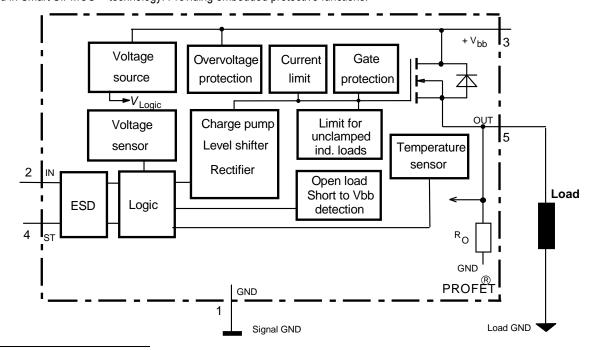


Smart High-Side Power Switch

Features

- Overload protection
- Current limitation
- Short circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection¹)
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge (ESD) protection
- Green Product (RoHS compliant)
- AEC Qualified

Product Summary			
Overvoltage protection	$V_{\rm bb(AZ)}$	43	V
Operating voltage	V _{bb(on)}	5.0 3	34 V
On-state resistance	Ron	60	$m\Omega$
Load current (ISO)	/L(ISO)	7.0	Α
Current limitation	/L(SCr)	16	Α



Application

- μC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- All types of resistive, inductive and capacitve loads
- Replaces electromechanical relays, fuses and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS[®] technology. Providing embedded protective functions.

¹⁾ With external current limit (e.g. resistor R_{GND}=150 Ω) in GND connection, resistor in series with ST connection, reverse load current limited by connected load.

Pin	Symbol		Function
1	GND	-	Logic ground
2	IN		Input, activates the power switch in case of logical high signal
3	Vbb	+	Positive power supply voltage, the tab is shorted to this pin
4	ST	S	Diagnostic feedback, low on failure
5	OUT (Load, L)	0	Output to the load

Maximum Ratings at T_j = 25 °C unless otherwise specified						
Parameter	Symbol	Values	Unit			
Supply voltage (overvoltage protection see page 3)	V_{bb}	43	V			
Supply voltage for short circuit protection $T_{j Start}$ =-40+150°C	$V_{ m bb}$	34	V			
Load dump protection ²) $V_{\text{LoadDump}} = U_{\text{A}} + V_{\text{s}}$, $U_{\text{A}} = 13.5 \text{ V}$ $R_{\text{I}}^{3} = 2 \Omega$, $R_{\text{L}} = 1.7 \Omega$, $t_{\text{d}} = 200 \text{ ms}$, IN= low or high	V _{Load dump} ⁴)	60	V			
Load current (Short circuit current, see page 4)	I _L	self-limited	Α			
Operating temperature range	T _j	-40+150	$^{\circ}\mathbb{C}$			
Storage temperature range	$T_{ m stg}$	-55+150				
Power dissipation (DC), T _C ≤ 25 °C	P _{tot}	75	W			
Inductive load switch-off energy dissipation, single pulse $V_{bb} = 12V$, $T_{j,start} = 150$ °C, $T_{C} = 150$ °C const. $I_{L} = 7.0 \text{ A}$, $Z_{L} = 24 \text{ mH}$, 0Ω :	E _{AS}	0.74	J			
Electrostatic discharge capability (ESD) (Human Body Model) acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993	V _{ESD}	1.0 2.0	kV			
Input voltage (DC)	V _{IN}	-10 +16	V			
Current through input pin (DC)	I _{IN}	±2.0	mA			
Current through status pin (DC)	I _{ST}	±5.0				
see internal circuit diagrams page 6						

Thermal Characterist	ics					
Parameter and Condition	ıs	Symbol		Values		Unit
			min	typ	max	
Thermal resistance	chip - case:	R_{thJC}			1.67	K/W
	junction - ambient (free air):	R_{thJA}			75	
	SMD version, device on PCB ⁵):			34		

Data Sheet 2 2013-10-10

Supply voltages higher than $V_{bb(AZ)}$ require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 k Ω resistor in series with the status pin. A resistor for the protection of the input is integrated.

 $R_{\rm I}$ = internal resistance of the load dump test pulse generator

V_{Load dump} is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839

Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air.

