BAW56...

Silicon Switching Diode

- For high-speed switching applications
- Common anode configuration
- BAW56S / U: For orientation in reel see package information below
- Pb-free (RoHS compliant) package ${ }^{1)}$
- Qualified according AEC Q101

BAW56	BAW56S
BAW56W	BAW56U

Type	Package	Configuration	Marking
BAW56	SOT23	common anode	A1s
BAW56S	SOT363	double common anode	A1s
BAW56U	SC74	double common anode	A1s
BAW56W	SOT323	common anode	A1s

[^0]BAW56...

Maximum Ratings at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	80	V
Peak reverse voltage	V_{RM}	85	
Forward current	I_{F}	200	mA
Non-repetitive peak surge forward current	I_{FSM}		A
$t=1 \mu \mathrm{~s}$		4.5	
$t=1 \mathrm{~ms}$		1	
$t=1 \mathrm{~s}$, single		0.5	
$t=1 \mathrm{~s}$, double	$P_{\text {tot }}$	0.75	
Total power dissipation			
BAW56, $T_{\mathrm{S}} \leq 28^{\circ} \mathrm{C}$		230	
BAW56S, $T_{\mathrm{S}} \leq 85^{\circ} \mathrm{C}$		250	
BAW56U, $T_{\mathrm{S}} \leq 90^{\circ} \mathrm{C}$		250	
BAW56W, $T_{\mathrm{S}} \leq 103^{\circ} \mathrm{C}$		150	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	$-65 \ldots 150$	
Storage temperature	$T_{\text {stg }}$		

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1)}$	$R_{\text {thJS }}$		K/W
BAW56		360	
BAW56S		260	
BAW56U		240	
BAW56W		190	

${ }^{1}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

BAW56...

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

DC Characteristics

Breakdown voltage $I_{(\mathrm{BR})}=100 \mu \mathrm{~A}$	$V_{(\mathrm{BR})}$	85	-	-	V
Reverse current	I_{R}				$\mu \mathrm{A}$
$V_{\mathrm{R}}=70 \mathrm{~V}$		-	-	0.15	
$V_{\mathrm{R}}=25 \mathrm{~V}, T_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-	-	30	
$V_{\mathrm{R}}=70 \mathrm{~V}, T_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-	-	50	
Forward voltage	V_{F}				mV
$I_{\mathrm{F}}=1 \mathrm{~mA}$		-	-	715	
$I_{\mathrm{F}}=10 \mathrm{~mA}$		-	-	855	
$I_{\mathrm{F}}=50 \mathrm{~mA}$		-	-	1000	
$I_{\mathrm{F}}=100 \mathrm{~mA}$		-	-	1200	
$I_{\mathrm{F}}=150 \mathrm{~mA}$	-	-	1250		

AC Characteristics

Diode capacitance $V_{\mathrm{R}}=0 \mathrm{~V}, f=1 \mathrm{MHz}$	C_{T}	-	-	2	pF
Reverse recovery time $I_{F}=10 \mathrm{~mA}, I_{\mathrm{R}}=10 \mathrm{~mA}$, measured at $I_{\mathrm{R}}=1 \mathrm{~mA}$,	t_{rr}	-	-	4	ns
$R_{\mathrm{L}}=100 \Omega$					

Test circuit for reverse recovery time

Pulse generator: $t_{\mathrm{p}}=100 \mathrm{~ns}, D=0.05, t_{\mathrm{r}}=0.6 \mathrm{~ns}$,

$$
R_{\mathrm{i}}=50 \Omega
$$

Oscillograph: $R=50 \Omega, t_{\mathrm{r}}=0.35 \mathrm{~ns}, C \leq 1 \mathrm{pF}$

BAW56...

Reverse current $I_{\mathrm{R}}=f\left(T_{\mathrm{A}}\right)$
$V_{R}=$ Parameter

Forward current $I_{F}=f\left(V_{F}\right)$
$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Forward Voltage $V_{\mathrm{F}}=f\left(T_{\mathrm{A}}\right)$
$I_{F}=$ Parameter

Forward current $I_{\mathrm{F}}=f\left(T_{\mathrm{S}}\right)$
BAW56

Forward current $I_{\mathrm{F}}=f\left(T_{\mathrm{S}}\right)$
BAW56S

Forward current $I_{F}=f\left(T_{S}\right)$
BAW56W

Forward current $I_{F}=f\left(T_{S}\right)$
BAW56U

Permissible Puls Load $R_{\mathrm{th} J S}=f\left(t_{\mathrm{p}}\right)$ BAW56

Permissible Pulse Load
$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right)$
BAW56

Permissible Pulse Load

$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right)$
BAW56S

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BAW56S

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BAW56U

Permissible Pulse Load
$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right)$
BAW56U

Permissible Pulse Load

$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right)$
BAW56W

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BAW56W

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Package Outline

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Edition 2006-02-01
Published by Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{1} \mathrm{~Pb}$-containing package may be available upon special request

