-C-5015 (MS3100) (Continued)

Tinel-Lock Adapters

(continued)

Entry Size Dimensions

Entry Size	Dimensions			
	S Diameter (min.-max.)	Y Dia. $\mathbf{\pm 0 . 3 8}$	W Max.	
04	$6.35[0.25]$	$9.39-9.56[0.37-0.38]$	$13.97[0.55]$	$31.50[1.24]$
05	$7.92[0.31]$	$10.97-11.13[0.43-0.44]$	$15.54[0.61]$	$34.30[1.35]$
06	$9.52[0.37]$	$12.57-12.73[0.49-0.50]$	$17.14[0.67]$	$35.80[1.41]$
07	$11.09[0.44]$	$14.12-14.31[0.55-0.56]$	$18.71[0.74]$	$37.30[1.47]$
08	$12.70[0.50]$	$15.72-15.91[0.62-0.63]$	$20.32[0.80]$	$39.10[1.54]$
10	$15.87[0.62]$	$18.84-19.11[0.74-0.75]$	$23.49[0.92]$	$41.40[1.63]$
12	$19.05[0.75]$	$22.02-22.28[0.87-0.88]$	$26.67[1.05]$	$45.50[1.79]$
14	$22.23[0.88]$	$25.17-25.46[0.99-1.00]$	$29.84[1.17]$	$48.80[1.92]$
16	$25.40[1.00]$	$28.34-28.63[1.12-1.13]$	$33.02[1.30]$	$51.80[2.04]$
18	$28.57[1.12]$	$31.52-31.81[1.24-1.25]$	$36.19[1.42]$	$54.90[2.16]$
20	$31.75[1.25]$	$34.69-34.98[1.37-1.38]$	$39.37[1.55]$	$58.20[2.29]$
22	$34.93[1.38]$	$37.79-38.15[1.49-1.50]$	$42.55[1.68]$	$66.80[2.63]$
24	$38.10[1.50]$	$40.97-41.33[1.61-1.63]$	$45.72[1.80]$	$70.10[2.76]$

Molded Part Selection Guide
(Tinel)

Tinel-Lock Entry Size	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (min.)	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.) (Min.)
04	202K232	-	3.30 [0.13]	-	-	-
04	202W232	-	4.30 [0.19]	-	-	-
04	202K121	222K121	5.60 [0.22]	202D211	222D211	6.40 [0.25]
05, 06	202K132	222K132	5.90 [0.23]	202D221	222D221	7.40 [0.29]
07, 08	202K142	222K142	7.10 [0.28]	202D232	222D232	8.40 [0.33]
10, 12	202K153	222K152	8.40 [0.33]	202D242	222D242	9.70 [0.38]
14, 16	202K163	222K163	9.90 [0.39]	202D253	222D253	10.50 [0.41]
18, 20, 22	202K174	222K174	15.70 [0.62]	202D263	222D263	12.20 [0.48]
24	202K185	222K185	16.80 [0.66]	-	-	-

Uniboot Parts

Tinel-Lock Entry Size	Part No.	Cable OD $($ min. $)$
04	$202 C 611$	$4.8[0.19]$
$05,06,07$	$202 C 621$	$8.1[0.32]$
$08,10,12$	$202 C 632$	$12.7[0.50]$
$12,14,16$	$202 C 642$	$17.5[0.69]$
$16,18,20,22$	$202 C 653$	$22.4[0.88]$

Braided Adapters

Table of Dimensions

Order No.	Shell Size	Max. Entry Size,Type 1*	Thread	Dimensions		
	8	04		$21.6[0.85]$	$23.1[0.91]$	$29.0[1.14]$
08	10	06	$.562-24$ UNEF	$22.4[0.88]$	$23.9[0.94]$	$30.5[1.20]$
10	12	08	$.688-24$ UNEF	$23.1[0.91]$	$24.6[0.97]$	$32.3[1.27]$
12	14	10	$.812-20$ UNEF	$23.4[0.92]$	$24.9[0.98]$	$33.5[1.32]$
14	16	12	$.938-20$ UNEF	$24.1[0.95]$	$25.7[1.01]$	$34.8[1.37]$
16	18	12	$1.062-18$ UNEF	$24.4[0.96]$	$25.9[1.02]$	$36.3[1.43]$
18	20	14	$1.188-18$ UNEF	$25.1[0.99]$	$26.7[1.05]$	$38.1[1.50]$
20	22	16	$1.312-18$ UNEF	$25.7[1.01]$	$27.4[1.08]$	$39.6[1.56]$
22	24	18	$1.438-18$ UNEF	$26.2[1.03]$	$27.7[1.09]$	$40.9[1.61]$
24						

*For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

Entry Size Dimensions

Entry Size	Dimensions		
	$\mathbf{Z ~ + 0 . 2 5 - 0 . 5}$	Y Dia.	W Max.
	$6.35[0.25]$	$13.97[0.55]$	$31.0[1.22]$
05	$7.92[0.31]$	$15.54[0.61]$	$32.8[1.29]$
06	$9.52[0.37]$	$17.14[0.67]$	$34.3[1.35]$
07	$11.09[0.44]$	$18.71[0.74]$	$35.8[1.41]$
08	$12.70[0.50]$	$20.32[0.80]$	$37.3[1.47]$
10	$15.87[0.62]$	$23.49[0.92]$	$40.6[1.60]$
12	$19.05[0.75]$	$26.67[1.05]$	$43.7[1.72]$
14	$22.23[0.88]$	$29.84[1.17]$	$47.0[1.85]$
16	$25.40[1.00]$	$33.02[1.30]$	$50.0[1.97]$
18	$28.57[1.12]$	$36.19[1.42]$	$53.3[2.10]$

| Available in: | Americas | Europe |
| :---: | :---: | :---: |\quad Asia Pacific | \square |
| :---: |

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters USA: +1 8005226752 unless otherwise specified. Asia Pacific: +86 04008206015 UK: +44 800267666

Solid Adapters

Table of Dimensions

Order Number	Shell Size	Thread	Y +0.000-0.030 $(+0.00)(-0.76) ~ D i a . ~$	Z Min.
	8		$17.88[0.704]$	$6.63[0.26]$
10	10	$.562-24$ UNEF	$21.06[0.829]$	$9.27[0.36]$
12	12	$.688-24$ UNEF	$24.23[0.954]$	$12.98[0.51]$
14	14	$.812-20$ UNEF	$27.41[1.079]$	$15.37[0.61]$
16	16	$.938-20$ UNEF	$31.85[1.254]$	$18.54[0.73]$
18	18	$1.062-18$ UNEF	$33.03[1.316]$	$20.90[0.82]$
20	20	$1.188-18$ UNEF	$36.63[1.442]$	$24.10[0.95]$
22	22	$1.312-18$ UNEF	$39.78[1.566]$	$27.28[1.07]$
24	24	$1.438-18$ UNEF	$42.98[1.692]$	$29.67[1.17]$

Molded Part Selection Guide (Solid)

Order No.	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{aligned} & \text { Cable OD } \\ & \text { (Min.) } \end{aligned}$
08	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
10	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
12, 14	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
16, 18	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
20, 22, 24	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
08	$202 C 621$	$8.1[0.32]$
10	$202 C 632$	$12.7[0.50]$
12,14	$202 C 642$	$17.5[0.69]$
$16,18,20,22,24$	$202 C 653$	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
\square	\square	\square	

Adapter Products
Code 21 MIL-C-26482 Series 1 (Continued)

Spin-Coupling Adapters

203M9XX-XXX

Table of Dimensions

Order No.	Shell Size	Thread	Dimensions	
	8		Y +0.00-0.76 Dia.	Z Min.
08	10	$.562-24$ UNEF	$13.54[0.53]$	$6.63[0.26]$
10	12	$.688-24$ UNEF	$15.37[0.61]$	$9.27[0.36]$
12	14	$.812-20$ UNEF	$21.29[0.77]$	$12.98[0.51]$
14	16	$.938-20$ UNEF	$24.46[0.96]$	$15.37[0.61]$
16	18	$1.062-18$ UNEF	$26.47[1.04]$	$20.54[0.73]$
18	20	$1.188-18$ UNEF	$30.91[1.22]$	$24.10[0.92]$
20	22	$1.312-18$ UNEF	$34.42[1.36]$	$27.28[1.07]$
22	24	$1.438-18$ UNEF	$36.65[1.44]$	$29.67[1.17]$
24				

Molded Part Selection Guide (Spin-Coupling)

Order No.	Standard K Parts			Low-profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \end{gathered}$
08	202W232	-	4.3 [0.19]	-	-	-
08	202K121	222K121	5.6 [0.22]	202D211	222D211	6.4 [0.25]
10	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
12, 14	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
16, 18	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
20, 22	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
24	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
08	$202 C 611$	$4.8[0.19]$
10,12	$202 C 621$	$8.1[0.32]$
14,16	$202 C 632$	$12.7[0.50]$
18,20	$202 C 642$	$17.5[0.69]$
22,24	$202 C 653$	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
	\square	\square	

Tinel-Lock Adapters

TXR21XX00-XXXX XX

TXR21XX45-XXXXXX

TXR21XX90-XXXXXX

Available in:	Americas	Europe	Asia Pacific
\square	\square	\square	

Catalog 1654025
Revised 3-13
www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Tinel-Lock Adapters

(continued)

Table of Dimensions

Order No.	Shell Size	Max. Entry Size, Type 1*	Thread	Dimensions		
				C Max.	D Max.	E Max.
08	8	04	.438-28 UNEF	21.6 [0.85]	23.1 [0.91]	29.0 [1.14]
10	10	06	.562-24 UNEF	22.4 [0.88]	23.9 [0.94]	30.5 [1.20]
12	12	08	.688-24 UNEF	23.1 [0.91]	24.6 [0.97]	32.3 [1.27]
14	14	10	.812-20 UNEF	23.4 [0.92]	24.9 [0.98]	33.5 [1.32]
16	16	12	.938-20 UNEF	24.1 [0.95]	25.7 [1.01]	34.8 [1.37]
18	18	12	1.062-18 UNEF	24.4 [0.96]	25.9 [1.02]	36.3 [1.43]
20	20	14	1.188-18 UNEF	25.1 [0.99]	26.7 [1.05]	38.1 [1.50]
22	22	16	1.312-18 UNEF	25.7 [1.01]	27.4 [1.08]	39.6 [1.56]
24	24	18	1.438-18 UNEF	26.2 [1.03]	27.7 [1.09]	40.9 [1.61]

*For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

Entry Size Dimensions

Entry Size	Dimensions			
	S Diameter(Min.-Max.)	Y Dia.	W Max.	
04	$6.35[0.25]$	$9.39-9.56[0.37-0.38]$	$13.97[0.55]$	$31.0[1.22]$
05	$7.92[0.31]$	$10.97-11.13[0.43-0.44]$	$15.54[0.61]$	$32.8[1.29]$
06	$9.52[0.37]$	$12.57-12.73[0.49-0.50]$	$17.14[0.67]$	$34.3[1.35]$
07	$11.09[0.44]$	$14.12-14.31[0.55-0.56]$	$18.71[0.74]$	$35.8[1.41]$
08	$12.7[0.50]$	$15.72-15.91[0.62-0.63]$	$20.32[0.80]$	$37.3[1.47]$
10	$15.87[0.62]$	$18.84-19.11[0.74-0.75]$	$23.49[0.92]$	$40.6[1.60]$
12	$19.05[0.75]$	$22.02-22.28[0.87-0.88]$	$26.67[1.05]$	$43.7[1.72]$
14	$22.23[0.88]$	$25.17-25.46[0.99-1.00]$	$29.84[1.17]$	$47.0[1.85]$
16	$25.4[1.00]$	$28.34-28.63[1.12-1.13]$	$33.02[1.30]$	$50.0[1.97]$
18	$28.57[1.12]$	$31.52-31.81[1.24-1.25]$	$36.19[1.42]$	$53.3[2.10]$

Molded Part Selection Guide (Tinel)

Tinel-Lock Entry Size	Standard K Parts			Low-profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)
04	202K232	-	3.3 [0.1]	-	-	-
04	202W232	-	4.3 [0.2]	-	-	-
04	202K121	222K121	5.6 [0.2]	202D211	222D211	6.4 [0.3]
05, 06	202K132	222K132	5.9 [0.2]	202D221	222D221	7.4 [0.3]
07, 08	202K142	222K142	7.1 [0.3]	202D232	222D232	8.4 [0.3]
10, 12	202K153	222K152	8.4 [0.3]	202D242	222D242	9.7 [0.4]
14, 16	202K163	222K163	9.9 [0.4]	202D253	222D253	10.5 [0.4]
18, 20, 22	202K174	222K174	15.7 [0.6]	202D263	222D263	12.2 [0.5]
24	202K185	222K185	16.8 [0.7]	-	-	-

Uniboot Parts

Tinel-Lock Entry Size	Part No.	Cable OD (Min.)
04	$202 C 611$	$4.8[0.19]$
$05,06,07$	$202 C 621$	$8.1[0.32]$
$08,10,12$	$202 C 632$	$12.7[0.50]$
$12,14,16$	$202 C 642$	$17.5[0.69]$
$16,18,20,22$	$202 C 653$	$22.4[0.88]$
24	$202 C 663$	$22.9[0.90]$

Catalog 1654025	Dimensions are shown for	Dimensions are in millimeters	USA: +18005226752	For additional support numbers
Revised 3-13	reference purposes only.	Unless otherwise specified.	Asia Pacific: +8604008206015 (lease visit www.te.com	
www.te.com	Specifications subject			
to change.				

CRES-Lock Adapters (USA) BND Adapters (Europe)

Code 21 Band Strap

Adapter

Notes

1. This product is designed to terminate a braided cable shield by means of a band strap and a heat shrinkable lipped boot to a connector.
2. See $\mathrm{CH} 00-0250-016$ for ordering information, modifications and additional dimensions.
3. See drawing BND-XX25S for band strap dimensions and information.
4. Adapter to be permanently marked with code identification number and full part number (e.g. 06090-BND21AB00-1812). Band strap shall bear no part marking.
5. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See CH00-0250-016 for further details.
6. Adapter mates to: MIL-C-26482 Series I, MS3110, MS3116, MS3120 and MS3126 Class E and F Connectors.
7. Anti-rotational set screw, 3 threaded holes $120^{\circ} \pm 5^{\circ}$ apart, single mating set screw supplied: AN565DC4H2. Not required for Type II adapters.

For additional codes available, contact TE.

Code 21 MIL-C-26482 Series 1 (Continued)

| Available in: | Americas | Europe |
| :---: | :---: | :---: |\quad Asia Pacific | \square |
| :---: |

Catalog 1654025
Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change.

Adapter Products
Code 21 MIL-C-26482 Series 1 (Continued)
CRES-Lock Adapters (USA) BND Adapters (Europe)
(continued)

Code 21 Band Strap
Adapter (Continued)
Table I

Order Number	Shell Size ${ }^{2}$	Entry Size Max. Type I ${ }^{1}$	Ø A Unified Thread UNEF Class 2B	Ø в Max.	C Max.	D Max.	F Max.
08	08	04	0.4375-28	$\begin{aligned} & 18.3 \\ & 0.72 \end{aligned}$	$\begin{aligned} & \hline 21.6 \\ & 0.85 \end{aligned}$	$\begin{aligned} & \hline 27.2 \\ & 1.07 \end{aligned}$	$\begin{aligned} & \hline 33.0 \\ & 1.30 \end{aligned}$
10	10	06	0.5625-24	$\begin{aligned} & 21.6 \\ & 0.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.4 \\ & 0.88 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.9 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 1.36 \\ & \hline \end{aligned}$
12	12	08	0.6875-24	$\begin{aligned} & 24.9 \\ & 0.98 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.1 \\ & 0.91 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.7 \\ & 1.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 36.3 \\ & 1.43 \\ & \hline \end{aligned}$
14	14	10	0.8125-20	$\begin{aligned} & 28.2 \\ & 1.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.4 \\ & 0.92 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.0 \\ & 1.14 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.6 \\ & 1.48 \\ & \hline \end{aligned}$
16	16	12	0.9375-20	$\begin{aligned} & \hline 31.2 \\ & 1.23 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24.1 \\ & 0.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 29.7 \\ & 1.17 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38.9 \\ & 1.53 \\ & \hline \end{aligned}$
18	18	13	1.0625-18	$\begin{aligned} & \hline 34.5 \\ & 1.36 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24.4 \\ & 0.96 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 30.0 \\ & 1.18 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 40.4 \\ 1.59 \\ \hline \end{array}$
20	20	15	1.1875-18	$\begin{aligned} & \hline 37.6 \\ & 1.48 \end{aligned}$	$\begin{aligned} & \hline 25.1 \\ & 0.99 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 30.7 \\ & 1.21 \end{aligned}$	$\begin{aligned} & \hline 42.2 \\ & 1.66 \end{aligned}$
22	22	16	1.3125-18	$\begin{aligned} & \hline 40.6 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 25.7 \\ & 1.01 \end{aligned}$	$\begin{aligned} & \hline 31.5 \\ & 1.24 \end{aligned}$	$\begin{aligned} & \hline 43.7 \\ & 1.72 \end{aligned}$
24	24	18	1.4375-18	$\begin{aligned} & \hline 43.2 \\ & 1.70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26.2 \\ & 1.03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31.8 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 45.0 \\ 1.77 \\ \hline \end{array}$

1. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See CH00-0250-016 for further details.
2. Adapter mates to: MIL-C-26482 Series I, MS3110, MS3116, MS3120 and MS3126 Class E and F Connectors.

