

Datasheet

Trench gate field-stop 600 V, 10 A high speed H series IGBT

Features

- High speed switching
- Tight parameters distribution
- Safe paralleling
- Low thermal resistance
- Short-circuit rated
- Ultrafast soft recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

These devices are IGBTs developed using an advanced proprietary trench gate fieldstop structure. These devices are part of the H series of IGBTs, which represents an optimum compromise between conduction and switching losses to maximize the efficiency of high switching frequency converters. Furthermore, a slightly positive $V_{CE(sat)}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Product status link
STGB10H60DF
STGF10H60DF
STGP10H60DF

1 Electrical ratings

Sumbol	Davamatar	Valu	Value		
Symbol	Parameter	D ² PAK, TO-220	TO-220FP	Unit	
V _{CES}	Collector-emitter voltage (V _{GE} = 0 V)	60	0	V	
	Continuous collector current at T _C = 25 °C	20	20 (1)	•	
Ι _C	Continuous collector current at T _C = 100 °C	10	10 (1)	A	
I _{CP} ⁽²⁾	Pulsed collector current 40		40	А	
V _{GE}	Gate-emitter voltage ±20		V		
V GE	Transient gate-emitter voltage	±30		V	
1_	Continuous forward current at T_C = 25 °C	20	20 (1)	Α	
IF	Continuous forward current at T_C = 100 °C	10	10 (1)	A	
I _{FP} ⁽²⁾	Pulsed forward current	40	40	А	
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; $T_c = 25$ °C)		2.5	kV	
P _{TOT}	Total power dissipation at T_C = 25 °C	115	30	W	
T _{STG}	Storage temperature range -55 to 150		0°		
TJ	Operating junction temperature range	-55 to	175	U U	

Table 1. Absolute maximum ratings

1. Limited by maximum junction temperature.

2. Pulse width limited by maximum junction temperature.

Table 2. Thermal data

Symbol	Deremeter	Valu	l lmit	
Symbol	Parameter	D ² PAK, TO-220	TO-220FP	Unit
R _{thJC}	Thermal resistance, junction-to-case IGBT	1.3	5	°C/W
R _{thJC}	Thermal resistance, junction-to-case diode	2.78	6.25	°C/W
R _{thJA}	Thermal resistance, junction-to-ambient	62.5	62.5	°C/W

2 Electrical characteristics

57

 T_C = 25 °C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	V_{GE} = 0 V, I _C = 2 mA	600			V
		V _{GE} = 15 V, I _C = 10 A		1.50	1.95	
V _{CE(sat)}	Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 10 A, T _J = 125 °C		1.65		V
		V_{GE} = 15 V, I _C = 10 A, T _J = 175 °C		1.70		
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 250 μA	5	6	7	V
I _{CES}	Collector cut-off current	V _{CE} = 600 V, V _{GE} = 0 V			25	μA
I _{GES}	Gate-emitter leakage current	V_{GE} = ±20 V, V_{CE} = 0 V			±250	nA

Table 3. Static

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance			1300		
C _{oes}	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	_	60	-	pF
C _{res}	Reverse transfer capacitance			30		
Qg	Total gate charge			57		
Q _{ge}	Gate-emitter charge	$V_{CC} = 480 \text{ V}, I_{C} = 10 \text{ A}, V_{GE} = 0 \text{ to } 15 \text{ V}$	-	8	-	nC
Q _{gc}	Gate-collector charge	(see Figure 35. Gate charge test circuit)		27		