Electrical Characteristics

Parameter and Conditions	Symbol		Values		Unit
at T _j = 25 °C, V _{bb} = 12 V unless otherwise specified		min	typ	max	
Load Switching Capabilities and Characteristics					
On-state resistance (pin 3 to 5)					
I _L = 2 A	R _{ON}		50	60	$m\Omega$
<i>T</i> ;=150 °C:			100	120	
Nominal load current, ISO Norm (pin 3 to 5)		5.8	7.0		
$V_{ON} = 0.5 \text{ V}, T_{C} = 85 ^{\circ}\text{C}$	I _{L(ISO)}				Α
Output current (pin 5) while GND disconnected or GND pulled	I _{L(GNDhigh)}			10	mA
up, V _{bb} =30 V, V _{IN} = 0, see diagram page 7					
Turn-on time IN to 90% V_{OUT} :	$t_{\sf on}$	80	200	400	μ\$
Turn-off time IN \neg L to 10% V_{OUT} :	$t_{ m off}$	80	230	450	
$R_{L} = 12 \Omega, T_{j} = -40 + 150 ^{\circ}C$					
Slew rate on	dV/dt _{on}	0.1		1	V/µs
10 to 30% V_{OUT} , $R_L = 12 \Omega$, $T_j = -40 + 150$ °C					
Slew rate off 70 to 40% V_{OUT} , $R_L = 12 \Omega$, $T_j = -40 + 150$ °C	-dV/dt _{off}	0.1		1	V/µs
[[] [] [] [] [] [] [] [] [] [<u> </u>				
Operating Parameters					
Operating voltage ⁶) $T_j = -40+150$ °C:	V _{bb(on)}	5.0		34	V
Undervoltage shutdown $T_i = -40+150$ °C:	V _{bb(under)}	3.5		5.0	V
Undervoltage restart $T_j = -40+25$ °C: $T_j = +150$ °C:	V _{bb(u rst)}			5.0 7.0	V
Undervoltage restart of charge pump see diagram page 12	V _{bb(ucp)}		5.6	7.0	V
Undervoltage hysteresis $\Delta V_{bb(under)} = V_{bb(u rst)} - V_{bb(under)}$	$\Delta V_{ m bb(under)}$		0.2	-	V
Overvoltage shutdown $T_i = -40+150$ °C:	V _{bb(over)}	34		43	V
Overvoltage restart $T_i = -40+150$ °C:	V _{bb(o rst)}	33			V
Overvoltage hysteresis T_i =-40+150°C:	$\Delta V_{ m bb(over)}$		0.5		V
Overvoltage protection ⁷) $T_i = -40+150$ °C:	$V_{\rm bb(AZ)}$	42	47		V
I _{bb} =40 mA	22(1-)				
Standby current (pin 3)					
$V_{\text{IN}}=0$ $T_{\text{j}}=-40+25$ °C:	I _{bb(off)}		10	25	μΑ
$T_{\rm i}$ = 150°C:	,		12	28	•
Leakage output current (included in I _{bb(off)}) Vin=0	$I_{L(off)}$			12	μΑ
Operating current (Pin 1) ⁸), $V_{IN}=5$ V, $T_i=-40+150$ °C	I _{GND}		1.8	3.5	mA
- p	- 0110			3.0	

Data Sheet 3 2013-10-10

 $^{^{6)}}$ At supply voltage increase up to $V_{bb}\text{=}5.6~\text{V}$ typ without charge pump, $V_{OUT}\approx\!V_{bb}$ - 2 V

See also $V_{ON(CL)}$ in table of protection functions and circuit diagram page 7.