Table II

Entry Size	$\begin{gathered} \sigma Z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \end{gathered}$	$\begin{gathered} \varnothing \text { S } \\ \pm 0.51 \\ {[\pm 0.020]} \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \end{gathered}$	E Max.
03	$\begin{gathered} 4.75 \\ 0.188 \\ \hline \end{gathered}$	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.10 \\ & 0.438 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.0 \\ & 0.75 \\ & \hline \end{aligned}$
04	$\begin{array}{r} 6.35 \\ 0.250 \\ \hline \end{array}$	$\begin{gathered} 9.52 \\ 0.375 \\ \hline \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.8 \\ & 0.78 \\ & \hline \end{aligned}$
05	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.563 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20.1 \\ & 0.79 \\ & \hline \end{aligned}$
06	$\begin{gathered} 9.52 \\ 0.375 \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.1 \\ & 0.83 \\ & \hline \end{aligned}$
07	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.562 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.689 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.6 \\ & 0.85 \\ & \hline \end{aligned}$
08	$\begin{aligned} & 12.70 \\ & 0.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 22.6 \\ & 0.89 \\ & \hline \end{aligned}$
09	$\begin{aligned} & 14.30 \\ & 0.562 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.688 \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.813 \end{aligned}$	$\begin{aligned} & 23.6 \\ & 0.93 \\ & \hline \end{aligned}$
10	$\begin{aligned} & 15.88 \\ & 0.625 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.4 \\ & 0.96 \\ & \hline \end{aligned}$
11	$\begin{aligned} & 17.50 \\ & 0.688 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 23.80 \\ & 0.938 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.9 \\ & 0.98 \end{aligned}$
12	$\begin{aligned} & 19.05 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & \hline 25.40 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25.9 \\ & 1.02 \\ & \hline \end{aligned}$
13	$\begin{aligned} & 20.65 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 1.05 \end{aligned}$
14	$\begin{aligned} & 22.23 \\ & 0.875 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.40 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.16 \\ & 1.189 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.4 \\ & 1.08 \\ & \hline \end{aligned}$

Table II (Continued)

Entry Size	$\begin{gathered} \sigma Z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \end{gathered}$	$\begin{gathered} \varnothing \text { S } \\ \pm 0.51 \\ {[\pm 0.020]} \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \end{gathered}$	$\stackrel{\mathrm{E}}{\operatorname{Max} .}$
15	$\begin{aligned} & 23.83 \\ & .0938 \end{aligned}$	$\begin{aligned} & \hline 27.00 \\ & 1.062 \end{aligned}$	$\begin{aligned} & \hline 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & \hline \mathbf{2 8 . 2} \\ & 1.11 \end{aligned}$
16	$\begin{aligned} & \hline 25.40 \\ & 1.000 \end{aligned}$	$\begin{aligned} & \hline 28.58 \\ & 1.125 \end{aligned}$	$\begin{aligned} & 33.34 \\ & 1.313 \end{aligned}$	$\begin{aligned} & \hline 29.0 \\ & 1.14 \end{aligned}$
18	$\begin{aligned} & \hline 28.58 \\ & 1.125 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31.75 \\ & 1.250 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36.51 \\ & 1.438 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.5 \\ & 1.20 \end{aligned}$
20	$\begin{aligned} & 31.75 \\ & 1.250 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.90 \\ & 1.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 39.69 \\ & 1.563 \\ & \hline \end{aligned}$	N/A
22	$\begin{aligned} & 34.90 \\ & 1.375 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38.10 \\ & 1.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.86 \\ & 1.688 \\ & \hline \end{aligned}$	N/A
24	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & \hline 41.28 \\ & 1.625 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 46.83 \\ & 1.844 \\ & \hline \end{aligned}$	N/A
26	$\begin{aligned} & 41.28 \\ & 1.625 \end{aligned}$	$\begin{aligned} & 44.45 \\ & 1.750 \end{aligned}$	$\begin{aligned} & 49.61 \\ & 1.953 \end{aligned}$	N/A
28	$\begin{aligned} & 44.45 \\ & 1.750 \end{aligned}$	$\begin{aligned} & \hline 47.63 \\ & 1.875 \end{aligned}$	$\begin{aligned} & \hline 52.78 \\ & 2.078 \\ & \hline \end{aligned}$	N/A
30	$\begin{aligned} & 47.65 \\ & 1.875 \end{aligned}$	$\begin{aligned} & \hline 50.80 \\ & 2.000 \end{aligned}$	$\begin{aligned} & 56.36 \\ & 2.219 \end{aligned}$	N/A
32	$\begin{aligned} & 50.80 \\ & 2.000 \end{aligned}$	$\begin{aligned} & \mathbf{5 4 . 0 0} \\ & 2.125 \end{aligned}$	$\begin{aligned} & \hline 59.53 \\ & 2.344 \end{aligned}$	N/A
34	$\begin{aligned} & \mathbf{5 4 . 0 0} \\ & 2.125 \end{aligned}$	$\begin{aligned} & 57.15 \\ & 2.250 \end{aligned}$	$\begin{aligned} & \hline 62.71 \\ & 2.469 \end{aligned}$	N/A

Catalog 1654025
Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

Code 32 MIL-C-22992

Braided Adapters

212M4XX-XXXXX

212M5XX-XXXXX

| Available in: | Americas | Europe |
| :---: | :---: | :---: |\quad Asia Pacific | \square |
| :---: |

Catalog 1654025
Revised 3-13 Dimensions are shown for reference purposes only. Specifications subject to change.

SA: +1 8005226752

For additional support numbers please visit www.te.com

Adapter Products
Code 32 MIL-C-22992 (Continued)

Braided Adapters

(continued)

Table of Dimensions

Order No.	Shell Size	Max. Entry Size, Type 1	A Left Hand Thd. Class 2B	Dimensions		
	C Max.	D Max.	E Max			
12	12	08	$.750-20$ UNEF	$29.0[1.14]$	$25.4[1.00]$	$33.5[1.32]$
14	14	10	$.875-20$ UNEF	$29.7[1.17]$	$25.9[1.02]$	$35.3[1.39]$
16	16	12	$1.000-20$ UNEF	$30.0[1.18]$	$26.2[1.03]$	$37.1[1.46]$
18	18	14	$1.125-18$ UNEF	$30.7[1.21]$	$26.9[1.06]$	$38.6[1.52]$
20	20	16	$1.250-18$ UNEF	$31.2[1.23]$	$27.7[1.09]$	$40.1[1.58]$
22	22	18	$1.375-18$ UNEF	$32.0[1.26]$	$28.2[1.11]$	$41.7[1.64]$
24	24	22	$1.625-18$ UNEF	$33.5[1.32]$	$30.0[1.18]$	$46.5[1.83]$
28	28	24	$1.875-16$ UN	$34.8[1.37]$	$31.2[1.23]$	$49.8[1.96]$
32	32	28	$2.062-16$ UNS	$36.3[1.43]$	$32.5[1.28]$	$52.8[2.08]$
36	36	28	$2.312-16$ UNS	$37.6[1.48]$	$33.8[1.33]$	$56.1[2.21]$
40	40	28	$2.625-16$ UN	$38.9[1.53]$	$35.3[1.39]$	$58.9[2.32]$

*For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied.
Contact TE for information.

Entry Size Dimensions

Entry			
Size	Dimensions		
03	$4.75[.187]$	$9.98[.393]$	$39.6[1.56]$
04	$6.35[.250]$	$11.58[.456]$	$39.6[1.56]$
05	$7.92[.312]$	$13.08[.515]$	$42.9[1.69]$
06	$9.53[.375]$	$14.76[.581]$	$42.9[1.69]$
07	$11.13[.438]$	$16.33[.643]$	$46.0[1.81]$
08	$12.70[.500]$	$17.91[.705]$	-
09	$14.27[.562]$	$17.91[.705]$	$49.3[1.94]$
10	$15.88[.625]$	$21.11[.831]$	$49.3[1.94]$
11	$17.48[.688]$	$22.68[.893]$	$52.3[2.06]$
12	$19.05[.750]$	$24.21[.953]$	$52.3[2.06]$
13	$20.62[.812]$	$24.21[.953]$	$55.6[2.19]$
14	$22.23[.875]$	$27.46[1.081]$	$55.6[2.19]$
15	$23.83[.938]$	$29.03[1.143]$	$59.9[2.36]$
16	$25.40[1.000]$	$30.61[1.205]$	$59.9[2.36]$
18	$28.58[1.125]$	$35.08[1.381]$	$69.6[2.74]$
20	$31.75[1.250]$	$38.25[1.506]$	$72.6[2.86]$
22	$34.93[1.375]$	$41.43[1.631]$	$75.9[2.99]$
24	$38.10[1.500]$	$44.60[1.756]$	$79.0[3.11]$
28	$44.45[1.750]$	$50.90[2.004]$	$85.3[3.36]$

Dimensions are shown for reference purposes only. Specifications subject to change.

Adapter Products

Contact TE for information.

Molded Part Size Selection Guide (Spin-Coupling)

Order No.	Standard K Parts			Low-profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \\ \hline \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)
12	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
14, 16	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
18, 20	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
22, 24	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
26, 32, 36	202K185	222K185	16.8 [0.66]	-	-	-

Uniboot Parts

Order No.	Part No.	Cable OD $($ Min. $)$
12	202 C 632	$12.7[0.50]$
14,16	202 C 642	$17.5[0.69]$
$18,20,22,24$	202 C 653	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
	\square	\square	

Tinel-Lock Adapters

TXR32XX00-XXXXXX

TXR32XX45-XXXXXX

TXR32XX90-XXXXXX

Dimensions										
Order No.	Shell Size	Max. Entry Size Type I	A Left Hand Thd Class 2B	C Max.	D Max.	E Max.	$\begin{gathered} \mathrm{Z} \\ +.010 \\ +. .020 \end{gathered}$	$\underset{\text { Dia. }}{\text { S }}$	$\begin{gathered} Y \\ \pm .015 \\ \pm 0.38) \end{gathered}$	w Max.
12	12	08	.750-20 UNEF	29.0 [1.14]	25.4 [1.00]	33.5 [1.32]	19.05 [.750]	$\frac{22.28 \text { [.877] }}{22.02 \text { [.867] }}$	26.67 [1.050]	52.3 [2.06]
14	14	10	.875-20 UNEF	29.7 [1.17]	25.9 [1.02]	35.3 [1.39]	22.23 [.875]	$\frac{25.46[1.002]}{25.17[.991]}$	29.84 [1.175]	55.6 [2.19]
16	16	12	1.000-20 UNEF	30.0 [1.18]	26.2 [1.03]	37.1 [1.46]	25.40 [1.000]	$\frac{28.63[1.127]}{28.34[1.116]}$	33.02 [1.300]	59.01 [2.36]
18	18	14	1.125-18 UNEF	30.7 [1.21]	26.9 [1.06]	38.6 [1.52]	28.57 [1.125]	$\frac{31.81[1.252]}{31.52[1.241]}$	36.19 [1.425]	69.6 [2.74]
20	20	16	1.250-18 UNEF	31.2 [1.23]	27.7 [1.09]	40.1 [1.58]	31.75 [1.250]	$\frac{34.98[1.377]}{34.69[1.366]}$	$39 . .37$ [1.550]	72.6 [2.86]
22	22	18	1.375-18 UNEF	32.0 [1.26]	28.2 [1.11]	41.7 [1.64]	34.93 [1.375]	$\frac{38.15 \text { [1.502] }}{37.79 \text { [1.488] }}$	42.55 [1.675]	75.9 [2.99]
24	24	22	1.625-18 UNEF	33.5 [1.32]	30.0 [1.18]	46.5 [1.83]	38.10 [1.500]	$\frac{41.33[1.627]}{40.97[1.613]}$	45.72 [1.800]	79.0 [3.11]
28	28	24	1.875-16 UN	34.8 [1.37]	31.2 [1.23]	49.8 [1.96]	-	-	-	-
32	32	24	2.062-16 UNS	36.3 [1.43]	32.5 [1.28]	52.8 [2.08]	-	-	-	-
36	36	24	2.312-16 UNS	37.6 [1.48]	33.8 [1.33]	56.1 [2.21]	-	-	-	-
40	40	24	2.625-16 UN	38.9 [1.53]	35.3 [1.39]	58.9 [2.32]	-	-	-	-

**For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

Available in:	Americas	Europe	Asia Pacific
	\square	■	

Adapter Products

CRES-Lock Adapters (USA) BND Adapters (Europe)

Code 32 Band Strap
 Adapter

Notes

1. This product is designed to terminate a braided cable shield by means of a band strap and a heat shrinkable lipped boot to a connector.
2. See $\mathrm{CH} 00-0250-016$ for ordering information, modifications and additional dimensions
3. See drawing BND-XX25S for band strap dimensions and information.
4. Adapter to be permanently marked with code identification number and full part number (e.g. 06090-BND32AB00-1812). Band strap shall bear no part marking
5. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See CH00-0250-016 for further details.
6. Adapter mates to: MIL-C-22992,

Class C and R, MS17343, 44, 45 and 47 Connectors.
7. Anti-rotational set screw, 3 threaded holes $120^{\circ} \pm 5^{\circ}$ apart, single mating set screw supplied: AN565DC4H2. Not required for Type II adapters.

For additional codes available,

 contact TE.Code 32 MIL-C-22992 (Continued)

45° Adapter Code 45

Type II Modification
(See Note 5)

Available in:	Americas	Europe

For additional support numbers please visit www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change

Adapter Products
Code 32 MIL-C-22992 (Continued)
CRES-Lock Adapters (USA) BND Adapters (Europe)
(continued)

Code 32 Band Strap
Adapter (Continued)
Table I

Order Number	Shell Size ${ }^{2}$	Entry Size Max. Type ${ }^{1}$	\varnothing A Unified Thread Class 2B	$\varnothing \text { б }$ Max.	C Max.	D Max.	F Max.
12	12	08	0.7500-20 UNEF	$\begin{aligned} & 27.2 \\ & 1.07 \end{aligned}$	$\begin{aligned} & \hline 29.0 \\ & 1.14 \end{aligned}$	$\begin{aligned} & \hline 28.4 \\ & 1.12 \end{aligned}$	$\begin{aligned} & \hline 36.6 \\ & 1.44 \end{aligned}$
14	14	10	0.8750-20 UNEF	$\begin{aligned} & 30.2 \\ & 1.19 \end{aligned}$	$\begin{aligned} & 29.7 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 28.9 \\ & 1.14 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.4 \\ & 1.51 \end{aligned}$
16	16	12	1.0000-20 UNEF	$\begin{aligned} & 33.5 \\ & 1.32 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.0 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 29.2 \\ & 1.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 40.1 \\ & 1.58 \end{aligned}$
18	18	14	1.1250-18 UNEF	$\begin{aligned} & \hline 36.6 \\ & 1.44 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.7 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 1.18 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.7 \\ & 1.64 \end{aligned}$
20	20	16	1.2500-18 UNEF	$\begin{aligned} & \hline 39.9 \\ & 1.57 \end{aligned}$	$\begin{aligned} & \hline 31.2 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 1.21 \end{aligned}$	$\begin{aligned} & \hline 43.2 \\ & 1.70 \end{aligned}$
22	22	18	1.3750-18 UNEF	$\begin{aligned} & \hline 42.9 \\ & 1.69 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32.0 \\ & 1.26 \end{aligned}$	$\begin{aligned} & \hline 31.2 \\ & 1.23 \\ & \hline \end{aligned}$	$\begin{aligned} & 44.7 \\ & 1.76 \end{aligned}$
24	24	22	1.6250-18 UNEF	$\begin{aligned} & \hline 52.6 \\ & 2.07 \end{aligned}$	$\begin{aligned} & 33.5 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 49.5 \\ & 1.95 \end{aligned}$
28	28	26	1.8750-16 UN	$\begin{aligned} & 58.9 \\ & 2.32 \end{aligned}$	$\begin{aligned} & \hline 34.8 \\ & 1.37 \end{aligned}$	$\begin{aligned} & 34.3 \\ & 1.35 \end{aligned}$	$\begin{aligned} & \hline 52.8 \\ & 2.08 \end{aligned}$
32	32	30	2.0625-16 UNS	$\begin{aligned} & \hline 65.3 \\ & 2.57 \end{aligned}$	$\begin{aligned} & \hline 36.3 \\ & 1.43 \end{aligned}$	$\begin{aligned} & \hline 35.6 \\ & 1.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 55.9 \\ & 2.20 \end{aligned}$
36	36	34	2.3125-16 UNS	$\begin{aligned} & \hline 71.6 \\ & 2.82 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.6 \\ & 1.48 \end{aligned}$	$\begin{aligned} & \hline 36.8 \\ & 1.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 59.2 \\ & 2.33 \end{aligned}$
40	40	34	2.6250-16 UN	$\begin{aligned} & 78.0 \\ & 3.07 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38.9 \\ & 1.53 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38.4 \\ & 1.51 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 62.0 \\ & 2.44 \\ & \hline \end{aligned}$

1. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See CH00-0250-016 for further details.
2. Adapter mates to: MIL-C-22992, Class C and R, MS17343, 44, 45 and 47 Connectors.