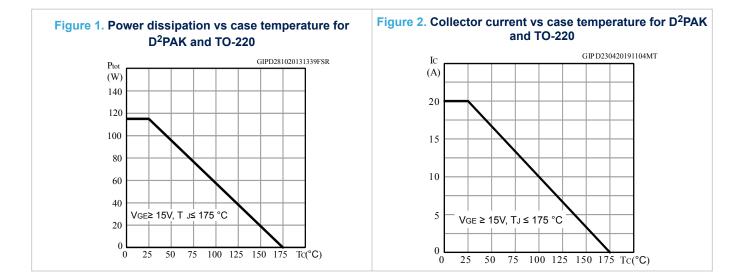
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{CE} = 400 V, I_{C} = 10 A, R_{G} = 10 Ω,		19.5		
t _r	Current rise time	V _{GE} = 15 V		6.9		ns
(di/dt)on	Turn-on current slope	(see Figure 34. Test circuit for inductive load switching and Figure 36. Switching waveform)		1170		A/µs
t _{d(on)}	Turn-on delay time	V_{CE} = 400 V, I_{C} = 10 A, R_{G} = 10 $\Omega,$	-	20	_	
t _r	Current rise time	V _{GE} = 15 V, T _J = 175 °C		6.8		ns
(di/dt)on	Turn-on current slope	(see Figure 34. Test circuit for inductive load switching and Figure 36. Switching waveform)		1176		A/µs
t _{r(Voff)}	Off voltage rise time	V_{CE} = 400 V, I_{C} = 10 A, R_{G} = 10 $\Omega,$		19.6		
t _{d(off)}	Turn-off delay time	V _{GE} = 15 V		103		
t _f	Current fall time	(see Figure 34. Test circuit for inductive load switching and Figure 36. Switching waveform)		73		
t _{r(Voff)}	Off voltage rise time	V_{CE} = 400 V, I_{C} = 10 A, R_{G} = 10 Ω,	-	28	_	ns
t _{d(off)}	Turn-off delay time	V _{GE} = 15 V, T _J = 175 °C		104		
t _f	Current fall time	(see Figure 34. Test circuit for inductive load switching and Figure 36. Switching waveform)		110		
t _{sc}	Short-circuit withstand time	V_{CC} \leq 360 V, V_{GE} = 15 V, R_{G} = 10 Ω	3	5	-	μs

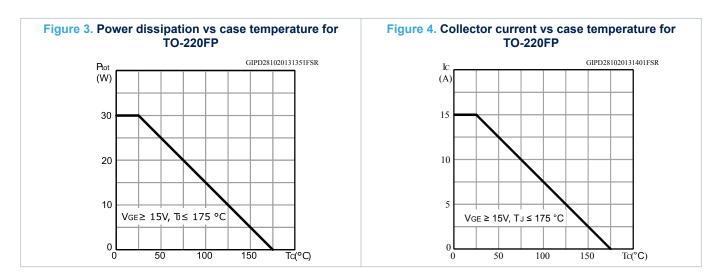
Table 5. Switching characteristics (inductive load)

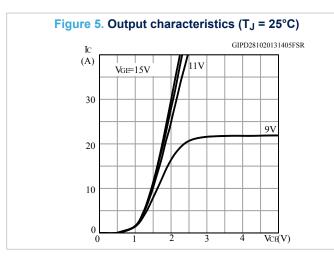
Table 6. Switching energy (inductive load)

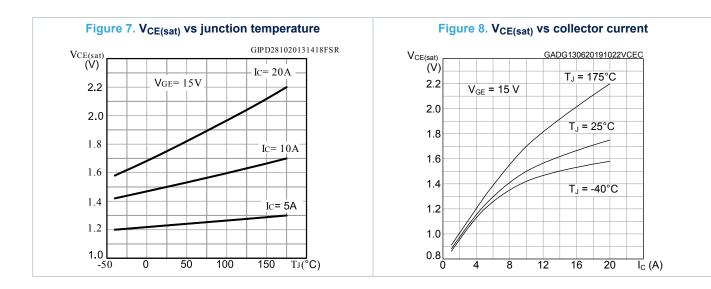
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾	Turn-on switching energy	V_{CE} = 400 V, I_{C} = 10 A, R_{G} = 10 $\Omega,$		83		
E _{off} ⁽²⁾	Turn-off switching energy	V_{GE} = 15 V (see Figure 34. Test circuit for inductive load		140	-	
E _{ts}	Total switching energy	switching)		223		1
E _{on} ⁽¹⁾	Turn-on switching energy	V_{CE} = 400 V, I _C = 10 A, R _G = 10 Ω,	-	148	_	μJ
E _{off} ⁽²⁾	Turn-off switching energy	V_{GE} = 15 V, T _J = 175 °C (see Figure 34. Test circuit for inductive load		214	-	
E _{ts}	Total switching energy	switching)		362		