Add I_{ST} , if $I_{ST} > 0$, add I_{IN} , if $V_{IN} > 5.5 \text{ V}$

Parameter and Conditions	Symbol	Values			Unit
at T _j = 25 °C, V _{bb} = 12 V unless otherwise specified		min	typ	max	
Protection Functions ⁹⁾					
Initial peak short circuit current limit (pin 3 to 5)	I _{L(SCp)}				
τ _j =-40°C: τ _j =25°C: τ _j =+150°C:		21 15 11	32 25 17	43 35 24	А
Repetitive short circuit shutdown current limit	I _{L(SCr)}				
$T_{\rm j} = T_{\rm jt}$ (see timing diagrams, page 10)			16		Α
Output clamp (inductive load switch off) at $V_{\text{OUT}} = V_{\text{bb}} - V_{\text{ON(CL)}}$ $I_{\text{L}} = 40 \text{ mA}$:	V _{ON(CL)}	41	47	53	V
Thermal overload trip temperature	$T_{\rm jt}$	150			°C
Thermal hysteresis	$\Delta T_{\rm jt}$		10		K
Reverse battery (pin 3 to 1) 10)	-V _{bb}			32	V
Reverse battery voltage drop (Vout > Vbb)					
$I_{L} = -4 \text{ A}$ $T_{j}=150 \text{ °C}:$	-V _{ON(rev)}		610		mV
Diagnostic Characteristics					
Open load detection current T_j =-40 °C: (on-condition) T_j =25150°C:	I _{L (OL)}	20 10		850 750	mA
Open load detection voltage ¹¹ (off-condition) T_j =-40150°C:	V _{OUT(OL)}	2	3	4	V
Internal output pull down (pin 5 to 1), V _{OUT} =5 V, T _j =-40150°C	Ro	4	10	30	kΩ

۰۱

Data Sheet 4 2013-10-10

Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7).

External pull up resistor required for open load detection in off state.

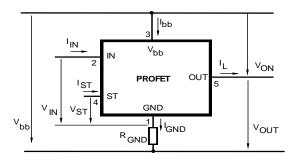
Parameter and Conditions		Symbol		Values		Unit
at $T_j = 25$ °C, $V_{bb} = 12$ V unless	otherwise specified		min	typ	max	
Input and Status Feedbac	ck ¹²⁾					
Input resistance T _j =-40150°C, see circuit	page 6	Rı	2.5	3.5	6	kΩ
Input turn-on threshold vol	rage	- V _{IN(T+)}	1.7		3.5	V
Input turn-off threshold vol	rage	$V_{\text{IN(T-)}}$	1.5			V
Input threshold hysteresis		$\Delta V_{\text{IN(T)}}$		0.5		V
Off state input current (pin T_j =-40+150°C	2), $V_{IN} = 0.4 \text{ V}$,	I _{IN(off)}	1		50	μΑ
On state input current (pin T_j =-40+150°C	2), $V_{IN} = 3.5 \text{ V}$,	I _{IN(on)}	20	50	90	μΑ
Delay time for status with c (see timing diagrams, page 11)		t _{d(ST OL4)}	100	520	1000	μS
Status invalid after positive	input slope	$t_{\sf d(ST)}$		250	600	μS
(open load)	<i>T</i> j=-40 +150°C:					
Status output (open drain)						
Zener limit voltage	$T_{\rm j}$ =-40+150°C, $I_{\rm ST}$ = +1.6 mA:	V _{ST(high)}	5.4	6.1		V
ST low voltage	$T_{\rm j}$ =-40+25°C, $I_{\rm ST}$ = +1.6 mA:	$V_{\rm ST(low)}$			0.4	
	$T_{\rm j}$ = +150°C, $I_{\rm ST}$ = +1.6 mA:				0.6	

Data Sheet 5 2013-10-10

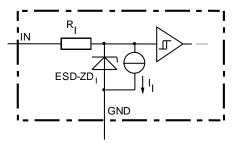
 $[\]overline{\ }^{12)}$ If a ground resistor R_{GND} is used, add the voltage drop across this resistor.

Truth Table

	Input-	Output	Status
	level	level	426L1
Normal	L	L	Н
operation	Н	Н	Н
Open load	L	¹³)	H (L ¹⁴⁾)
	Н	Н	L
Short circuit to	L	Н	L ¹⁵)
V_{bb}	Н	Н	H (L ¹⁶⁾)
Overtem-	L	L	Н
perature	Н	L	L
Undervoltage	L	L	Н
	Н	L	Н
Overvoltage	L	L	Н
	Н	L	Н

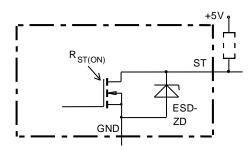

L = "Low" Level

X = don't care

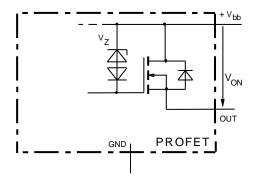

Z = high impedance, potential depends on external circuit

H = "High" Level Status signal after the time delay shown in the diagrams (see fig 5. page 11...12)