Table II

Entry	$\begin{gathered} \sigma Z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \end{gathered}$	$\begin{gathered} \varnothing \text { S } \\ \pm 0.51 \\ {[\pm 0.020]} \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \end{gathered}$	E Max.
03	$\begin{aligned} & 4.75 \\ & 0.188 \end{aligned}$	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.10 \\ & 0.438 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28.3 \\ & 1.12 \end{aligned}$
04	$\begin{array}{r} 6.35 \\ 0.250 \\ \hline \end{array}$	$\begin{gathered} 9.52 \\ 0.375 \\ \hline \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.3 \\ & 1.15 \end{aligned}$
05	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.563 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.0 \\ & 1.18 \end{aligned}$
06	$\begin{gathered} 9.52 \\ 0.375 \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 30.8 \\ & 1.21 \end{aligned}$
07	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.562 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.689 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 1.24 \end{aligned}$
08	$\begin{aligned} & 12.70 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & \hline 32.3 \\ & 1.27 \end{aligned}$
09	$\begin{aligned} & 14.30 \\ & 0.562 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.688 \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.813 \end{aligned}$	$\begin{aligned} & 33.3 \\ & 1.31 \end{aligned}$
10	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & 34.0 \\ & 1.34 \end{aligned}$
11	$\begin{aligned} & 17.50 \\ & 0.688 \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.812 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.80 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 1.38 \\ & \hline \end{aligned}$
12	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 4 0} \\ & 1.000 \end{aligned}$	$\begin{aligned} & 35.8 \\ & 1.41 \end{aligned}$
13	$\begin{aligned} & 20.65 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 1.42 \end{aligned}$
14	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 4 0} \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.16 \\ & 1.189 \end{aligned}$	$\begin{aligned} & 37.5 \\ & 1.48 \end{aligned}$

Table II (Continued)

Entry	$\begin{gathered} \sigma Z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \end{gathered}$	$\begin{gathered} \varnothing \text { S } \\ \pm 0.51 \\ {[\pm 0.020]} \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \end{gathered}$	E Max.
15	$\begin{aligned} & \hline 23.83 \\ & .0938 \end{aligned}$	$\begin{aligned} & \hline 27.00 \\ & 1.062 \end{aligned}$	$\begin{aligned} & \hline 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & \hline 37.8 \\ & 1.49 \end{aligned}$
16	$\begin{aligned} & 25.40 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28.58 \\ & 1.125 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33.34 \\ & 1.313 \end{aligned}$	$\begin{aligned} & \hline 38.3 \\ & 1.51 \\ & \hline \end{aligned}$
18	$\begin{aligned} & 28.58 \\ & 1.125 \end{aligned}$	$\begin{aligned} & \hline 31.75 \\ & 1.250 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36.51 \\ & 1.438 \end{aligned}$	$\begin{aligned} & \hline 39.8 \\ & 1.57 \\ & \hline \end{aligned}$
20	$\begin{aligned} & \hline 31.75 \\ & 1.250 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 34.90 \\ & 1.375 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39.69 \\ & 1.563 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.3 \\ & 1.63 \\ & \hline \end{aligned}$
22	$\begin{aligned} & 34.90 \\ & 1.375 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38.10 \\ & 1.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.86 \\ & 1.688 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43.0 \\ & 1.69 \\ & \hline \end{aligned}$
24	$\begin{aligned} & 38.10 \\ & 1.500 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.28 \\ & 1.625 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 46.83 \\ & 1.844 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 44.5 \\ & 1.75 \\ & \hline \end{aligned}$
26	$\begin{aligned} & 41.28 \\ & 1.625 \end{aligned}$	$\begin{aligned} & \hline 44.45 \\ & 1.750 \end{aligned}$	$\begin{aligned} & \hline 49.61 \\ & 1.953 \end{aligned}$	$\begin{aligned} & \hline 46.3 \\ & 1.82 \end{aligned}$
28	$\begin{aligned} & 44.45 \\ & 1.750 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 47.63 \\ & 1.875 \end{aligned}$	$\begin{aligned} & \hline 52.78 \\ & 2.078 \end{aligned}$	$\begin{aligned} & \hline 48.3 \\ & 1.90 \\ & \hline \end{aligned}$
30	$\begin{aligned} & 47.65 \\ & 1.875 \end{aligned}$	$\begin{aligned} & 50.80 \\ & 2.000 \end{aligned}$	$\begin{aligned} & \mathbf{5 6 . 3 6} \\ & 2.219 \end{aligned}$	$\begin{aligned} & \hline 50.0 \\ & 1.97 \\ & \hline \end{aligned}$
32	$\begin{aligned} & 50.80 \\ & 2.000 \end{aligned}$	$\begin{aligned} & 54.00 \\ & 2.125 \end{aligned}$	$\begin{aligned} & 59.53 \\ & 2.344 \end{aligned}$	$\begin{aligned} & 51.5 \\ & 2.03 \end{aligned}$
34	$\begin{aligned} & \mathbf{5 4 . 0 0} \\ & 2.125 \end{aligned}$	$\begin{aligned} & 57.15 \\ & 2.250 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 62.71 \\ & 2.469 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 53.3 \\ 2.10 \\ \hline \end{array}$

Code 40 MIL-C-38999 Series III and IV

Braided Adapters

208M7XX-XXXXX

208M8XX-XXXXX

208M9XX-XXXXX

Order No.	Shell Size Commercial	Military	Max. Entry* Size Type 1	Thread	Dimensions		
					C Max.	D Max.	E Max.
08	9	A	04	M12 $\times 1.0$	20.8 [0.82]	22.6 [0.89]	29.2 [1.15]
10	11	B	07	M15 $\times 1.0$	21.3 [0.84]	23.4 [0.92]	30.7 [1.21]
12	13	C	09	M18 $\times 1.0$	22.1 [0.87]	24.1 [0.95]	32.5 [1.28]
14	15	D	10	M 2×1.0	22.6 [0.89]	24.1 [0.95]	34.0 [1.34]
16	17	E	12	M 25×1.0	23.4 [0.92]	24.9 [0.98]	35.6 [1.40]
18	19	F	14	$\mathrm{M} 28 \times 1.0$	24.1 [0.95]	25.7 [1.01]	37.1 [1.46]
20	21	G	16	M31 $\times 1.0$	24.6 [0.97]	26.4 [1.04]	38.9 [1.53]
22	23	H	18	M34 $\times 1.0$	25.4 [1.00]	27.2 [1.07]	40.4 [1.59]
24	25	J	20	M37 x 1.0	25.9 [1.02]	27.2 [1.07]	42.4 [1.67]

${ }^{*}$ For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

$\left.\begin{array}{ccc}\text { Available in: } & \text { Americas } & \text { Europe }\end{array}\right]$ Asia Pacific | \square |
| :---: | to change.

Adapter Selection
Code 40 MIL-C-38999 Series III and IV (Continued)

Braided Adapters

(continued)

Entry Size Dimensions

Entry Size	Dimensions		
	$\mathbf{Z ~ + 0 . 2 5 - 0 . 5}$	Y Dia.	W Max.
04	$6.35[0.25]$	$13.97[0.55]$	$31.2[1.23]$
05	$7.92[0.31]$	$15.54[0.61]$	$32.8[1.29]$
06	$9.52[0.37]$	$17.14[0.67]$	$34.3[1.35]$
07	$11.09[0.44]$	$18.71[0.74]$	$36.1[1.42]$
08	$12.7[0.50]$	$20.32[0.80]$	$37.6[1.48]$
10	$15.87[0.62]$	$23.49[0.92]$	$40.6[1.60]$
12	$19.05[0.75]$	$26.67[1.05]$	$43.9[1.73]$
14	$22.23[0.88]$	$29.84[1.17]$	$47.0[1.85]$
16	$25.4[1.00]$	$33.02[1.30]$	$50.8[2.00]$
18	$28.57[1.12]$	$36.19[1.42]$	$54.1[2.13]$
20	$31.75[1.25]$	$39.37[1.55]$	$57.21[2.25]$

Molded Part Selection Guide

 (Braided)| Tinel-Lock Entry Size | Standard K Parts | | | Low-Profile D Parts | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Straight
 Part No. | $\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$ | Cable OD (Min.) | Straight Part No. | $\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$ | Cable OD (Min.) |
| 04 | 202K232 | - | 3.3 [0.1] | - | - | - |
| 04 | 202W232 | - | 4.3 [0.2] | - | - | - |
| 04 | 202K121 | 222K121 | 5.6 [0.2] | 202D211 | 222D211 | 6.4 [0.3] |
| 05, 06 | 202K132 | 222K132 | 5.9 [0.2] | 202D221 | 222D221 | 7.4 [0.3] |
| 07, 08 | 202K142 | 222K142 | 7.1 [0.3] | 202D232 | 222D232 | 8.4 [0.3] |
| 10, 12 | 202K153 | 222K152 | 8.4 [0.3] | 202D242 | 222D242 | 9.7 [0.4] |
| 14, 16 | 202K163 | 222K163 | 9.9 [0.4] | 202D253 | 222D253 | 10.5 [0.4] |
| 18, 20, 22 | 202K174 | 222K174 | 15.7 [0.6] | 202D263 | 222D263 | 12.2 [0.5] |
| 24 | 202K185 | 222K185 | 16.8 [0.7] | - | - | - |

Uniboot Parts

Tinel- Lock Entry Size	Part No.	Cable OD (Min.)
04	$202 C 611$	$4.8[0.19]$
$05,06,07$	$202 C 621$	$8.1[0.32]$
$08,10,12$	$202 C 632$	$12.7[0.50]$
$12,14,16$	$202 C 642$	$17.5[0.69]$
$16,18,20,22$	$202 C 653$	$22.4[0.88]$
24	$202 C 663$	$22.9[0.90]$

Dimensions are shown for reference purposes only. Specifications subject to change.

Solid Adapters

209M3XX-XXX

Table of Dimensions

Order No.	Shell Size Commercial	Military	A Thread	Dimensions	
				$\begin{gathered} \hline Y+.000-.030 \\ (+0.00)(-0.76) \\ \hline \end{gathered}$	Z Dia. Min.
08	9	A	M12 $\times 1.0$	18.26 [.719]	6.35 [.250]
10	11	B	M15 $\times 1.0$	21.44 [.844]	9.52 [.375]
12	13	C	M18 $\times 1.0$	24.61 [.969]	12.70 [.500]
14	15	D	M22 x 1.0	30.91 [1.217]	15.88 [.625]
16	17	E	M25 x 1.0	34.40 [1.354]	19.05 [.750]
18	19	F	$\mathrm{M} 28 \times 1.0$	37.50 [1.476]	20.62 [.812]
20	21	G	M31 x 1.0	38.89 [1.531]	23.80 [.937]
22	23	H	M34 $\times 1.0$	42.06 [1.656]	26.97 [1.062]
24	25	J	M37 $\times 1.0$	45.24 [1.781]	30.18 [1.188]

Molded Part Selection Guide (Solid)

Order No.	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)
08	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
10	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
12, 14	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
16, 18	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
20, 22, 24	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
08	$202 C 621$	$8.1[0.32]$
10	$202 C 632$	$12.7[0.50]$
12,14	$202 C 642$	$17.5[0.69]$
$16,18,20,22$	$202 C 653$	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
\square	\square	\square	

Adapter Products
Code 40 MIL-C-38999 Series III and IV (Continued)

Spin-Coupling Adapters

Table of Dimensions

Order No.	Shell Size Commercial	Military	Thread	Dimensions	
	98			M12 $\times 1.0$	$13.54[0.53]$

Molded Part Selection Guide (Spin-Coupling)

Order No.	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \\ \hline \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \\ \hline \end{gathered}$
03, 08	202W232	-	4.3 [0.19]	-	-	-
03, 08	202K121	222K121	5.6 [0.22]	202D211	222D211	6.4 [0.25]
10, 11	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
12, 14	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
16, 18	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
20, 22	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
24, 28	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
32, 36	202K185	222K185	16.8 [0.66]	-	-	-

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
03,08	$202 C 611$	$4.8[0.19]$
$10,11,12$	$202 C 621$	$8.1[0.32]$
14,16	$202 C 632$	$12.7[0.50]$
18,20	$202 C 642$	$17.5[0.69]$
22,24	$202 C 653$	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
	\square	\square	

Tinel-Lock Adapters

Table of Dimensions

Order No.	Shell Size Commercial	Military	Max. Entry* Size Type 1	Thread	Dimensions		
					C Max.	D Max.	E Max.
08	9	A	04	M12 $\times 1.0$	20.8 [0.82]	22.6 [0.89]	27.9 [1.10]
10	11	B	07	M15 $\times 1.0$	21.3 [0.84]	23.4 [0.92]	30.5 [1.20]
12	13	C	08	M18 $\times 1.0$	22.1 [0.87]	24.1 [0.95]	32.0 [1.26]
14	15	D	10	M2 $\times 1.0$	22.6 [0.89]	24.1 [0.95]	34.0 [1.34]
16	17	E	12	M 25×1.0	23.4 [0.92]	24.9 [0.98]	35.6 [1.40]
18	19	F	14	M28 $\times 1.0$	24.1 [0.95]	25.7 [1.01]	36.8 [1.45]
20	21	G	16	M31 $\times 1.0$	24.6 [0.97]	26.4 [1.04]	38.4 [1.51]
22	23	H	18	M34 $\times 1.0$	25.4 [1.00]	27.2 [1.07]	39.9 [1.57]
24	25	J	20	M37 x 1.0	25.9 [1.02]	27.2 [1.07]	42.4 [1.67]

*For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

Available in:	Americas	Europe
\square	\square	Asia Pacific

Dimensions are shown for reference purposes only. Specifications subject to change

Tinel-Lock Adapters

(continued)

Entry Size Dimensions

Entry Size	Dimensions			
	S Diameter (Min.-Max.)	Y Dia.	W Max.	
04	$6.35[0.25]$	$9.39-9.56[0.37-0.38]$	$13.97[0.55]$	$31.2[1.23]$
05	$7.92[0.31]$	$10.97-11.13[0.43-0.44]$	$15.54[0.61]$	$32.8[1.29]$
06	$9.52[0.37]$	$12.57-12.73[0.49-0.50]$	$17.14[0.67]$	$34.3[1.35]$
07	$11.09[0.44]$	$14.12-14.31[0.55-0.56]$	$18.71[0.74]$	$36.1[1.42]$
08	$12.7[0.50]$	$15.72-15.91[0.62-0.63]$	$20.32[0.80]$	$37.6[1.48]$
10	$15.87[0.62]$	$18.84-19.11[0.74-0.75]$	$23.49[0.92]$	$40.6[1.60]$
12	$19.05[0.75]$	$22.02-22.28[0.87-0.88]$	$26.67[1.05]$	$43.9[1.73]$
14	$22.23[0.88]$	$25.17-25.46[0.99-1.00]$	$29.84[1.17]$	$47.0[1.85]$
16	$25.4[1.00]$	$28.34-28.63[1.12-1.13]$	$33.02[1.30]$	$50.8[2.00]$
18	$28.57[1.12]$	$31.52-31.81[1.24-1.25]$	$36.19[1.42]$	$54.1[2.13]$
20	$31.75[1.25]$	$34.69-34.98[1.37-1.38]$	$39.37[1.55]$	$57.21[2.25]$

Molded Part Selection Guide (Tinel)

Tinel-Lock Entry Size	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \end{gathered}$
04	202K232	-	3.3 [0.1]	-	-	-
04	202W232	-	4.3 [0.2]	-	-	-
04	202K121	222K121	5.6 [0.2]	202D211	222D211	6.4 [0.3]
05, 06	202K132	222K132	5.9 [0.2]	202D221	222D221	7.4 [0.3]
07, 08	202K142	222K142	7.1 [0.3]	202D232	222D232	8.4 [0.3]
10, 12	202K153	222K152	8.4 [0.3]	202D242	222D242	9.7 [0.4]
14, 16	202K163	222K163	9.9 [0.4]	202D253	222D253	10.5 [0.4]
18, 20, 22	202K174	222K174	15.7 [0.6]	202D263	222D263	12.2 [0.5]
24	202K185	222K185	16.8 [0.7]	-	-	-

Uniboot Parts

Tinel-Lock Entry Size	Part No.	Cable OD (Min.)
04	$202 C 611$	$4.8[0.19]$
$05,06,07$	$202 C 621$	$8.1[0.32]$
$08,10,12$	$202 C 632$	$12.7[0.50]$
$12,14,16$	$202 C 642$	$17.5[0.69]$
$16,18,20,22$	$202 C 653$	$22.4[0.88]$
24	$202 C 663$	$22.9[0.90]$

CRES-Lock Adapters (USA) BND Adapters (Europe)

Code 40 Band Strap Adapter

Notes

1. This product is designed to terminate a braided cable shield by means of a band strap and a heat shrinkable lipped boot to a connector.
2. See $\mathrm{CH} 00-0250-016$ for ordering information, modifications and additional dimensions.
3. See drawing BND-XX25S for band strap dimensions and information.
4. Adapter to be permanently marked with code identification number and full part number (e.g. 06090-BND40AB00-1814). Band strap shall bear no part marking
5. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See CH00-0250-016 for further details.
6. Adapter mates to: MIL-C-38999 Series III and IV, Class C, F, K and W, D38999/20, /24, /26, /40, /46 and /47 Connectors. When so mated it shall provide a water-tight seal meeting the requirements of MIL-C-85049, paragraph 3.5.7.
7. Coupling nut shall have 3 lock wire holes 120° apart.

For additional codes available, contact TE.

Code 40 MIL-C-38999 Series III and IV (Continued)

| Available in: | Americas | Europe |
| :---: | :---: | :---: |\quad Asia Pacific

Dimensions are shown for reference purposes only. Specifications subject to change.