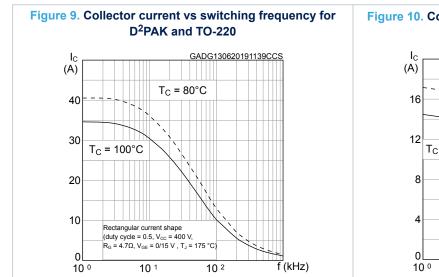
1. Including the reverse recovery of the diode.

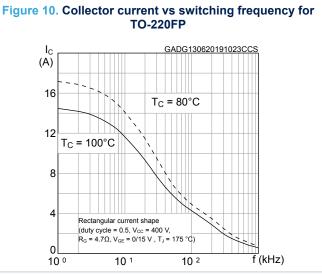

2. Including the tail of the collector current.

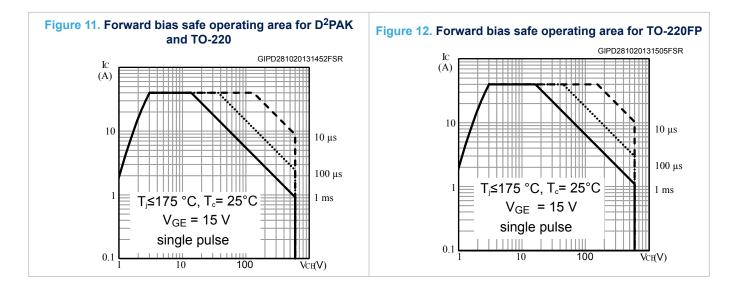

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VF	Forward on-voltage	I _F = 10 A		1.7	2.2	V
٧F	Torward on-voltage	I _F = 10 A, T _J = 175 °C	-	1.3		v
t _{rr}	Reverse recovery time	Vr = 60 V; I _F = 10 A, di _F /dt = 100 A / μs		107		ns
Q _{rr}	Reverse recovery charge	(see Figure 37. Diode reverse recovery waveform)		120		nC
Irrm	Reverse recovery current	wavelonn)		2.24		А
t _{rr}	Reverse recovery time	V_r = 60 V; I _F = 10 A, di _F /dt = 100 A / µs	_	161		ns
Q _{rr}	Reverse recovery charge	T _J = 175 °C (see Figure 37. Diode reverse recovery		362		nC
I _{rrm}	Reverse recovery current	waveform)		4.5		А


Table 7. Collector-emitter diode


2.1 Electrical characteristics (curves)







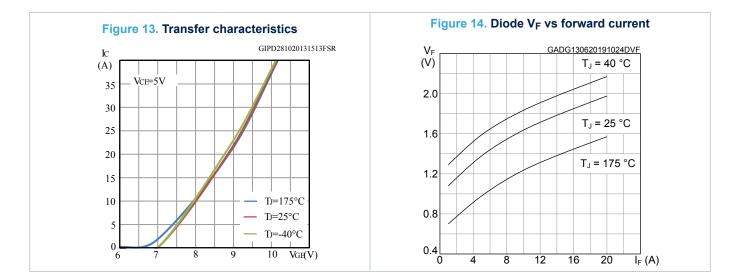
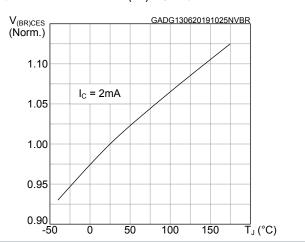
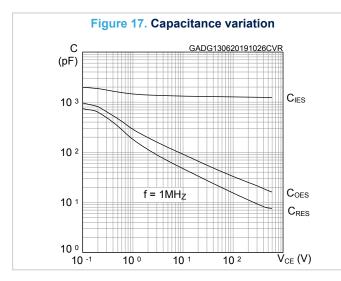