Terms



Input circuit (ESD protection)


ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

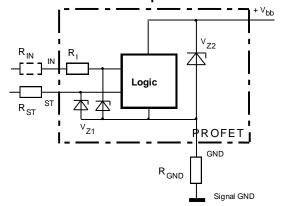
Status output

ESD-Zener diode: 6.1 V typ., max 5 mA; $R_{ST(ON)}$ < 380 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Inductive and overvoltage output clamp

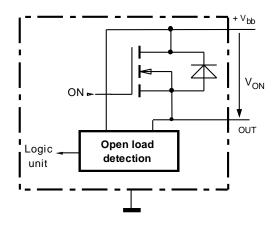
Von clamped to 47 V typ.

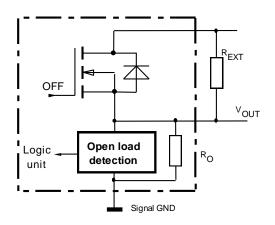
¹³⁾ Power Transistor off, high impedance


with external resistor between pin 3 and pin 5

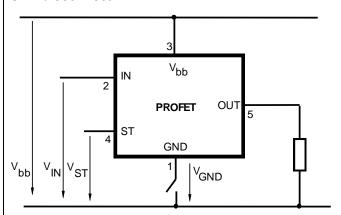
An external short of output to V_{bb}, in the off state, causes an internal current from output to ground. If R_{GND} is used, an offset voltage at the GND and ST pins will occur and the V_{ST low} signal may be errorious.

Low resistance to $V_{\rm bb}$ may be detected in ON-state by the no-load-detection

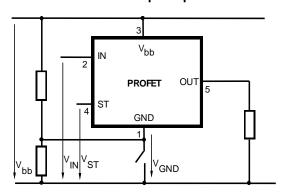

Overvolt. and reverse batt. protection


 V_{Z1} = 6.2 V typ., V_{Z2} = 47 V typ., R_{GND} = 150 Ω , R_{ST} = 15 k Ω , R_{I} = 3.5 k Ω typ.

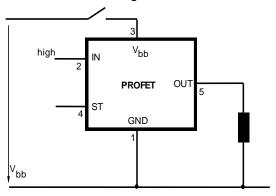
Open-load detection


ON-state diagnostic condition: $V_{ON} < R_{ON} * I_{L(OL)}$; IN high

OFF-state diagnostic condition: $V_{OUT} > 3 \text{ V typ.}$; IN low

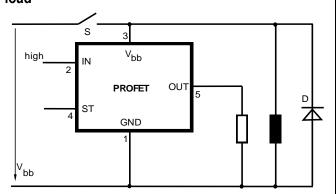


GND disconnect

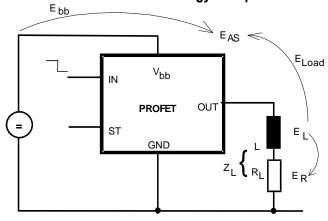

Any kind of load. In case of Input=high is $V_{OUT} \approx V_{IN} - V_{IN(T+)}$. Due to $V_{GND} > 0$, no $V_{ST} =$ low signal available.

GND disconnect with GND pull up

Any kind of load. If $V_{GND} > V_{IN} - V_{IN(T+)}$ device stays off Due to $V_{GND} > 0$, no $V_{ST} =$ low signal available.


V_{bb} disconnect with energized inductive load

Normal load current can be handled by the PROFET itself.



$V_{bb}\ disconnect$ with charged external inductive load

If other external inductive loads L are connected to the PROFET, additional elements like D are necessary.

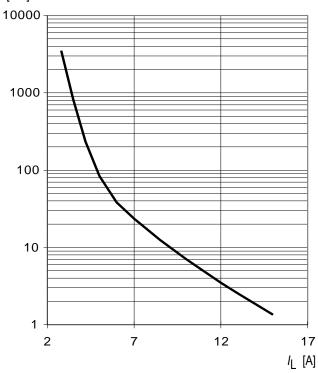
Inductive Load switch-off energy dissipation