Adapter Products
Code 40 MIL-C-38999 Series III and IV (Continued)
CRES-Lock Adapters (USA) BND Adapters (Europe)
(continued)

Code 40 Band Strap
Adapter (Continued)
Table I

Order Number	Shell Size ${ }^{2}$		Entry Size Max. Type I'	\varnothing AMetric ThreadClass 2B	$\begin{aligned} & \varnothing \text { B } \\ & \text { Max. } \end{aligned}$	$\begin{gathered} \text { Ø } \mathrm{Bax} .^{3} \end{gathered}$	C Max.	$\begin{gathered} \text { Dax. } \end{gathered}$	F Max.
	Com.	MIL							
8	9	A	04	M12 $\times 1.0$	$\begin{aligned} & \hline 19.1 \\ & 0.75 \end{aligned}$	$\begin{aligned} & \hline 24.6 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 1.05 \end{aligned}$	$\begin{aligned} & \hline 32.0 \\ & 1.26 \end{aligned}$
10	11	B	07	M15 $\times 1.0$	$\begin{aligned} & 21.6 \\ & 0.85 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 27.0 \\ & 1.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.3 \\ & 0.84 \end{aligned}$	$\begin{aligned} & \hline 27.4 \\ & 1.08 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.5 \\ & 1.36 \\ & \hline \end{aligned}$
12	13	C	09	M18 $\times 1.0$	$\begin{aligned} & 25.4 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \hline 31.0 \\ & 1.22 \end{aligned}$	$\begin{aligned} & \hline 22.1 \\ & 0.87 \end{aligned}$	$\begin{aligned} & \hline 28.2 \\ & 1.11 \end{aligned}$	$\begin{aligned} & \hline 36.1 \\ & 1.42 \end{aligned}$
14	15	D	10	M22 $\times 1.0$	$\begin{aligned} & 29.2 \\ & 1.15 \end{aligned}$	$\begin{aligned} & \hline 35.8 \\ & 1.41 \end{aligned}$	$\begin{aligned} & \hline 22.6 \\ & 0.89 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.2 \\ & 1.11 \end{aligned}$	$\begin{aligned} & \hline 38.1 \\ & 1.50 \\ & \hline \end{aligned}$
16	17	E	12	M25 x 1.0	$\begin{aligned} & \hline 31.8 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37.3 \\ & 1.47 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.4 \\ & 0.92 \end{aligned}$	$\begin{aligned} & 29.0 \\ & 1.14 \end{aligned}$	$\begin{aligned} & \hline 39.6 \\ & 1.56 \\ & \hline \end{aligned}$
18	19	F	14	M28 $\times 1.0$	$\begin{aligned} & \hline 35.6 \\ & 1.40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 40.6 \\ & 1.60 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24.1 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 29.7 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 40.9 \\ & 1.61 \end{aligned}$
20	21	G	16	M31 $\times 1.0$	$\begin{aligned} & \hline 38.1 \\ & 1.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 44.5 \\ & 1.75 \end{aligned}$	$\begin{aligned} & \hline 24.6 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 30.5 \\ & 1.20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42.4 \\ & 1.67 \end{aligned}$
22	23	H	18	M34 x 1.0	$\begin{aligned} & \hline 41.9 \\ & 1.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 47.0 \\ & 1.85 \end{aligned}$	$\begin{aligned} & \hline 25.4 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 31.3 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 43.9 \\ & 1.73 \end{aligned}$
24	25	J	20	M37 x 1.0	$\begin{aligned} & \hline 44.5 \\ & 1.75 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 51.6 \\ & 2.03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25.9 \\ & 1.02 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31.3 \\ & 1.23 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 46.5 \\ & 1.83 \\ & \hline \end{aligned}$

1. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See CH00-0250-016 for further details.
2. Adapter mates to: MIL-C-38999 Series III and IV, Class C, F, K and W, D38999/20, /24, /26, /40, /46 and /47 Connectors.

When so mated it shall provide a water-tight seal meeting the requirements of MIL-C-85049, paragraph 3.5.7
3. These dimensions apply if a self-locking coupling nut is used, modification code " S ".

Table II

Entry Size	$\begin{gathered} \sigma Z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \end{gathered}$	$\begin{gathered} \varnothing \text { S } \\ \pm 0.51 \\ {[\pm 0.020]} \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \end{gathered}$	E Max.
03	$\begin{aligned} & 4.75 \\ & 0.188 \end{aligned}$	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.10 \\ & 0.438 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.8 \\ & 0.62 \end{aligned}$
04	$\begin{array}{r} 6.35 \\ 0.250 \\ \hline \end{array}$	$\begin{gathered} 9.52 \\ 0.375 \\ \hline \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.3 \\ & 0.64 \end{aligned}$
05	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.563 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.8 \\ & 0.66 \\ & \hline \end{aligned}$
06	$\begin{gathered} 9.52 \\ 0.375 \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & \hline 17.8 \\ & 0.70 \\ & \hline \end{aligned}$
07	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.562 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.689 \end{aligned}$	$\begin{aligned} & 18.3 \\ & 0.72 \end{aligned}$
08	$\begin{aligned} & 12.70 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.8 \\ & 0.78 \end{aligned}$
09	$\begin{aligned} & 14.30 \\ & 0.562 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.688 \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.813 \end{aligned}$	$\begin{aligned} & 21.3 \\ & 0.84 \end{aligned}$
10	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & 22.4 \\ & 0.88 \end{aligned}$
11	$\begin{aligned} & 17.50 \\ & 0.688 \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 23.80 \\ & 0.938 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.9 \\ & 0.90 \\ & \hline \end{aligned}$
12	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 4 0} \\ & 1.000 \end{aligned}$	$\begin{aligned} & 23.4 \\ & 0.92 \end{aligned}$
13	$\begin{aligned} & 20.65 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$	$\begin{aligned} & 24.4 \\ & 0.96 \end{aligned}$
14	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 4 0} \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.16 \\ & 1.189 \end{aligned}$	$\begin{aligned} & 25.4 \\ & 1.00 \end{aligned}$

Table II (Continued)

Entry Size	$\begin{gathered} \sigma Z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \end{gathered}$	$\begin{gathered} \varnothing \mathrm{S} \\ \pm 0.51 \\ {[\pm 0.020]} \\ \hline \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \end{gathered}$	E Max.
15	$\begin{aligned} & 23.83 \\ & .0938 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 27.00 \\ & 1.062 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31.75 \\ & 1.250 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25.4 \\ & 1.00 \end{aligned}$
16	$\begin{aligned} & 25.40 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28.58 \\ & 1.125 \\ & \hline \end{aligned}$	$\begin{array}{r} 33.34 \\ 1.313 \\ \hline \end{array}$	$\begin{aligned} & \hline 26.4 \\ & 1.04 \end{aligned}$
18	$\begin{aligned} & \hline 28.58 \\ & 1.125 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{array}{r} 36.51 \\ 1.438 \\ \hline \end{array}$	$\begin{aligned} & 27.7 \\ & 1.09 \end{aligned}$
20	$\begin{aligned} & 31.75 \\ & 1.250 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.90 \\ & 1.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 39.69 \\ & 1.563 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.2 \\ & 1.15 \end{aligned}$
22	$\begin{aligned} & 34.90 \\ & 1.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.86 \\ & 1.688 \end{aligned}$	N/A
24	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 41.28 \\ & 1.625 \end{aligned}$	$\begin{aligned} & 46.83 \\ & 1.844 \end{aligned}$	N/A
26	$\begin{aligned} & 41.28 \\ & 1.625 \end{aligned}$	$\begin{aligned} & 44.45 \\ & 1.750 \end{aligned}$	$\begin{aligned} & \hline 49.61 \\ & 1.953 \\ & \hline \end{aligned}$	N/A
28	$\begin{aligned} & \hline 44.45 \\ & 1.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 47.63 \\ & 1.875 \\ & \hline \end{aligned}$	$\begin{aligned} & 52.78 \\ & 2.078 \end{aligned}$	N/A
30	$\begin{aligned} & \hline 47.65 \\ & 1.875 \\ & \hline \end{aligned}$	$\begin{aligned} & 50.80 \\ & 2.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 6 . 3 6} \\ & 2.219 \end{aligned}$	N/A
32	$\begin{aligned} & 50.80 \\ & 2.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 4 . 0 0} \\ & 2.125 \end{aligned}$	$\begin{aligned} & \hline 59.53 \\ & 2.344 \end{aligned}$	N/A
34	$\begin{aligned} & \mathbf{5 4 . 0 0} \\ & 2.125 \end{aligned}$	$\begin{aligned} & \mathbf{5 7 . 1 5} \\ & 2.250 \end{aligned}$	$\begin{aligned} & \hline 62.71 \\ & 2.469 \end{aligned}$	N/A

Code 41 MIL-C-38999 Series I and II

Braided Adapters

204M0XX-XXXXX

204M2XX-XXXXX

Table of Dimensions

Order No.	Shell Size		Max. Entry* Size Type 1	A Unified Thread Class 2B	Dimensions		
	Series I	Series II			C Max.	D Max.	E Max.
08	9	8	04	. 438 -28 UNEF	19.8 [0.78]	23.1 [0.91]	29.2 [1.15]
10	11	10	06	.562-24 UNEF	20.3 [0.80]	23.6 [0.93]	30.7 [1.21]
12	13	12	08	.688-24 UNEF	21.1 [0.83]	24.4 [0.96]	32.5 [1.28]
14	15	14	10	.812-20 UNEF	21.6 [0.85]	24.9 [0.98]	34.0 [1.34]
16	17	16	12	.938-20 UNEF	22.4 [0.88]	25.4 [1.00]	35.6 [1.40]
18	19	18	13	1.062-18 UNEF	22.9 [0.90]	26.2 [1.03]	37.1 [1.46]
20	21	20	15	1.188-18 UNEF	23.6 [0.93]	26.9 [1.06]	38.9 [1.53]
22	23	22	16	1.312-18 UNEF	24.4 [0.96]	27.4 [1.08]	40.4 [1.59]
24	25	24	18	1.438-18 UNEF	24.9 [0.98]	28.2 [1.11]	41.9 [1.65]

*For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied.
Contact TE for information.

| Available in: | Americas | Europe |
| :---: | :---: | :---: |\quad Asia Pacific to change.

Braided Adapters

(continued)

Entry Size Dimensions

Entry		Dimensions	
Size	$\mathbf{Z} \pm \mathbf{0 . 0 2 0}(\pm \mathbf{0 . 5 1)}$	Y Dia. Min.	W Max.
03	$4.75[.187]$	$9.98[.393]$	$27.2[1.07]$
04	$6.35[.250]$	$11.58[.456]$	$27.2[1.07]$
05	$7.92[.312]$	$13.08[.515]$	$28.7[1.13]$
06	$9.53[.375]$	$14.76[.581]$	$30.2[1.19]$
07	$11.13[.438]$	$16.33[.643]$	$31.8[1.25]$
08	$12.70[.500]$	$17.91[.705]$	$33.5[1.32]$
09	$14.27[.562]$	$17.91[.705]$	$36.6[1.44]$
10	$15.88[.625]$	$21.11[.831]$	$36.6[1.44]$
11	$17.48[.688]$	$22.68[.893]$	$39.9[1.57]$
12	$19.05[.750]$	$24.21[.953]$	$39.9[1.57]$
13	$20.62[.812]$	$24.21[.953]$	$42.9[1.69]$
14	$22.23[.875]$	$27.46[1.081]$	$42.9[1.69]$
15	$23.83[.938]$	$29.03[1.143]$	$46.2[1.82]$
16	$25.40[1.000]$	$30.61[1.205]$	$46.2[1.82]$
18	$28.58[1.125]$	$35.08[1.381]$	$49.3[1.94]$
20	$31.75[1.250]$	$38.25[1.506]$	-
22	$34.93[1.375]$	$41.43[1.631]$	-
24	$38.10[1.500]$	$44.60[1.756]$	-
28	$44.45[1.750]$	$50.90[2.004]$	-

Molded Part Selection Guide (Braided)

Tinel-Lock Entry Size	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \\ \hline \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)
04	202K232	-	3.3 [0.1]	-	-	-
04	202W232	-	4.3 [0.2]	-	-	-
04	202K121	222K121	5.6 [0.2]	202D211	222D211	6.4 [0.3]
05, 06	202K132	222K132	5.9 [0.2]	202D221	222D221	7.4 [0.3]
07, 08	202K142	222K142	7.1 [0.3]	202D232	222D232	8.4 [0.3]
10, 12	202K153	222K152	8.4 [0.3]	202D242	222D242	9.7 [0.4]
14, 16	202K163	222K163	9.9 [0.4]	202D253	222D253	10.5 [0.4]
18, 20, 22	202K174	222K174	15.7 [0.6]	202D263	222D263	12.2 [0.5]
24	202K185	222K185	16.8 [0.7]	-	-	-

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
04	$202 C 611$	$4.8[0.19]$
$05,06,07$	$202 C 621$	$8.1[0.32]$
$08,10,12$	$202 C 632$	$12.7[0.50]$
$12,14,16$	$202 C 642$	$17.5[0.69]$
$16,18,20,22$	$202 C 653$	$22.4[0.88]$
24	$202 C 663$	$22.9[0.90]$

Solid Adapters

202M1XX-XXX

Table of Dimensions

Order No.	Shell Size Series I	Series II	Thread	Dimensions	
	9	8	$.438-28$ UNEF	$\mathbf{Y + 0 . 0 0 - 0 . 3 0}$ $(+\mathbf{0 . 0 0})(-0.76)$ dia.	\mathbf{Z} Z min.
08	11	10	$.562-24$ UNEF	$21.26[.719][.844]$	$6.71[.264]$
10	13	12	$.688-24$ UNEF	$24.61[.969]$	$12.85[.392]$
12	15	14	$.812-20$ UNEF	$27.79[1.094]$	$16.03[.631]$
14	17	16	$.938-20$ UNEF	$32.54[1.281]$	$19.20[.756]$
16	19	18	$1.062-18$ UNEF	$35.71[1.406]$	$21.44[.844]$
18	21	20	$1.188-18$ UNEF	$38.89[1.531]$	$24.64[.970]$
20	23	22	$1.312-18$ UNEF	$42.06[1.656]$	$27.79[1.094]$
22	25	24	$1.438-18$ UNEF	$45.24[1.781]$	$30.71[1.209]$
24					

Molded Part Selection Guide (Solid)

Order No.	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \end{gathered}$
08	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
10	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
12, 14	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
16, 18	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
20, 22, 24	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
08	$202 C 621$	$8.1[0.32]$
10	$202 C 632$	$12.7[0.50]$
12,14	$202 C 642$	$17.5[0.69]$
$16,18,20,22$	$202 C 653$	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
\square	\square	\square	

Dimensions are shown for reference purposes only. Specifications subject to change.

Adapter Products
Code 41 MIL-C-38999 Series I and II (Continued)

Spin-Coupling Adapters

202M2XX-XXX

Table of Dimensions

Order No.	Shell Size Series I	Series II	Thread	Dimensions	
				Z Min.	
08	9	8	$.438-28$ UNEF	$13.54[0.53]$	$6.35[0.25]$
10	11	10	$.562-24$ UNEF	$15.37[0.61]$	$9.53[0.38]$
12	13	14	$.688-24$ UNEF	$19.66[0.77]$	$12.70[0.50]$
14	15	16	$.912-20$ UNEF	$21.29[0.84]$	$15.88[0.63]$
16	17	18	$1.062-18$ UNEF UNEF	$24.46[0.96]$	$19.05[0.75]$
18	19	20	$1.188-18$ UNEF	$30.47[1.04]$	$20.62[0.81]$
20	21	22	$1.312-18$ UNEF	$34.42[1.36]$	$26.80[0.94]$
22	23	24	$1.438-18$ UNEF	$36.65[1.44]$	$30.18[1.06]$
24	25				

Molded Part Selection Guide (Spin-Coupling)

Order No.	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)
08	202W232	-	4.3 [0.19]	-	-	-
08	202K121	222K121	5.6 [0.22]	202D211	222D211	6.4 [0.25]
10	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
12, 14	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
16, 18	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
20, 22	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
24, 28	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
08	202 C 611	$4.8[0.19]$
10,12	202 C 621	$8.1[0.32]$
14,16	202 C 632	$12.7[0.50]$
18,20	202 C 642	$17.5[0.69]$
22,24	202 C 653	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
\square	\square	\square	

Dimensions are shown for reference purposes only. Specifications subject to change.

Tinel-Lock Adapters

TXR41XX45-XXXXXX

TXR41XX00-XXXXXX

TXR41XX90-XXXXXX

Table of Dimensions

Order No.	Shell Size Series I	Series IIMax. Entry* Size Type 1	A Unified Thread Class 2B	Dimensions			
	9	8	-	$.438-28$ UNEF Max.	D Max.	E Max.	
08	11	10	-	$.562-24$ UNEF	$18.3[0.69]$	$23.1[0.91]$	$29.2[1.15]$
10	13	12	08	$.688-24$ UNEF	$23.6[0.93]$	$30.7[1.21]$	
12	15	14	10	$.812-20$ UNEF	$19.3[0.74]$	$24.4[0.96]$	$32.5[1.28]$
14	17	16	12	$.938-20$ UNEF	$20.1[0.79]$	$25.4[0.98]$	$34.0[1.34]$
16	19	18	13	$1.062-18$ UNEF	$20.6[0.81]$	$26.2[1.03]$	$37.6[1.40]$
18	21	20	15	$1.188-18$ UNEF	$21.3[0.84]$	$26.9[1.06]$	$38.9[1.53]$
20	23	22	16	$1.312-18$ UNEF	$22.1[0.87]$	$27.4[1.08]$	$40.4[1.59]$
22	25	24	18	$1.438-18$ UNEF	$22.6[0.89]$	$28.2[1.11]$	$41.9[1.65]$
24	24						

*For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

| Available in: | Americas | Europe |
| :---: | :---: | :---: | to change.