Figure 15. Normalized V_{GE(th)} vs junction temperature

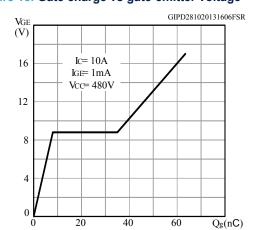
50

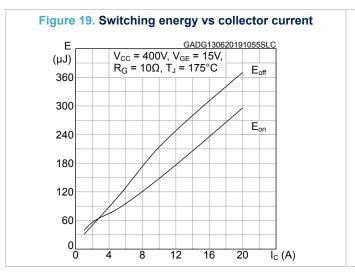

0

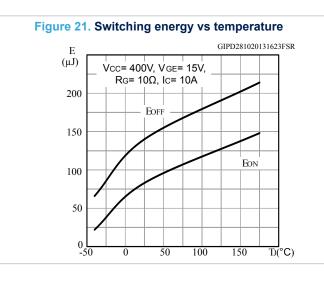

100

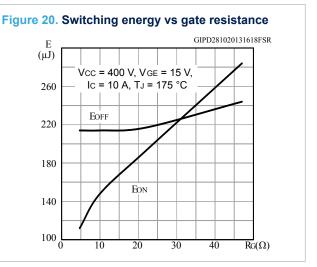
150

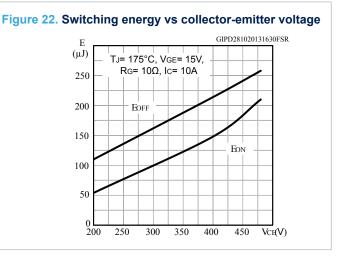
(℃)