Energy stored in load inductance:

$$E_L = \frac{1}{2} \cdot L \cdot I_L^2$$

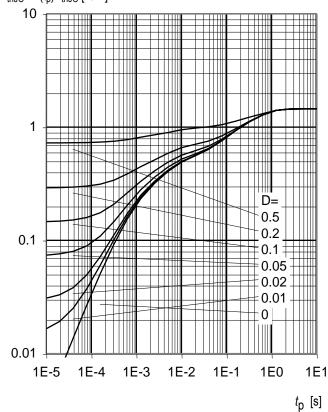
While demagnetizing load inductance, the energy dissipated in PROFET is

$$E_{AS} = E_{bb} + E_L - E_R = \int V_{ON(CL)} \cdot i_L(t) dt$$

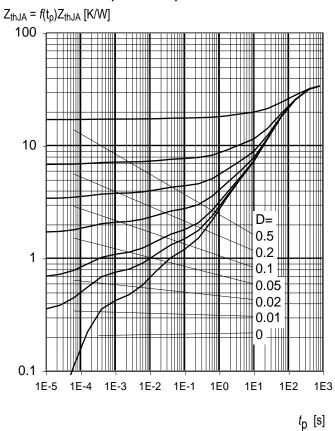

with an approximate solution for $R_L>0\,\Omega$:

$$\textit{E}_{\text{AS}} = \frac{I_{\text{L}} \cdot \text{L}}{2 \cdot \text{R}_{\text{L}}} \cdot \left(\text{V}_{\text{bb}} + |\text{V}_{\text{OUT(CL)}}| \right) \cdot ln \; (1 + \frac{I_{\text{L}} \cdot \text{R}_{\text{L}}}{|\text{V}_{\text{OUT(CL)}}|} \,)$$

Maximum allowable load inductance for a single switch off


 $L = f(I_L)$; $T_{j,start} = 150$ °C, $T_C = 150$ °C const., $V_{bb} = 12$ V, $R_L = 0$ Ω

L [mH]


Typ. transient thermal impedance chip case

 $Z_{thJC} = f(t_p)Z_{thJC} [K/W]$

Transient thermal impedance chip ambient air

Timing diagrams

Figure 1a: V_{bb} turn on:

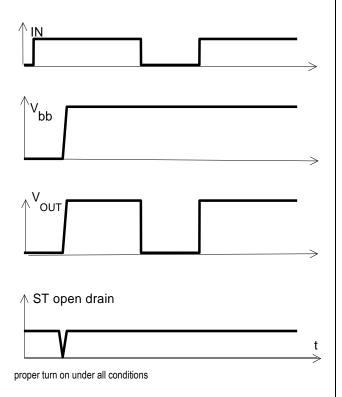


Figure 2a: Switching a lamp,

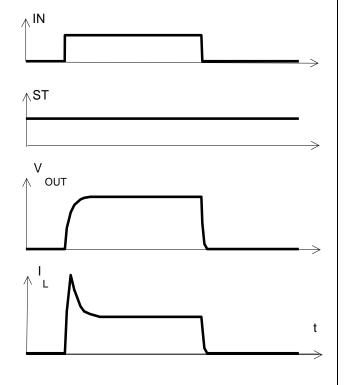
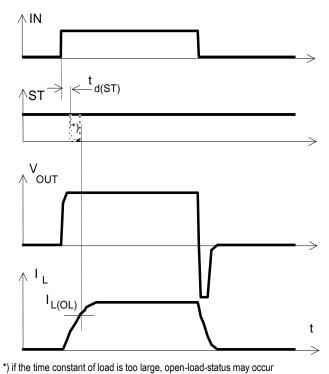
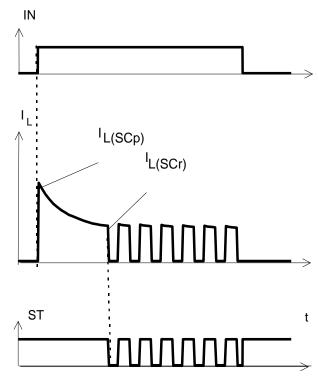