Adapter Products
Code 41 MIL-C-38999 Series I and II (Continued)

Tinel-Lock Adapters

(continued)

Entry Size Dimensions

Entry	Dimensions			
Size	$\mathbf{Z ~ + 0 . 2 5 - 0 . 5}$	S Diameter (Min.-Max.)	$\mathbf{Y}_{ \pm 0.38}$	W Max.
04	$6.35[0.25]$	$9.39-9.56[0.37-0.38]$	$13.97[0.55]$	$27.2[1.07]$
05	$7.92[0.31]$	$10.97-11.13[0.43-0.44]$	$15.54[0.61]$	$28.7[1.13]$
06	$9.52[0.37]$	$12.57-12.73[0.49-0.50]$	$17.14[0.67]$	$30.2[1.19]$
07	$11.09[0.44]$	$14.12-14.31[0.55-0.56]$	$18.71[0.74]$	$31.8[1.25]$
08	$12.70[0.50]$	$15.72-15.91[0.62-0.63]$	$20.32[0.80]$	$33.5[1.32]$
10	$15.87[0.62]$	$18.84-19.11[0.74-0.75]$	$23.49[0.92]$	$36.6[1.44]$
12	$19.05[0.75]$	$22.02-22.28[0.87-0.88]$	$26.67[1.05]$	$39.9[1.57]$
14	$22.23[0.88]$	$25.17-25.46[0.99-1.00]$	$29.84[1.17]$	$42.9[1.69]$
16	$25.4[1.00]$	$28.34-28.63[1.12-1.13]$	$33.02[1.30]$	$46.2[1.82]$
18	$28.57[1.12]$	$31.52-31.81[1.24-1.25]$	$36.19[1.42]$	$49.3[1.94]$

Molded Part Selection Guide (Tinel)

Order No.	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \\ \hline \end{gathered}$
04	202K232	-	3.3 [0.1]	-	-	-
04	202W232	-	4.3 [0.2]	-	-	-
04	202K121	222K121	5.6 [0.2]	202D211	222D211	6.4 [0.3]
05, 06	202K132	222K132	5.9 [0.2]	202D221	222D221	7.4 [0.3]
07, 08	202K142	222K142	7.1 [0.3]	202D232	222D232	8.4 [0.3]
10, 12	202K153	222K152	8.4 [0.3]	202D242	222D242	9.7 [0.4]
14, 16	202K163	222K163	9.9 [0.4]	202D253	222D253	10.5 [0.4]
18, 20, 22	202K174	222K174	15.7 [0.6]	202D263	222D263	12.2 [0.5]
24	202K185	222K185	16.8 [0.7]	-	-	-

Uniboot Parts

Order No.	Part No.	Cable OD $($ Min. $)$
04	$202 C 611$	$4.8[0.19]$
$05,06,07$	$202 C 621$	$8.1[0.32]$
$08,10,12$	$202 C 632$	$12.7[0.50]$
$12,14,16$	$202 C 642$	$17.5[0.69]$
$16,18,20,22$	$202 C 653$	$22.4[0.88]$
24	$202 C 663$	$22.9[0.90]$

| Catalog 1654025 Revised 3-13 | Dimensions are shown for reference purposes only. Specifications subject | Dimensions are in millimeters unless otherwise specified. | USA: +1 8005226752
 Asia Pacific: +86 04008206015 UK: +44 800267666 | For additional support numbers please visit www.te.com |
| :---: | :---: | :---: | :---: | :---: | to change

Adapter Products

CRES-Lock Adapters (USA) BND Adapters (Europe)

Code 41 Band Strap Adapter

Notes

1. This product is designed to terminate a braided cable shield by means of a band strap and a heat shrinkable lipped boot to a connector.
2. See $\mathrm{CH} 00-0250-016$ for ordering information, modifications and additional dimensions
3. See drawing BND-XX25S for band strap dimensions and information.
4. Adapter to be permanently marked with code identification number and full part number (e.g. 06090-BND41AB00-1812). Band strap shall bear no part marking
5. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See CH00-0250-016 for further details.
6. Adapter mates to: MIL-C-38999 Series I and II, Class E and T, MS27466, MS27467, MS27468, MS27472, MS27473, MS27474, MS27479, MS27480, MS27481, MS27484, MS27497, MS27652, MS27653 and MS27656 Connectors.

For additional codes available, contact TE.

Code 41 MIL-C-38999 Series I and II (Continued)

$\left.\begin{array}{ccc}\text { Available in: } & \text { Americas } & \text { Europe }\end{array}\right]$ Asia Pacific | \square |
| :---: |

Dimensions are shown for reference purposes only. Specifications subject to change.

Adapter Products
Code 41 MIL-C-38999 Series I and II (Continued)
CRES-Lock Adapters (USA) BND Adapters (Europe)
(continued)

Code 41 Band Strap
Adapter (Continued)
Table I

Order Number	Shell Size ${ }^{2}$		$\begin{aligned} & \text { Entry Size } \\ & \text { Max. } \\ & \text { Type I¹ } \end{aligned}$	\varnothing A Unified Thread UNEF Class 2B	$\begin{aligned} & \varnothing \text { В } \\ & \text { Max. } \end{aligned}$		C Max.	$\begin{gathered} \text { Dax. } \end{gathered}$	F Max.
	Series I	$\begin{aligned} & \text { Series } \\ & \text { II } \end{aligned}$							
08	9	08	04	0.4375-28	$\begin{aligned} & \hline 19.1 \\ & 0.75 \end{aligned}$	$\begin{aligned} & \hline 24.6 \\ & 0.97 \end{aligned}$	$\begin{aligned} & \hline 17.5 \\ & 0.69 \end{aligned}$	$\begin{aligned} & \hline 27.2 \\ & 1.07 \end{aligned}$	$\begin{aligned} & \hline 33.3 \\ & 1.31 \end{aligned}$
10	11	10	06	0.5625-24	$\begin{aligned} & 20.8 \\ & 0.85 \end{aligned}$	$\begin{aligned} & \hline 27.0 \\ & 1.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.3 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 27.7 \\ & 1.09 \end{aligned}$	$\begin{aligned} & \hline 34.8 \\ & 1.37 \end{aligned}$
12	13	12	08	0.6875-24	$\begin{aligned} & \hline 25.4 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31.0 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 0.74 \end{aligned}$	$\begin{aligned} & \hline 28.4 \\ & 1.12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36.6 \\ & 1.44 \end{aligned}$
14	15	14	10	0.8125-20	$\begin{aligned} & \hline 27.2 \\ & 1.10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 35.8 \\ & 1.41 \end{aligned}$	$\begin{aligned} & 19.3 \\ & 0.76 \end{aligned}$	$\begin{aligned} & \hline 29.0 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 38.1 \\ & 1.50 \end{aligned}$
16	17	16	12	0.9375-20	$\begin{aligned} & \hline 31.8 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37.3 \\ & 1.47 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.1 \\ & 0.79 \end{aligned}$	$\begin{aligned} & \hline 29.5 \\ & 1.16 \end{aligned}$	$\begin{aligned} & 39.6 \\ & 1.56 \end{aligned}$
18	19	18	13	1.0625-18	$\begin{aligned} & \hline 35.6 \\ & 1.40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 40.6 \\ & 1.60 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.6 \\ & 0.81 \end{aligned}$	$\begin{aligned} & \hline 30.2 \\ & 1.19 \end{aligned}$	$\begin{aligned} & \hline 41.1 \\ & 1.62 \end{aligned}$
20	21	20	15	1.1875-18	$\begin{aligned} & \hline 38.1 \\ & 1.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 44.5 \\ & 1.75 \end{aligned}$	$\begin{aligned} & \hline 21.3 \\ & 0.84 \end{aligned}$	$\begin{aligned} & \hline 31.0 \\ & 1.22 \end{aligned}$	$\begin{aligned} & \hline 42.9 \\ & 1.69 \end{aligned}$
22	23	22	16	1.3125-18	$\begin{aligned} & \hline 41.9 \\ & 1.65 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 46.8 \\ & 1.84 \end{aligned}$	$\begin{aligned} & 22.1 \\ & 0.87 \end{aligned}$	$\begin{aligned} & \hline 31.5 \\ & 1.24 \\ & \hline \end{aligned}$	$\begin{aligned} & 44.5 \\ & 1.75 \end{aligned}$
24	25	24	18	1.4375-18	$\begin{aligned} & \hline 44.5 \\ & 1.75 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 51.6 \\ & 2.03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22.6 \\ & 0.89 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32.3 \\ & 1.27 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 46.0 \\ & 1.81 \\ & \hline \end{aligned}$

1. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See CH00-0250-016 for further details.
2. Adapter mates to: MIL-C-38999 Series I and II, Class E and T, MS27466, MS27467, MS27468, MS27472, MS27473, MS27474, MS27479, MS27480, MS27481, MS27484, MS27497, MS27652, MS27653 and MS27656 Connectors.
3 . These dimensions apply if a self-locking coupling nut is used, modification code " S ".

Table II

Entry Size	$\begin{gathered} \sigma Z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \end{gathered}$	$\begin{gathered} \sigma \text { S } \\ \pm 0.51 \\ {[\pm 0.020]} \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \end{gathered}$	E Max.
03	$\begin{aligned} & 4.75 \\ & 0.188 \end{aligned}$	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.10 \\ & 0.438 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.3 \\ & 0.60 \\ & \hline \end{aligned}$
04	$\begin{array}{r} 6.35 \\ 0.250 \\ \hline \end{array}$	$\begin{gathered} 9.52 \\ 0.375 \\ \hline \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 0.64 \end{aligned}$
05	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.563 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.8 \\ & 0.66 \\ & \hline \end{aligned}$
06	$\begin{gathered} 9.52 \\ 0.375 \\ \hline \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.8 \\ & 0.70 \\ & \hline \end{aligned}$
07	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.562 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.689 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.8 \\ & 0.74 \end{aligned}$
08	$\begin{aligned} & 12.70 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & \hline 19.3 \\ & 0.76 \end{aligned}$
09	$\begin{aligned} & 14.30 \\ & 0.562 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.688 \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.813 \end{aligned}$	$\begin{aligned} & 20.3 \\ & 0.80 \end{aligned}$
10	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & \hline 21.3 \\ & 0.84 \end{aligned}$
11	$\begin{aligned} & 17.50 \\ & 0.688 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 23.80 \\ & 0.938 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.8 \\ & 0.86 \\ & \hline \end{aligned}$
12	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 4 0} \\ & 1.000 \end{aligned}$	$\begin{aligned} & \hline 22.9 \\ & 0.90 \end{aligned}$
13	$\begin{aligned} & 20.65 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.8 \\ & 0.94 \\ & \hline \end{aligned}$
14	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 4 0} \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.16 \\ & 1.189 \end{aligned}$	$\begin{aligned} & 24.4 \\ & 0.96 \\ & \hline \end{aligned}$

Table II (Continued)

Entry Size	$\begin{gathered} \sigma Z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \end{gathered}$	$\begin{gathered} \varnothing \mathrm{S} \\ \pm 0.51 \\ {[\pm 0.020]} \\ \hline \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \end{gathered}$	E Max.
15	$\begin{aligned} & 23.83 \\ & .0938 \end{aligned}$	$\begin{aligned} & \hline 27.00 \\ & 1.062 \end{aligned}$	$\begin{aligned} & \hline 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 25.4 \\ & 1.00 \end{aligned}$
16	$\begin{aligned} & 25.40 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28.58 \\ & 1.125 \\ & \hline \end{aligned}$	$\begin{array}{r} 33.34 \\ 1.313 \\ \hline \end{array}$	$\begin{aligned} & 25.9 \\ & 1.02 \end{aligned}$
18	$\begin{aligned} & \hline 28.58 \\ & 1.125 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{array}{r} 36.51 \\ 1.438 \\ \hline \end{array}$	$\begin{aligned} & \hline 27.4 \\ & 1.08 \end{aligned}$
20	$\begin{aligned} & 31.75 \\ & 1.250 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.90 \\ & 1.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 39.69 \\ & 1.563 \\ & \hline \end{aligned}$	N/A
22	$\begin{aligned} & 34.90 \\ & 1.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.86 \\ & 1.688 \end{aligned}$	N/A
24	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 41.28 \\ & 1.625 \end{aligned}$	$\begin{aligned} & 46.83 \\ & 1.844 \end{aligned}$	N/A
26	$\begin{aligned} & 41.28 \\ & 1.625 \end{aligned}$	$\begin{aligned} & 44.45 \\ & 1.750 \end{aligned}$	$\begin{aligned} & \hline 49.61 \\ & 1.953 \\ & \hline \end{aligned}$	N/A
28	$\begin{aligned} & \hline 44.45 \\ & 1.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 47.63 \\ & 1.875 \\ & \hline \end{aligned}$	$\begin{aligned} & 52.78 \\ & 2.078 \end{aligned}$	N/A
30	$\begin{aligned} & \hline 47.65 \\ & 1.875 \\ & \hline \end{aligned}$	$\begin{aligned} & 50.80 \\ & 2.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 6 . 3 6} \\ & 2.219 \end{aligned}$	N/A
32	$\begin{aligned} & 50.80 \\ & 2.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 4 . 0 0} \\ & 2.125 \end{aligned}$	$\begin{aligned} & \hline 59.53 \\ & 2.344 \end{aligned}$	N/A
34	$\begin{aligned} & \mathbf{5 4 . 0 0} \\ & 2.125 \end{aligned}$	$\begin{aligned} & \mathbf{5 7 . 1 5} \\ & 2.250 \end{aligned}$	$\begin{aligned} & \hline 62.71 \\ & 2.469 \end{aligned}$	N/A

Braided Adapters

203M0XX-XXXXX

203M1XX-XXXXX

203M2XX-XXXXX
Table of Dimensions

Order No.	Shell Size		Max. Entry Size Type 1*	Thread	Dimensions		
	MIL-C-81703	MIL-C-5015			C Max.	D Max.	E Max.
03	3	-	04	.562-24 UNEF	19.10 [0.75]	23.10 [0.91]	28.70 [1.13]
08	-	8 \& 8S	04	.500-20 UNF	19.10 [0.75]	23.10 [0.91]	27.90 [1.10]
10	-	10, 10 S \& 10 SL	06	.625-24 UNEF	19.60 [0.77]	23.60 [0.93]	29.50 [1.16]
12	7	12 \& 12S	08	.750-20 UNEF	20.30 [0.80]	24.10 [0.95]	31.00 [1.22]
14	12	14 \& 14S	08	.875-20 UNEF	20.80 [0.82]	24.60 [0.97]	32.50 [1.28]
16	19	16 \& 16S	10	1.000-20 UNEF	21.30 [0.84]	25.40 [1.00]	34.30 [1.35]
18	27	18	12	1.062-18 UNEF	21.80 [0.86]	25.70 [1.01]	35.60 [1.40]
20	37	20	14	1.188-18 UNEF	22.40 [0.88]	26.40 [1.04]	37.10 [1.46]
22	-	22	16	1.312-18 UNEF	23.10 [0.91]	26.90 [1.06]	38.90 [1.53]
24	-	24	18	1.438-18 UNEF	23.60 [0.93]	27.70 [1.09]	40.40 [1.59]
28	-	28	22	1.750-18 UNS	24.90 [0.98]	29.20 [1.15]	45.20 [1.78]
32	-	32	24	2.000-18 UNS	26.20 [1.03]	30.50 [1.20]	48.30 [1.90]
36	-	36	24	2.250-16 UN	27.40 [1.08]	31.80 [1.25]	51.60 [2.03]
40	-	40	24	2.500-16 UN	29.00 [1.14]	33.30 [1.31]	54.60 [2.15]
44	-	44	24	2.750-16 UN	30.20 [1.19]	34.50 [1.36]	57.90 [2.28]
48	-	48	24	3.000-16 UN	31.50 [1.24]	35.10 [1.38]	61.00 [2.40]
61	61	-	18	1.500-18 UNEF	23.90 [0.94]	27.90 [1.10]	41.10 [1.62]

*For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

$\left.\begin{array}{ccc}\text { Available in: } & \text { Americas } & \text { Europe }\end{array}\right]$ Asia Pacific | \square |
| :---: |

Adapter Products

Code 54 MIL-C-5015 (MS3400), MIL-C-26482 Series 2, MIL-C-83723 Series I and III, MIL-C-81703 Series III (Continued)

Entry Size Dimensions

Entry				
Size	Dimensions			
04	$6.35[0.25]$	$9.39-9.56[0.37-0.38]$	$13.97[0.55]$	\mathbf{W} W Max.
05	$7.92[0.31]$	$10.97-11.13[0.43-0.44]$	$15.54[0.61]$	$30.2[1.12]$
06	$9.52[0.37]$	$12.57-12.73[0.49-0.50]$	$17.14[0.67]$	$31.8[1.25]$
07	$11.09[0.44]$	$14.12-14.31[0.55-0.56]$	$18.71[0.74]$	$33.3[1.31]$
08	$12.7[0.50]$	$15.72-15.91[0.62-0.63]$	$20.32[0.80]$	$35.1[1.38]$
10	$15.87[0.62]$	$18.84-19.11[0.74-0.75]$	$23.49[0.92]$	$38.1[1.50]$
12	$19.05[0.75]$	$22.02-22.28[0.87-0.88]$	$26.67[1.05]$	$41.1[1.62]$
14	$22.23[0.88]$	$25.17-25.46[0.99-1.00]$	$29.84[1.17]$	$44.5[1.75]$
16	$25.4[1.00]$	$28.34-28.63[1.12-1.13]$	$33.02[1.30]$	$47.8[1.88]$
18	$28.57[1.12]$	$31.52-31.81[1.24-1.25]$	$36.19[1.42]$	$50.8[2.00]$
20	$31.75[1.25]$	$34.69-34.98[1.37-1.38]$	$39.37[1.55]$	$53.8[2.12]$
22	$34.93[1.38]$	$37.79-38.15[1.49-1.50]$	$42.55[1.68]$	$57.2[2.25]$
24	$38.1[1.50]$	$40.97-41.33[1.61-1.63]$	$45.72[1.80]$	$60.5[2.38]$

Molded Part Selection Guide (Braided)

Tinel-Lock Entry Size	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \\ \hline \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \end{gathered}$
04	202K232	-	3.3 [0.1]	-	-	-
04	202W232	-	4.3 [0.2]	-	-	-
04	202K121	222K121	5.6 [0.2]	202D211	222D211	6.4 [0.3]
05, 06	202K132	222K132	5.9 [0.2]	202D221	222D221	7.4 [0.3]
07, 08	202K142	222K142	7.1 [0.3]	202D232	222D232	8.4 [0.3]
10, 12	202K153	222K152	8.4 [0.3]	202D242	222D242	9.7 [0.4]
14, 16	202K163	222K163	9.9 [0.4]	202D253	222D253	10.5 [0.4]
18, 20, 22	202K174	222K174	15.7 [0.6]	202D263	222D263	12.2 [0.5]
24	202K185	222K185	16.8 [0.7]	-	-	-

Uniboot Parts

Tinel-Lock Entry Size	Part No.	Cable OD (Min.)
04	$202 C 611$	$4.8[0.19]$
$05,06,07$	$202 C 621$	$8.1[0.32]$
$08,10,12$	$202 C 632$	$12.7[0.50]$
$12,14,16$	$202 C 642$	$17.5[0.69]$
$16,18,20,22$	$202 C 653$	$22.4[0.88]$
24	$202 C 663$	$22.9[0.90]$

Dimensions are shown for reference purposes only. Specifications subject to change.