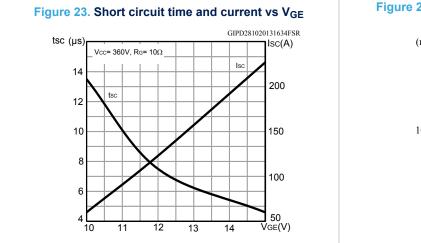

Figure 16. Normalized $V_{(BR)CES}$ vs junction temperature

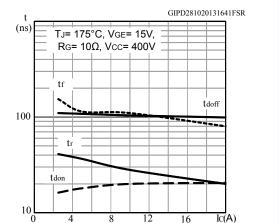


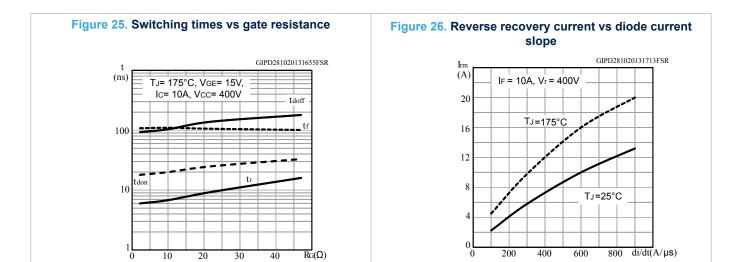


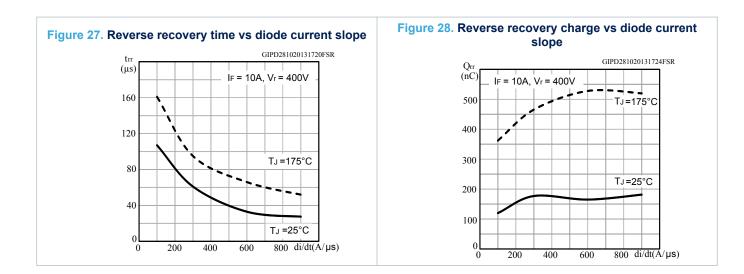

0.6 L -50

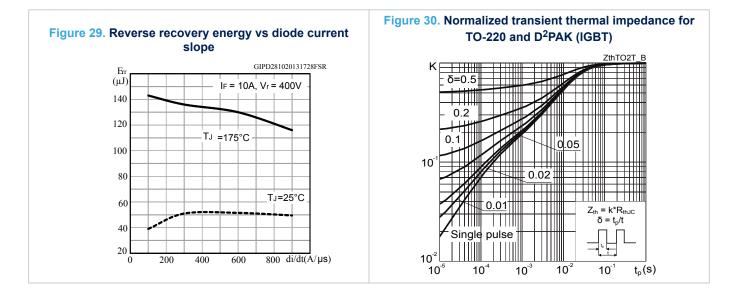

Figure 18. Gate charge vs gate-emitter voltage

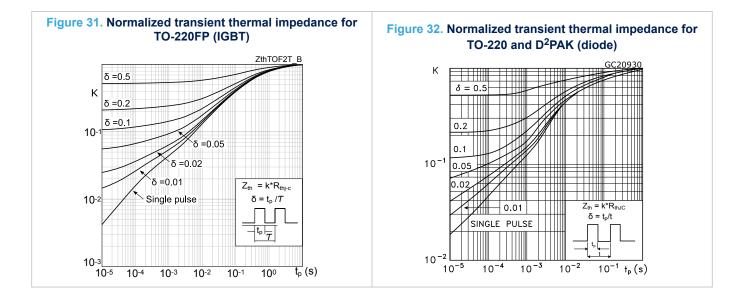


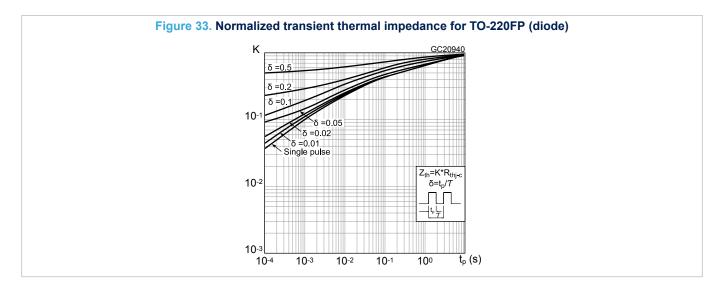


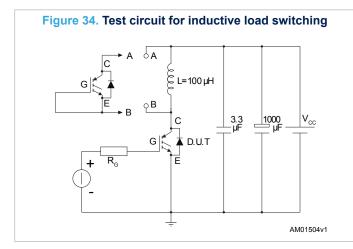


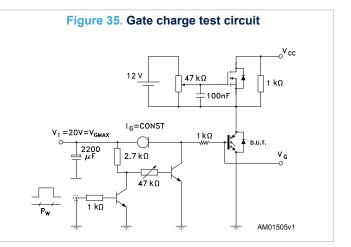


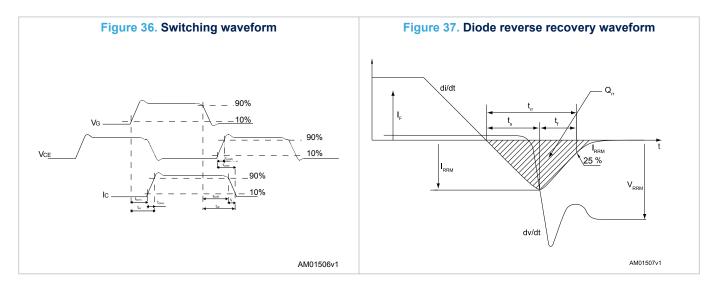

Figure 24. Switching times vs collector current



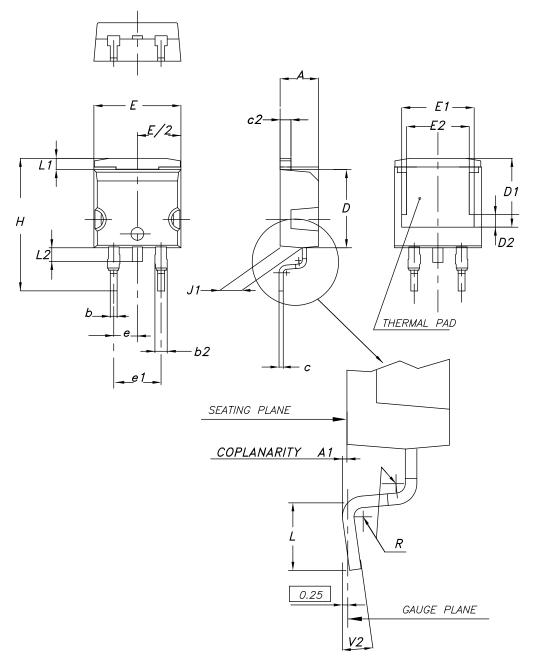








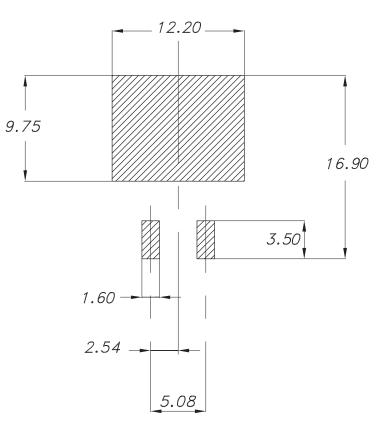