Figure 2b: Switching an inductive load

, in the time constant or load to too harge, open road called may cook

Figure 3a: Short circuit shut down by overtempertature, reset by cooling

Heating up may require several milliseconds, depending on external conditions

Figure 4a: Overtemperature: Reset if $T_i < T_{jt}$

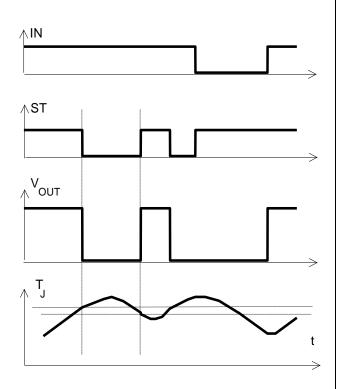
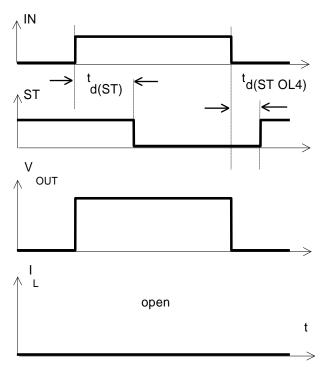
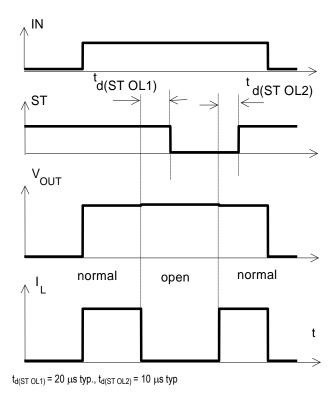




Figure 5a: Open load: detection in ON-state, turn on/off to open load

The status delay time $t_{d(\mbox{\footnotesize{ST}}\mbox{\footnotesize{OL4}})}$ allows to ditinguish between the failure modes "open load" and "overtemperature".

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

Figure 5c: Open load: detection in ON- and OFF-state (with REXT), turn on/off to open load

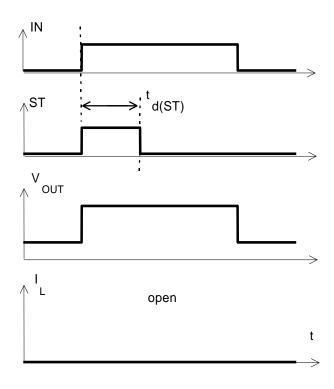


Figure 6a: Undervoltage:

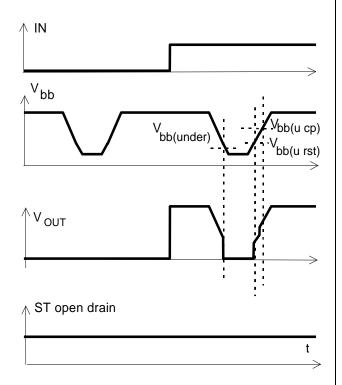


Figure 6b: Undervoltage restart of charge pump

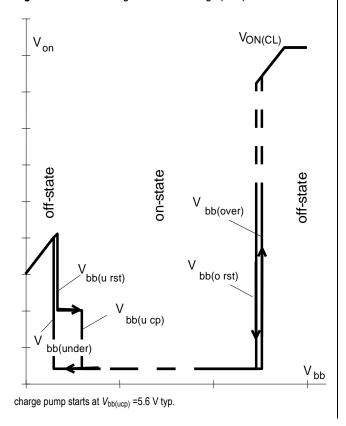
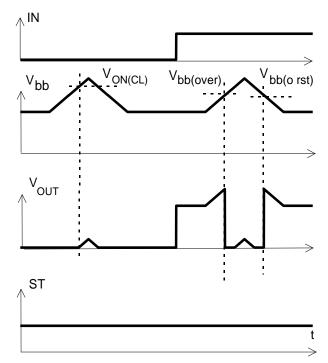
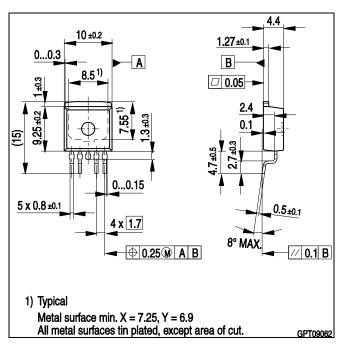



Figure 7a: Overvoltage:



Package and Ordering Code

All dimensions in mm

 PG-TO263-5-2
 Ordering code

 BTS426L1 E3062A
 SP001104820

Published by Infineon Technologies AG, D-81726 München © Infineon Technologies AG 2013 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.