Code 54 MIL-C-5015 (MS3400), MIL-C-26482 Series 2, MIL-C-83723 Series I and III, MIL-C-81703 Series III (Continued)

Solid Adapters

Table of Dimensions

Order No.	Shell Size		Thread	Dimensions	
	MIL-C-81703	MIL-C-5015		Y +0.00-0.51 Dia.	Z Dia. Min.
03	3	-	.562-24 UNEF	13.54 [0.53]	6.35 [0.25]
08	-	8 \& 8S	. $500-20$ UNF	13.54 [0.53]	6.35 [0.25]
10	-	10, 10S \& 10SL	.625-24 UNEF	15.37 [0.61]	9.02 [0.36]
12	7	12 \& 12S	.750-20 UNEF	19.66 [0.77]	12.47 [0.49]
14	12	14 \& 14S	.875-20 UNEF	21.29 [0.84]	14.35 [0.56]
16	19	16 \& 16S	1.000-20 UNEF	24.46 [0.96]	17.53 [0.69]
18	27	18	1.062-18 UNEF	26.47 [1.04]	19.53 [0.77]
20	37	20	1.188-18 UNEF	30.91 [1.22]	22.71 [0.89]
22	-	22	1.312-18 UNEF	34.42 [1.36]	25.88 [1.02]
24	-	24	1.438-18 UNEF	36.65 [1.44]	28.80 [1.13]
28	-	28	1.750-18 UNS	43.41 [1.71]	34.77 [1.37]
32	-	32	2.000-18 UNS	48.74 [1.92]	41.02 [1.61]
36	-	36	2.250-16 UN	55.09 [2.17]	46.48 [1.83]
40	-	40	2.500-16 UN	61.01 [2.40]	51.94 [2.04]
44	-	44	2.750-16 UN	67.49 [2.66]	58.42 [2.30]
48	-	48	3.000-16 UN	73.84 [2.91]	64.77 [2.55]
61	61	-	1.500-18 UNEF	36.65 [1.44]	29.82 [1.17]

Molded Part Selection Guide (Solid)

Order No.	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)
03	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
10	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
12, 14	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
16, 18, 19, 27	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
20, 22, 24, 28, 37	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
28, 32	202K185	222K185	16.8 [0.66]	-	-	-

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
08	$202 C 621$	$8.1[0.32]$
$7,10,12$	$202 C 632$	$12.7[0.50]$
12,14	$202 C 642$	$17.5[0.69]$
$24,27,37,61$	$202 C 653$	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
$■$	\square	\square	

Code 54 MIL-C-5015 (MS3400), MIL-C-26482 Series 2, MIL-C-83723 Series I and III, MIL-C-81703 Series III (Continued)

Spin-Coupling Adapters

201M1XX-XXX
Table of Dimensions

Order No.	Shell Size		Thread	Dimensions	
	MIL-C-81703	MIL-C-5015		Y +0.00-0.51 Dia.	Z Dia. Min.
03	3	-	.562-24 UNEF	13.54 [0.53]	6.35 [0.25]
08	-	8 \& 8S	.500-20 UNF	13.54 [0.53]	6.35 [0.25]
10	-	10, 10S \& 10SL	.625-24 UNEF	15.37 [0.61]	9.02 [0.36]
12	7	12 \& 12S	.750-20 UNEF	19.66 [0.77]	12.47 [0.49]
14	12	14 \& 14S	.875-20 UNEF	21.29 [0.84]	14.35 [0.56]
16	19	16 \& 16S	1.000-20 UNEF	24.46 [0.96]	17.53 [0.69]
18	27	18	1.062-18 UNEF	26.47 [1.04]	19.53 [0.77]
20	37	20	1.188-18 UNEF	30.91 [1.22]	22.71 [0.89]
22	-	22	1.312-18 UNEF	34.42 [1.36]	25.88 [1.02]
24	-	24	1.438-18 UNEF	36.65 [1.44]	28.80 [1.13]
28	-	28	1.750-18 UNS	43.41 [1.71]	34.77 [1.37]
32	-	32	2.000-18 UNS	48.74 [1.92]	41.02 [1.61]
36	-	36	2.250-16 UN	55.09 [2.17]	46.48 [1.83]
40	-	40	2.500-16 UN	61.01 [2.40]	51.94 [2.04]
44	-	44	2.750-16 UN	67.49 [2.66]	58.42 [2.30]
48	-	48	3.000-16 UN	73.84 [2.91]	64.77 [2.55]
61	61	-	1.500-18 UNEF	36.65 [1.44]	29.82 [1.17]

Molded Part Selection Guide
(Spin-coupling)

Order No.	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \\ \hline \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \\ \hline \end{gathered}$
03, 08	202W232	-	4.3 [0.19]	-	-	-
03, 08	202K121	222K121	5.6 [0.22]	202D211	222D211	6.4 [0.25]
10, 11	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
12, 14	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
16, 18	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
20, 22	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
24, 28, 61	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
32, 36	202K185	222K185	16.8 [0.66]	-	-	-

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
08	$202 C 621$	$8.1[0.32]$
$7,10,12$	$202 C 632$	$12.7[0.50]$
12,14	$202 C 642$	$17.5[0.69]$
$24,27,37,61$	$202 C 653$	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
$■$	\square	\square	

Dimensions are shown for reference purposes only. Specifications subject to change.

Code 54 MIL-C-5015 (MS3400), MIL-C-26482 Series 2, MIL-C-83723 Series I and III, MIL-C-81703 Series III (Continued)

Tinel-Lock Adapters

TXR54XX00-XXXXXX

TXR54XX45-XXXXXX

TXR54XX90-XXXXXX

Available in:	Americas	Europe	Asia Pacific
\square	\square	\square	

Catalog 1654025
Revised 3-13
www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Adapter Products

Code 54 MIL-C-5015 (MS3400), MIL-C-26482 Series 2, MIL-C-83723 Series I and III, MIL-C-81703 Series III (Continued)

Tinel-Lock Adapters

(continued)

Table of Dimensions

Order No.	Shell Size		Max. Entry Size Type 1*	Thread	Dimensions		
	MIL-C-81703	MIL-C-5015			C Max.	D Max.	E Max.
03	3	-	04	.562-24 UNEF	19.10 [0.75]	23.10 [0.91]	28.70 [1.13]
08	-	8 \& 8S	04	.500-20 UNF	19.10 [0.75]	23.10 [0.91]	27.90 [1.10]
10	-	10, 10 S \& 10 SL	06	.625-24 UNEF	19.60 [0.77]	23.60 [0.93]	29.50 [1.16]
12	7	12 \& 12S	08	.750-20 UNEF	20.30 [0.80]	24.10 [0.95]	31.00 [1.22]
14	12	14 \& 14S	08	.875-20 UNEF	20.80 [0.82]	24.60 [0.97]	32.50 [1.28]
16	19	16 \& 16S	10	1.000-20 UNEF	21.30 [0.84]	25.40 [1.00]	34.30 [1.35]
18	27	18	12	1.062-18 UNEF	21.80 [0.86]	25.70 [1.01]	35.60 [1.40]
20	37	20	14	1.188-18 UNEF	22.40 [0.88]	26.40 [1.04]	37.10 [1.46]
22	-	22	16	1.312-18 UNEF	23.10 [0.91]	26.90 [1.06]	38.90 [1.53]
24	-	24	18	1.438-18 UNEF	23.60 [0.93]	27.70 [1.09]	40.40 [1.59]
28	-	28	22	1.750-18 UNS	24.90 [0.98]	29.20 [1.15]	45.20 [1.78]
32	-	32	24	2.000-18 UNS	26.20 [1.03]	30.50 [1.20]	48.30 [1.90]
36	-	36	24	2.250-16 UN	27.40 [1.08]	31.80 [1.25]	51.60 [2.03]
40	-	40	24	2.500-16 UN	29.00 [1.14]	33.30 [1.31]	54.60 [2.15]
44	-	44	24	2.750-16 UN	30.20 [1.19]	34.50 [1.36]	57.90 [2.28]
48	-	48	24	3.000-16 UN	31.50 [1.24]	35.10 [1.38]	61.00 [2.40]
61	61	-	18	1.500-18 UNEF	23.90 [0.94]	27.90 [1.10]	41.10 [1.62]

*For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

Entry Size Dimensions	Entry Size	Dimensions					
		Z +0.25-0.5	. 5 S Diameter (Min.-Max.)		$\mathrm{Y} \pm 0.38$		W Max.
	04	6.35 [0.25]		. 56 [0.37-0.38]	13.9	[55]	28.4 [1.12]
	05	7.92 [0.31]] 10.9	. 13 [0.43-0.44]	15.5	[61]	30.2 [1.19]
	06	9.52 [0.37]] 12.5	. 73 [0.49-0.50]	17.1	[0.67]	31.8 [1.25]
	07	11.09 [0.44]	$4] \quad 14.1$. 31 [0.55-0.56]	18.7	.74]	33.3 [1.31]
	08	12.70 [0.50]	0] 15.7	. 91 [0.62-0.63]	20.3	[80]	35.1 [1.38]
	10	15.87 [0.62]	2] 18.8	. 11 [0.74-0.75]	23.4	.92]	38.1 [1.50]
	12	19.05 [0.75]] 22.0	. 28 [0.87-0.88]	26.6	[05]	41.1 [1.62]
	14	22.23 [0.88]	8] 25.1	. 46 [0.99-1.00]	29.8	.17]	44.5 [1.75]
	16	25.40 [1.00]	0] 28.3	63 [1.12-1.13]	33.0	[30]	47.8 [1.88]
	18	28.57 [1.12]	2] 31.5	. 81 [1.24-1.25]	36.1	.42]	50.8 [2.00]
	20	31.75 [1.25]		4.98 [1.37-1.38]	39.3		53.8 [2.12]
	22	34.93 [1.38]		8.15 [1.49-1.50]			57.2 [2.25]
	24	38.10 [1.50]		1.33 [1.61-1.63]	45.7	80]	60.5 [2.38]
Molded Part Selection Guide (Tinel)	Tinel-Lock Entry Size	Standard K Parts			Low-Profile D Parts		
		$\begin{array}{lc} & \text { Standard K Pa } \\ \text { Straight } & 90^{\circ} \\ \text { Part No. } & \text { Part No. }\end{array}$		$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \end{gathered}$	Straight Part No.	90° Part No.	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \end{gathered}$
	04	202K232	-	3.3 [0.1]	-	-	-
	04	202W232	-	4.3 [0.2]	-	-	-
	04	202K121	222K121	5.6 [0.2]	202D211	222D211	6.4 [0.3]
	05, 06	202K132	222K132	5.9 [0.2]	202D221	222D221	7.4 [0.3]
	07, 08	202K142	222K142	7.1 [0.3]	202D232	222D232	8.4 [0.3]
	10, 12	202K153	222K152	8.4 [0.3]	202D242	222D242	9.7 [0.4]
	14, 16	202K163	222K163	9.9 [0.4]	202D253 222D253		10.5 [0.4]
	18, 20, 22	202K174	222K174	15.7 [0.6]	202D263	222D263	12.2 [0.5]
	24	202K185	222K185	16.8 [0.7]	-		
Uniboot Parts	Tinel-Lock Entry Size		Part No.	Cable OD (Min.)			
	04		202C611	4.8 [0.19]			
	05, 06, 07		202C621	8.1 [0.32]			
	08, 10, 12		202C632	12.7 [0.50]			
	12, 14, 16		202C642	17.5 [0.69]			
	16, 18, 20, 22		202C653	22.4 [0.88]			
	24		202C663	22.9 [0.90]			

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters USA: +1 8005226752 unless otherwise specified. Asia Pacific: +86 04008206015 UK: +44 800267666

CRES-Lock Adapters (USA) BND Adapters (Europe)

Code 54 Band Strap
 Adapter

Notes

1. This product is designed to terminate a braided cable shield by means of a band strap and a heat shrinkable lipped boot to a connector
2. See $\mathrm{CH} 00-0250-016$ for ordering information, modifications and additional dimensions.
3. See drawing BND-XX25S for band strap dimensions and information.
4. Adapter to be permanently marked with code identification number and full part number (e.g. 06090-BND54AB00-1812). Band strap shall bear no part marking.
5. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See CH00-0250-016 for further details.

For additional codes available, contact TE.

Code 54 MIL-C-5015 (MS3400), MIL-C-26482 Series 2, MIL-C-83723 Series I and III, MIL-C-81703 Series III (Continued)

Code 00

45° Adapter
Code 45
90° Adapter Code 90

Type II Modification
(See Note 5)

| Available in: | Americas | Europe |
| :---: | :---: | :---: |\quad Asia Pacific

Dimensions are shown for reference purposes only. Specifications subject to change.

Adapter Products

CRES-Lock Adapters (USA) BND Adapters (Europe)
(continued)

Code 54 Band Strap
Adapter (Continued)

Code 54 MIL-C-5015 (MS3400), MIL-C-26482 Series 2, MIL-C-83723 Series I and III, MIL-C-81703 Series III (Continued)
Table I

Order Number	$\frac{\text { Shell }}{\text { Series }^{2}}$	Size Series ${ }^{3}$	Entry Size Max. Type I ${ }^{1}$	\varnothing A Unified Thread Class 2B	$\begin{gathered} \varnothing \text { В } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { Ø B } \\ \text { Max. } \end{gathered}$	C Max.	$\begin{gathered} \text { D } \\ \text { Max. } \end{gathered}$	$\underset{\text { Max. }}{\text { F }}$
08	-	08	04	0.5000-20 UNF	$\begin{aligned} & 15.7 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 22.6 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 26.2 \\ & 1.03 \end{aligned}$	$\begin{aligned} & \hline 31.0 \\ & 1.22 \end{aligned}$
10	-	10	06	0.6250-24 UNEF	$\begin{aligned} & 18.5 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 25.7 \\ & 1.01 \end{aligned}$	$\begin{aligned} & 19.6 \\ & 0.77 \end{aligned}$	$\begin{aligned} & \hline 26.7 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 32.5 \\ & 1.28 \end{aligned}$
12	7	12	08	0.7500-20 UNEF	$\begin{aligned} & 21.8 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 29.0 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 20.3 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 1.07 \end{aligned}$	$\begin{aligned} & \hline 34.3 \\ & 1.35 \end{aligned}$
14	12	14	09	0.8750-20 UNEF	$\begin{aligned} & 24.9 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 1.26 \end{aligned}$	$\begin{aligned} & 20.9 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 27.7 \\ & 1.09 \end{aligned}$	$\begin{aligned} & \hline 35.6 \\ & 1.40 \end{aligned}$
16	19	16	11	0.9375-20 UNEF	$\begin{aligned} & \hline 28.2 \\ & 1.11 \end{aligned}$	$\begin{aligned} & 35.3 \\ & 1.39 \end{aligned}$	$\begin{aligned} & 21.3 \\ & 0.84 \end{aligned}$	$\begin{aligned} & \hline 28.4 \\ & 1.12 \end{aligned}$	$\begin{aligned} & \hline 37.1 \\ & 1.46 \end{aligned}$
18	27	18	12	1.0000-20 UNEF	$\begin{aligned} & 31.0 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 38.4 \\ & 1.51 \end{aligned}$	$\begin{aligned} & 21.8 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 28.7 \\ & 1.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.9 \\ & 1.53 \end{aligned}$
20	37	20	14	1.1875-18 UNEF	$\begin{aligned} & 34.3 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 41.7 \\ & 1.64 \end{aligned}$	$\begin{aligned} & 22.4 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 29.5 \\ & 1.16 \end{aligned}$	$\begin{aligned} & \hline 40.4 \\ & 1.59 \end{aligned}$
22	-	22	16	1.3125-18 UNEF	$\begin{aligned} & \hline 37.3 \\ & 1.47 \end{aligned}$	$\begin{aligned} & 44.7 \\ & 1.76 \end{aligned}$	$\begin{aligned} & \hline 23.1 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 41.9 \\ & 1.65 \end{aligned}$
24	-	24	18	1.4375-18 UNEF	$\begin{aligned} & \hline 40.5 \\ & 1.59 \end{aligned}$	$\begin{aligned} & 48.0 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 23.6 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 43.4 \\ & 1.71 \end{aligned}$
28	-	28	22	1.7500-18 UNS	$\begin{aligned} & \hline 50.0 \\ & 1.97 \end{aligned}$	$\begin{aligned} & 54.4 \\ & 2.14 \end{aligned}$	$\begin{aligned} & 24.9 \\ & 0.98 \end{aligned}$	$\begin{aligned} & \hline 31.8 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \hline 48.3 \\ & 1.90 \end{aligned}$
32	-	32	26	2.0000-18 UNS	$\begin{aligned} & 56.4 \\ & 2.22 \end{aligned}$	$\begin{aligned} & \hline 61.0 \\ & 2.40 \end{aligned}$	$\begin{aligned} & 26.2 \\ & 1.03 \end{aligned}$	$\begin{aligned} & 33.3 \\ & 1.31 \end{aligned}$	$\begin{aligned} & 51.6 \\ & 2.03 \end{aligned}$
36	-	36	28	2.2500-16 UN	$\begin{aligned} & \hline 62.7 \\ & 2.47 \end{aligned}$	$\begin{aligned} & \hline 67.1 \\ & 2.64 \end{aligned}$	$\begin{aligned} & 27.4 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 34.3 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 54.6 \\ & 2.15 \end{aligned}$
40	-	40	32	$2.5000-16$ UN	$\begin{aligned} & 69.1 \\ & 2.72 \end{aligned}$	$\begin{aligned} & 73.4 \\ & 2.89 \end{aligned}$	$\begin{aligned} & 28.4 \\ & 1.12 \end{aligned}$	$\begin{aligned} & 35.6 \\ & 1.40 \end{aligned}$	$\begin{aligned} & 57.7 \\ & 2.27 \end{aligned}$
44	-	44	34	$2.75000-16$ UN	$\begin{aligned} & 75.4 \\ & 2.97 \end{aligned}$	$\begin{aligned} & 79.8 \\ & 3.14 \end{aligned}$	$\begin{aligned} & 29.7 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 36.8 \\ & 1.45 \end{aligned}$	$\begin{aligned} & \hline 61.0 \\ & 2.40 \\ & \hline \end{aligned}$
48	-	48	34	$3.0000-16$ UN	$\begin{aligned} & 81.8 \\ & 3.22 \end{aligned}$	$\begin{aligned} & 86.1 \\ & 3.39 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 38.1 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 64.0 \\ & 2.52 \end{aligned}$
61	61	-	18	1.5000-18 UNEF	$\begin{aligned} & 41.9 \\ & 1.65 \end{aligned}$	$\begin{aligned} & 47.8 \\ & 1.88 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 44.2 \\ & 1.74 \end{aligned}$

1. All entry sizes are shown in Table II. Maximum entry sizes are as shown in Table I. For larger entry sizes than the maximum, a Type II adapter may be supplied. See $\mathrm{CH} 00-0250-016$ for further details
2. Adapter mates to: MIL-C-81703 Series III, MS3424, MS3446, MS3464, MS3467, MS3468, Class E and L Connectors 3. Adapter mates to MIL-C-5015G, MS3400 Series, Class D, E, K, L, U and W: MS3400, MS3401, MS3404, MS3406, MS3450, MS3451, MS3454, MS3456, MS3470, MS3471, MS3472, MS3474, MS3475, MS3476, MIL-C-83723 Series II, Class A and L. MIL-C-83723, /14, /36, /37, /38, /39, /40, /41, /42, /43, /48, /49, /65, /66, /67, /68, /69, /70, /71, /72, /73, $/ 74, / 75, / 76, / 77, / 78, / 82, / 83, / 84, / 85, / 86, / 87, / 91, / 92, / 95, / 97$, and $/ 98$ Connectors, MS3155 controlled interfaces 4. These dimensions apply if a self-locking coupling nut is used, modification code "S".

Table II

Entry Size	$\begin{gathered} \sigma z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \end{gathered}$	$\begin{gathered} \varnothing \text { S } \\ \pm 0.51 \\ {[\pm 0.020]} \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \end{gathered}$	E Max.
03	$\begin{gathered} 4.75 \\ 0.188 \end{gathered}$	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.10 \\ & 0.438 \end{aligned}$	$\begin{aligned} & \hline 16.3 \\ & 0.64 \\ & \hline \end{aligned}$
04	$\begin{aligned} & 6.35 \\ & 0.250 \end{aligned}$	$\begin{gathered} 9.52 \\ 0.375 \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 0.64 \\ & \hline \end{aligned}$
05	$\begin{aligned} & 7.92 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.563 \end{aligned}$	$\begin{aligned} & 17.3 \\ & 0.68 \end{aligned}$
06	$\begin{gathered} 9.52 \\ 0.375 \end{gathered}$	$\begin{aligned} & 12.70 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 17.8 \\ & 0.70 \end{aligned}$
07	$\begin{aligned} & 11.12 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.562 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.689 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 0.74 \end{aligned}$
08	$\begin{aligned} & 12.70 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 19.8 \\ & 0.78 \end{aligned}$
09	$\begin{aligned} & 14.30 \\ & 0.562 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.688 \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.813 \end{aligned}$	$\begin{aligned} & 20.3 \\ & 0.80 \end{aligned}$
10	$\begin{aligned} & 15.88 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 0.82 \end{aligned}$
11	$\begin{aligned} & 17.50 \\ & 0.688 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.65 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 23.80 \\ & 0.938 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.8 \\ & 0.86 \\ & \hline \end{aligned}$
12	$\begin{aligned} & 19.05 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & 25.40 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22.9 \\ & 0.90 \\ & \hline \end{aligned}$
13	$\begin{aligned} & 20.65 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 0.94 \\ & \hline \end{aligned}$
14	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{aligned} & 25.40 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{array}{r} 30.16 \\ 1.189 \\ \hline \end{array}$	$\begin{array}{r} 24.4 \\ 0.96 \\ \hline \end{array}$

Table II (Continued)

Entry Size	$\begin{gathered} \sigma Z \\ +0.25 /-0.50 \\ {[+0.010 /-0.020]} \\ \hline \end{gathered}$	$\begin{gathered} \varnothing \mathrm{S} \\ \pm 0.51 \\ {[\pm 0.020]} \\ \hline \end{gathered}$	$\begin{gathered} \varnothing Y \\ \pm 0.38 \\ {[\pm 0.015]} \\ \hline \end{gathered}$	E Max.
15	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & \hline 27.00 \\ & 1.062 \end{aligned}$	$\begin{aligned} & \hline 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & \hline 24.9 \\ & 0.98 \end{aligned}$
16	$\begin{aligned} & 25.40 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.58 \\ & 1.125 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33.34 \\ & 1.313 \end{aligned}$	$\begin{aligned} & 25.9 \\ & 1.02 \end{aligned}$
18	$\begin{aligned} & \mathbf{2 8 . 5 8} \\ & 1.125 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 36.51 \\ & 1.438 \end{aligned}$	$\begin{aligned} & \hline 28.3 \\ & 1.11 \end{aligned}$
20	$\begin{aligned} & 31.75 \\ & 1.250 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.90 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 39.69 \\ & 1.563 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 29.8 \\ & 1.17 \end{aligned}$
22	$\begin{aligned} & 34.90 \\ & 1.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 42.86 \\ & 1.688 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31.3 \\ & 1.23 \end{aligned}$
24	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 41.28 \\ & 1.625 \end{aligned}$	$\begin{aligned} & \hline 46.83 \\ & 1.844 \end{aligned}$	$\begin{aligned} & \hline 33.8 \\ & 1.33 \\ & \hline \end{aligned}$
26	$\begin{aligned} & 41.28 \\ & 1.625 \end{aligned}$	$\begin{aligned} & \hline 44.45 \\ & 1.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 49.61 \\ & 1.953 \end{aligned}$	$\begin{aligned} & 35.1 \\ & 1.38 \end{aligned}$
28	$\begin{aligned} & \hline 44.45 \\ & 1.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 47.63 \\ & 1.875 \end{aligned}$	$\begin{aligned} & 52.78 \\ & 2.078 \end{aligned}$	$\begin{aligned} & \hline 36.3 \\ & 1.43 \end{aligned}$
30	$\begin{aligned} & \hline 47.65 \\ & 1.875 \\ & \hline \end{aligned}$	$\begin{aligned} & 50.80 \\ & 2.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 56.36 \\ & 2.219 \end{aligned}$	$\begin{aligned} & \hline 37.8 \\ & 1.49 \\ & \hline \end{aligned}$
32	$\begin{aligned} & 50.80 \\ & 2.000 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 4 . 0 0} \\ & 2.125 \end{aligned}$	$\begin{aligned} & 59.53 \\ & 2.344 \end{aligned}$	$\begin{aligned} & \hline 39.6 \\ & 1.56 \\ & \hline \end{aligned}$
34	$\begin{aligned} & \mathbf{5 4 . 0 0} \\ & 2.125 \end{aligned}$	$\begin{aligned} & \mathbf{5 7 . 1 5} \\ & 2.250 \end{aligned}$	$\begin{aligned} & \hline 62.71 \\ & 2.469 \end{aligned}$	$\begin{aligned} & \hline 41.1 \\ & 1.62 \end{aligned}$

Dimensions are shown for Dimensions are in millimeters reference purposes only. unless otherwise specified. Specifications subject to change.

USA: +1 8005226752
For additional support numbers Asia Pacific: +86 04008206015 please visit www.te.com UK: +44 800267666

Adapter Products

Code 76 BS 9522 F0017 (Pattern 105)

Spin-Coupling Adapters

Table of Dimensions

Order No.	Shell Size	Thread	Dimensions	
			Y Max.	Z Min.
08	8	$.438-28$ UNEF	$13.54[0.53]$	$6.9[0.27]$
10	10	$.562-24$ UNEF	$15.37[0.61]$	$9.9[0.39]$
12	14	$.688-24$ UNEF	$19.66[0.77]$	$13.4[0.53]$
14	16	$.812-20$ UNEF	$21.29[0.84]$	$15.9[0.63]$
16	18	$1.062-20$ UNEF	$24.47[0.96]$	$18.9[0.74]$
18	20	$1.188-18$ UNEF	$26.47[1.04]$	$21.4[0.84]$
20	22	$1.312-18$ UNEF	$30.92[1.22]$	$23.9[0.94]$
22	24	$1.438-18$ UNEF	$34.42[1.36]$	$27.4[1.08]$
24			$36.40[1.44]$	$29.9[1.18]$

Molded Part Selection Guide
(Spin-Coupling)

Order No.	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	Cable OD (Min.)	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \\ \hline \end{gathered}$
03, 08	202W232	-	4.3 [0.19]	-	-	-
03, 08	202K121	222K121	5.6 [0.22]	202D211	222D211	6.4 [0.25]
10, 11	202K132	222K132	5.9 [0.23]	202D221	222D221	7.4 [0.29]
12, 14	202K142	222K142	7.1 [0.28]	202D232	222D232	8.4 [0.33]
16, 18	202K153	222K152	8.4 [0.33]	202D242	222D242	9.7 [0.38]
20, 22	202K163	222K163	9.9 [0.39]	202D253	222D253	10.5 [0.41]
24, 28,	202K174	222K174	15.7 [0.62]	202D263	222D263	12.2 [0.48]
32, 36	202K185	222K185	16.8 [0.66]	202D274	222D274	14.3 [0.56]

Uniboot Parts

Order No.	Part No.	Cable OD (Min.)
03,08	$202 C 611$	$4.8[0.19]$
$10,11,12$	$202 C 621$	$8.1[0.32]$
14,16	$202 C 632$	$12.7[0.50]$
18,20	$202 C 642$	$17.5[0.69]$
22,24	$202 C 653$	$22.4[0.88]$

Available in:	Americas	Europe	Asia Pacific
\square	\square	\square	

Tinel-Lock Adapters

TXR76XX00-XXXXXX

TXR76XX90-XXXXXX

Table of Dimensions

Order No.	Shell Size	Max. Entry Size Type 1*	Thread	Dimensions		
	(D Max.	E Max.	
08	8	04	$.438-28$ UNEF	$18.0[.74]$	$21.3[.87]$	$26.7[1.05]$
10	10	07	$.562-24$ UNEF	$18.8[.76]$	$22.1[.90]$	$28.2[1.11]$
12	12	08	$.688-24$ UNEF	$19.3[.79]$	$22.9[.92]$	$30.2[1.19]$
14	14	10	$.812-20$ UNEF	$20.1[.82]$	$23.4[.95]$	$31.8[1.25]$
16	16	12	$.938-20$ UNEF	$20.8[.84]$	$24.1[.97]$	$33.5[1.32]$
18	18	12	$1.062-18$ UNEF	$21.3[.87]$	$24.6[1.00]$	$35.1[1.38]$
20	20	16	$1.188-18$ UNEF	$22.1[.89]$	$25.4[1.02]$	$36.6[1.44]$
22	22	18	$1.312-18$ UNEF	$22.6[.92]$	$25.9[1.05]$	$38.1[1.50]$
24	24	20	$1.438-18$ UNEF	$23.4[.97]$	$26.7[1.07]$	$39.4[1.55]$

*For larger than maximum type 1 entry sizes, a two-piece adapter will be supplied. Contact TE for information.

$\left.\begin{array}{ccc}\text { Available in: } & \text { Americas } & \text { Europe }\end{array}\right]$ Asia Pacific | \square |
| :---: | to change.

For additional support numbers please visit www.te.com

Code 76 BS 9522 F0017 (Pattern 105) (Continued)

Tinel-Lock Adapters

(continued)

Entry Size Dimensions

Entry	Dimensions			
Size	$\mathbf{Z ~ + 0 . 2 5 - 0 . 5}$	\mathbf{S} Diameter (Min.-Max.)	$\mathbf{Y}_{ \pm 0.38}$	\mathbf{W} Max.
04	$6.35[0.25]$	$9.39-9.56[0.37-0.38]$	$13.97[1.22]$	$31.0[0.55]$
05	$7.92[0.31]$	$10.97-11.13[0.43-0.44]$	$15.54[1.29]$	$32.8[0.61]$
06	$9.52[0.37]$	$12.57-12.73[0.49-0.50]$	$17.14[1.35]$	$34.3[0.67]$
07	$11.09[0.44]$	$14.12-14.31[0.55-0.56]$	$18.71[1.41]$	$35.8[0.74]$
08	$12.7[0.50]$	$15.72-15.91[0.62-0.63]$	$20.32[1.47]$	$37.3[0.80]$
10	$15.87[0.62]$	$18.84-19.11[0.74-0.75]$	$23.49[1.60]$	$40.6[0.92]$
12	$19.05[0.75]$	$22.02-22.28[0.87-0.88]$	$26.67[1.72]$	$43.7[1.05]$
14	$22.23[0.88]$	$25.17-25.46[0.99-1.00]$	$29.84[1.85]$	$47.0[1.17]$
16	$25.4[1.00]$	$28.34-28.63[1.12-1.13]$	$33.02[1.97]$	$50.0[1.30]$
18	$28.57[1.12]$	$31.52-31.81[1.24-1.25]$	$36.19[2.10]$	$53.3[1.42]$
20	$31.75[1.25]$	$34.69-34.98[1.37-1.38]$	$39.37[1.55]$	$53.8[2.19]$

Molded Part Selection Guide (Tinel)

Tinel-Lock Entry Size	Standard K Parts			Low-Profile D Parts		
	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Cable OD } \\ \text { (Min.) } \end{gathered}$	Straight Part No.	$\begin{gathered} 90^{\circ} \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \hline \text { Cable OD } \\ \text { (Min.) } \end{gathered}$
04	202K232	-	3.3 [0.1]	-	-	-
04	202W232	-	4.3 [0.2]	-	-	-
04	202K121	222K121	5.6 [0.2]	202D211	222D211	6.4 [0.3]
05, 06	202K132	222K132	5.9 [0.2]	202D221	222D221	7.4 [0.3]
07, 08	202K142	222K142	7.1 [0.3]	202D232	222D232	8.4 [0.3]
10, 12	202K153	222K152	8.4 [0.3]	202D242	222D242	9.7 [0.4]
14, 16	202K163	222K163	9.9 [0.4]	202D253	222D253	10.5 [0.4]
18, 20, 22	202K174	222K174	15.7 [0.6]	202D263	222D263	12.2 [0.5]
24	202K185	222K185	16.8 [0.7]	-	-	-

Uniboot Parts

Tinel-Lock Entry Size	Part No.	Cable OD (Min.)
04	202 C 611	$4.8[0.19]$
$05,06,07$	202 C 621	$8.1[0.32]$
$08,10,12$	202 C 632	$12.7[0.50]$
$12,14,16$	202 C 642	$17.5[0.69]$
$16,18,20,22$	202 C 653	$22.4[0.88]$
24	$202 C 663$	$22.9[0.90]$

FlexiScreen Backshells

The FlexiScreen high performance backshells are designed to provide EMC protection for both commercial and military applications. FlexiScreen backshells represent a significant improvement over pig-tail termination methods by providing 360° EMC shielding on the termination area of each individual cable. FlexiScreen backshell terminations can be installed to allow the cable bundle to be installed at various angles, such as $30 \& 45^{\circ}$, using a single backshell design.
FlexiScreen backshells can be installed to allow the cable bundle to be formed at various angles, such as 90° and 45°, using a single backshell design.
FlexiScreen backshells are a cost effective solution while maintaining low weight.

Product Facts
■ Cost effective solution
- Capitalizes on proven performance of HexaShield adapter components
■ Flexible and variable bending configurations
■ Light weight
- Repairable
■ Out performs commonly used alternatives

Raychem FlexiScreen Backshells

Applications

Designed to be mounted on MIL-DTL-38999, 83723, 26482, 5015, or commonly used connectors
Aerospace, Defense, Ground Vehicles, Control Circuits - where excellent EMI and shielding performance is required

Standards \& Specs

Finish Types: SAE-AMS-PQ-P-416 cadmium olive drab, SAE-AMS-C-26074 Class 3, grade B Electroless Nickel (others available upon request)
TE Specification RB-117
RPIP-696-21 Installation Procedure for FlexiScreen backshells

Kit Contents

1 backshell assembly
1 multi-position star
1 band strap

Electrical

DC resistance: $<5.0 \mathrm{~m} \Omega$ braid to backshell per SAE-AS85049
$<10.0 \mathrm{~m} \Omega$ braid to cable braids per RB-117
Shielding effectiveness: Complies with ANSI/NEMA EC 61-2005
Lightning strike: No damage or degradation of components. Tested per RTCA/DO-160F, Section 22

Physical or Other Properties

Vibration:
Tested per EAI-364-28, test condition VI, Letter J
Mechanical shock:
Tested per EAI-364-27, test condition D
Cable pull-out:
Tested per MIL-STD-1344, method 2009-1, test condition A
Operating temperature: -65° to $+150^{\circ}$

Raychem FlexiScreen Backshells (Continued)

Part Numbering System

| FLS 40 |
| ---: | :--- |-2

FLS40

$\begin{gathered} \text { पRDER } \\ \text { ND. } \end{gathered}$	$\begin{aligned} & \text { SHELL } \\ & \text { SIZE } \end{aligned}$	ENTRY SIZE	$\begin{gathered} \phi Z \\ +0.10 \\ -.020 \\ \hline \end{gathered}$	\varnothing A METRIC THREAD CLASS 6H	$\begin{gathered} \not \varnothing \mathrm{B} \\ \operatorname{MAX} \end{gathered}$	STAR CINFIGURATIUN (NUMBER aF FERRULE PDSITIUNS)
10	11	07	$\begin{gathered} 11.09 \\ {[0.437]} \end{gathered}$	M15 X 1	$\begin{gathered} 21.25 \\ {[0.84]} \end{gathered}$	$\begin{aligned} & A=2 \\ & B=N / A \\ & C=3 \end{aligned}$
12	13	08	$\begin{gathered} 12,70 \\ {[0.500]} \end{gathered}$	M18 X 1	$\begin{aligned} & 24.50 \\ & {[0.97]} \end{aligned}$	$\begin{aligned} & A=3 \\ & B=2 \\ & C=5 \end{aligned}$
14	15	10	$\begin{gathered} 15,87 \\ {[0,625]} \end{gathered}$	M22 $\times 1$	$\begin{aligned} & 29.00 \\ & {[1.15]} \end{aligned}$	$\begin{aligned} & A=5 \\ & B=3 \\ & C=6 \\ & \hline \end{aligned}$
16	17	12	$\begin{gathered} 19.05 \\ {[0.750]} \end{gathered}$	M25 X 1	$\begin{aligned} & 33.50 \\ & {[1.32]} \end{aligned}$	$\begin{aligned} & A=6 \\ & B=5 \\ & C=7 \end{aligned}$
18	19	14	$\begin{gathered} 22.23 \\ {[0.875]} \end{gathered}$	M28 X 1	$\begin{aligned} & 37.50 \\ & {[1.48]} \end{aligned}$	$\begin{aligned} & A=7 \\ & B=6 \\ & C=9 \end{aligned}$
20	21	16	$\begin{aligned} & 25,40 \\ & {[1.00]} \\ & \hline \end{aligned}$	M31 $\times 1$	$\begin{aligned} & 39.50 \\ & {[1.56]} \end{aligned}$	$\begin{aligned} & A=9 \\ & B=7 \\ & C=10 \end{aligned}$
22	23	18	$\begin{gathered} 28.57 \\ {[1.125]} \end{gathered}$	M34 X 1	$\begin{aligned} & 42.00 \\ & {[1.66]} \end{aligned}$	$\begin{aligned} & A=10 \\ & B=9 \\ & C=13 \end{aligned}$
24	25	20	$\begin{gathered} 34,93 \\ {[1.375]} \end{gathered}$	M37 $\times 1$	$\begin{aligned} & 45.00 \\ & {[1.78]} \end{aligned}$	$\begin{aligned} & A=12 \\ & B=10 \\ & C=17 \end{aligned}$

FLS41

QRDERND.	SHELL SIZE		$\begin{aligned} & \text { ENTRY } \\ & \text { SIZE } \end{aligned}$	$\begin{gathered} \phi \mathrm{Z} \\ +0.10 \\ +.020 \\ \hline \end{gathered}$	申A THREAD RH CLASS 2B	$\begin{aligned} & \not \subset \mathrm{B} \\ & \mathrm{MAX} \end{aligned}$	STAR CDNFIGURATIDN <NUMBER OF FERRULE PISITIUNS)
	SER 1	SER 2					
10	11	10	06	$\begin{gathered} 9.52 \\ {[.375]} \end{gathered}$.562-24 UNEF	$\begin{gathered} 22.2 \\ {[.875]} \end{gathered}$	$\begin{aligned} & A=2 \\ & B=N / A \\ & C=3 \end{aligned}$
12	13	12	08	$\begin{aligned} & 12.70 \\ & {[.500]} \end{aligned}$.688-24 UNEF	$\begin{array}{r} 25.4 \\ {[1.00]} \\ \hline \end{array}$	$\begin{aligned} & A=3 \\ & B=2 \\ & C=5 \\ & \hline \end{aligned}$
14	15	14	10	$\begin{aligned} & 15.87 \\ & {[.625]} \end{aligned}$.812-20 UNEF	$\begin{gathered} 30.2 \\ {[1.188]} \end{gathered}$	$A=5$ $B=3$ $C=6$
16	17	16	12	$\begin{aligned} & 19.05 \\ & {[.750]} \end{aligned}$.938-20 UNEF	$\begin{gathered} 33.3 \\ {[1.312]} \end{gathered}$	A $=6$ $B=5$ $C=7$
18	19	18	12	$\begin{array}{r} 19.05 \\ {[.750]} \\ \hline \end{array}$	1.062-18 UNEF	$\begin{gathered} 36.5 \\ {[1.438]} \end{gathered}$	$\begin{aligned} & A=7 \\ & B=6 \\ & C=9 \\ & \hline \end{aligned}$
20	21	20	14	$\begin{aligned} & 22.23 \\ & {[.875]} \end{aligned}$	1.188-18 UNEF	$\begin{gathered} 39.6 \\ {[1.562]} \end{gathered}$	$\begin{aligned} & A=9 \\ & B=7 \\ & C=10 \end{aligned}$
22	23	22	16	$\begin{aligned} & 25.40 \\ & {[1.00]} \end{aligned}$	1.312-18 UNEF	$\begin{gathered} 42.9 \\ {[1.688]} \end{gathered}$	$\begin{aligned} & A=10 \\ & B=9 \\ & C=13 \end{aligned}$
24	25	24	18	$\begin{gathered} 28.57 \\ {[1.125]} \end{gathered}$	1.438-18 UNEF	$\begin{gathered} 45.2 \\ {[1.781]} \end{gathered}$	$\begin{aligned} & A=12 \\ & B=10 \\ & C=17 \end{aligned}$

FLS54

$\begin{gathered} \text { QRDER } \\ \text { ND. } \end{gathered}$	$\begin{aligned} & \text { SHELL } \\ & \text { SIZE } \end{aligned}$	ENTRY SIZE	$\begin{array}{r} \phi Z \\ +0.10 \\ -.020 \\ \hline \end{array}$	$\begin{aligned} & \not \subset A \text { THREAD } \\ & \text { CLASS } 6 H \end{aligned}$	$\begin{aligned} & \not \varnothing B \\ & M A X \end{aligned}$	STAR CDNFIGURATIUN (NUMBER DF FERRULE PDSITIUNS)
10	$\begin{array}{ll} 10, & 10 S \\ \& & 10 S L \end{array}$	06	$\begin{gathered} 9.52 \\ {[.375]} \end{gathered}$.6250*-24 UNEF	$\begin{array}{r} 20,40 \\ {[0,80]} \end{array}$	$\begin{aligned} & A=2 \\ & B=N / A \\ & C=3 \end{aligned}$
12	$\begin{gathered} 128 \\ 12 S^{2} \end{gathered}$	08	$\begin{aligned} & 12,70 \\ & {[.500]} \end{aligned}$.7500*-20 UNEF	$\begin{aligned} & 23,80 \\ & {[0.93]} \end{aligned}$	$\begin{aligned} & A=3 \\ & B=2 \\ & C=5 \end{aligned}$
14	$\begin{aligned} & 14 \& \\ & 14 \mathrm{~S} \\ & \hline \end{aligned}$	08	$\begin{array}{r} 12,70 \\ {[.500]} \\ \hline \end{array}$.8750*-20 UNEF	$\begin{aligned} & 27.00 \\ & {[1.06]} \\ & \hline \end{aligned}$	$\begin{aligned} & A=5 \\ & B=3 \\ & C=6 \\ & \hline \end{aligned}$
16	$\begin{gathered} 16 \& \\ 16 S \end{gathered}$	10	$\begin{aligned} & 18.87 \\ & {[.625]} \end{aligned}$	1.0000*-20 UNEF	$\begin{aligned} & 31,45 \\ & {[1,23]} \end{aligned}$	$\begin{aligned} & A=6 \\ & B=5 \\ & C=7 \end{aligned}$
18	18	12	$\begin{aligned} & 19.05 \\ & {[.750]} \end{aligned}$	1.0625*-18 UNEF	$\begin{aligned} & 33,25 \\ & {[1,30]} \end{aligned}$	$\begin{aligned} & A=7 \\ & B=6 \\ & C=9 \end{aligned}$
20	20	14	$\begin{aligned} & 22.22 \\ & {[.875]} \end{aligned}$	1.1875*-18 UNEF	$\begin{aligned} & 36,45 \\ & {[1.43]} \end{aligned}$	$\begin{aligned} & A=9 \\ & B=7 \\ & C=10 \end{aligned}$
22	22	16	$\begin{aligned} & 25,40 \\ & {[1,000]} \end{aligned}$	1.3125*-18 UNEF	$\begin{aligned} & 39.60 \\ & {[1.55]} \end{aligned}$	$\begin{aligned} & A=10 \\ & B=9 \\ & C=13 * \end{aligned}$
24	24	18	$\begin{gathered} 28,58 \\ {[1,125]} \end{gathered}$	1.4375*-18 UNEF	$\begin{aligned} & 42.80 \\ & {[1,68]} \end{aligned}$	$\begin{aligned} & A=12 \\ & B=10 \\ & C=17 * \end{aligned}$

* - STAR CUNFIGURATIUN USES 3 PIECE STAR (1 STAR, 2 HALF STARS)

Introduction
Product Facts

- Superior EMC/EMI Shielding Performance
- Simple installation
- Easy reentry
- Simplified maintenance and repair
- Excellent mechanical and environmental resistance
- Efficient strain relief
- Flexibility
- Versatility

Available in:	
Americas	\square
Europe	\square
Asia Pacific	\square

Designed to corresponding connector specifications

Installation Procedures

Applications

TE, a longtime leader in harnessing technology, has written a new chapter in EMC shielding with the introduction of the Raychem brand HexaShield EMC adapter.
Designed to provide EMC protection solutions for both commercial and military applications, HexaShield adapters represent a significant improvement over pigtail termination methods. By providing 360-degree EMC shielding on the termination area of each individual cable, HexaShield adapters provide outstanding shielding effectiveness.
HexaShield adapters are simple to install, easy to
maintain, and dependably resistant to mechanical and environmental stresses.

Principal points and features

■ Easy reentry: To insert or remove ferrules from the HexaShield adapter, simply loosen the back nut.

■ Superior protection: No degradation of shielding performance.
■ Up to four shielded cables accommodated by each ferrule.
■ Mechanical and environmental protection equal to backshells complying with MIL-C-85049 Category 3B.

- Strain relief on each individual cable.
- Weight reduction, by possibly eliminating the need for overall shielding.
- Compact size - not exceeding outer diameter of connector.
- Available in straight, 45° and 90° angles, as well as swept and long bodies.

Simple assembly and installation

1. Solder cable or wire shield to a ferrule with a heat-shrinkable SolderShield terminator.
2. Clip ferrule into one of the grounding star cavities.
3. Secure the back nut of the HexaShield adapter so that the conic ring assembly automatically compresses the ferrules.

Two Platings Available	TE Product Specifications	
Electroless nickel (MIL-DTL-26074)	RB-110 and RB-114	
Olive drab cadmium (QQ-P-416 Type II Class 3)	-	
*Contact TE for additional platings.		
Installation procedure for HET-A-02X and HET-A-04X (RPIP-696-00)	Installation procedure for HET-03X (RPIP-696-03)	General procedure for cylindrical connectors, right-angle body (RPIP-696-07)
General procedure for ARINC 600 Size II connectors (RPIP-696-01)	General procedure for cylindrical connectors, straight body (RPIP-696-04)	
General procedure for ARINC 600 Size III connectors (RPIP-696-02)	-	-
RPIP-696-13 HexaShield Filling Factors		-

Kit Descriptions

Hexashield Adapters for
Circular Connectors:
Straight, 45° and 90°
Assemblies

Item	Description
1	Straight adapter assembly
2	Conic ring assembly
3	Star Plain (Standard) Drilled (Option) Split (Option) _
4	Straight adapter assembly - "L" version - nominally 0.5" [12.7] longer body
5	45° adapter assembly - welded
6	45° adapter assembly - swept
7	90° adapter assembly - welded
8	90° adapter assembly - swept Standard products shown. Variants available on request. Split star assemblies are shown on relevant customer drawings where applicable.
Item	HexaShield Version -1
-2	Back Nut -3
Tinel adapter assembly	
Tinel-Lock ring for single braid	

HexaShield Adapters for

ARINC 404/600 Connectors:

Sizes 1, 2, 3 and 4

Assemblies

Item	Description
1	Left side support
2	Right side support
3	Retention bars
4	Body assemblies Body Holding nut Conic ring assembly Star - Back nut
5	Cavity plug assemblies Plug Holding nut
6	Pan head screws - 4-40 UNC
7	Spring washers

ARINC 600 Size 2 shown
Stars are available as plain, drilled or split.
See relevant customer drawings for further information

Catalog 1654025 Revised 3-13 www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Part Numbering for
Standard Products
HexaShield Adapter for
Circular Connectors

Ordering Information (Continued)

HexaShield Adapter for Collins Connectors

HEXDB-AC-00-A9-1

$00=$ Straight body
$90=$ Right-angle body

HEXA6-AY-00-YY-AY-Y

ARINC 600 Connectors

Part Numbering of Ferrule

 Kits*HET-A-02X for small-size cable with SolderShield terminator

HET-A-03X for connection of unshielded cables ferrules with heat-shrinkable tubing (no shield)
HET-A-04X for large-size cables with SolderShield terminator
\qquad Type of Plating:
B = Cadmium plated
C = Electroless nickel

HEX07-AX ferrule - solid blank for use when a HET-A is not needed
\qquad
Type of Plating:
B = Cadmium plated
C = Electroless nickel

[^0]
EMC Performance

Product Facts

■ Outperforms traditional pigtail termination, especially in HIRF performance
■ Withstands 10-kA peak current lightning transients of SAE AE4L-87-3

Transfer Impedance

HexaShield size: 23
Cable:
TE 5024H8424
(one cable installed)
Test method: CEI 96-1

Protection Level

Generalized system performance (Actual system performance in any one test method may differ.)

Frequency spectrum of threats	Lightning
	EMP
	Cross talk

HIRF

Stirred mode to change.

Catalog 1654025	Dimensions are shown for Revised 3-13 reference purposes only. www.te.com
Specifications subject	
to change.	

The Raychem spin lock variable angle backshell enables straight, 45° and 90° cable terminations with the same part. The connector backshell swivelling body rotates around the axis of the cable bundle and locks in position, minimizing stress on the wire bundle and providing more robust strain relief than other termination systems.

Product Facts

- Variable angle backshell enables straight, 45° and 90° cable terminations with the same part
■ High performance, low resistance shield termination provided by the proven Tinel-Lock ring system or bandstrap
$■$ Sealed termination achieved via a standard heatshrinkable molded shape and adhesive system
\square Available in a variety of material and plating options
■ Saddle clamp strain relief or heat-shrinkable molded shape provides strain relief and sealing

Raychem Spin Lock Variable Angle Backshell

Application Tooling

RH-3960-1 TINEL-KIT-120V or AD-5000-TINEL-ASSY (240v)
Torque Wrench
Heat Gun (if using heatshrinkable molded part version)

Applications

Military and Commercial Aerospace
Military Ground Systems
Military Marine
Commercial Ships and Off-
Shore Marine

Materials

Aluminum with Electroless
Nickel or Cadmium over
Electroless Nickel or Zinc
Nickel plating

Standards \& Specs
Application Specification:
MIP-103-1 (Installation Procedure, Saddle Clamp Strain Relief)

MIP-103-2 (Installation Procedure, Molded Part Strain Relief)
Product Specification: MPS-103
Additional Documents: SLC40, SLC41, SLC54, SLM40, SLM41, SLM54, CH00-0250-019

Electrical/Mechanical

Title	Requirement	Passing Criteria
Examination of product	MPS-103 3.3.1	Meet drawing dimension
DC Resistance	MPS-103 3.3.2	DC Resistance $<2.5 \mathrm{~m} \Omega$
Salt Spray	MPS-103 3.3.3	Exposure of basis metal: Non-critical area $<0.1 "$ Critical area $<.025 "$
Vibration (Category 3B)	MPS-103 3.3.4	Must pass visual and DC Resistance criteria
Shock (Category 3B)	MPS-103 3.3.5	Must pass visual and DC Resistance criteria
Cable Pullout	MPS-103 3.3.6	Cable Slippage <0.125"
Braid Retention	MPS-103 3.3.7	DC Resistance <2.5 m Ω
Coupling Thread Strength	MPS-103 3.3.8	No visible damage to threads, coupling nut or anti-rotational teeth
DC Resistance	MPS-103 3.3.2	DC Resistance <2.5m Ω
External Bending Moment	MPS-103 3.3.9	No visible damage to adapter body, threads, coupling nut or anti-rotational teeth
Post Test Examination	MPS-103 3.3.10	Meet drawing dimensions

*MPS-103 Requirements meet or exceed SAE-AMS-85049

Catalog 1654025	Dimensions are shown for reference purposes only. Revised 3-13
Specifications subject	
www.te.com	to change.

www.te.com reference purposes only. to change.

Dimensions are in millimeters unless otherwise specified.

Raychem Spin Lock Variable Angle Backshell (Continued)

Straight

90°

45°

Clamp Only

Saddle Clamp Version

Molded Boot Version

Body Only

Notes:		
Strain Relief Method:	M	$=$ Molded Part
	$\mathrm{C}=$	Clamp Strain Relief
	$\mathrm{X}=$	Body Only

[^0]: *Not all part numbers are standard; your local TE representative will assist you in selecting the appropriate standard product