3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 D²PAK (TO-263) type A2 package information

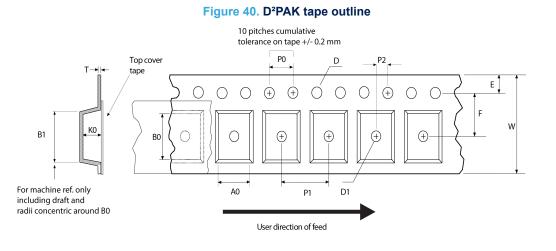

Figure 38. D²PAK (TO-263) type A2 package outline

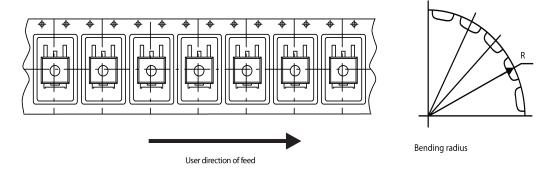
0079457_A2_26

Dim.		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10.00		10.40
E1	8.70	8.90	9.10
E2	7.30	7.50	7.70
e		2.54	
e1	4.88		5.28
Н	15.00		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.40	
V2	0°		8°

Table 8. D²PAK (TO-263) type A2 package mechanical data

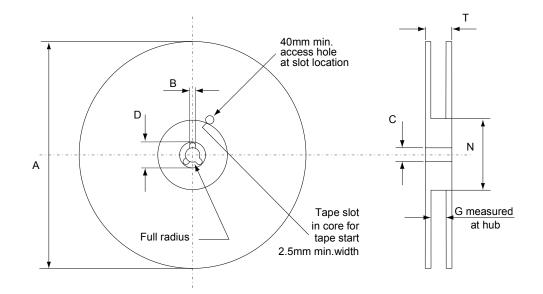
Figure 39. D²PAK (TO-263) recommended footprint (dimensions are in mm)


0079457_Rev26_footprint


57

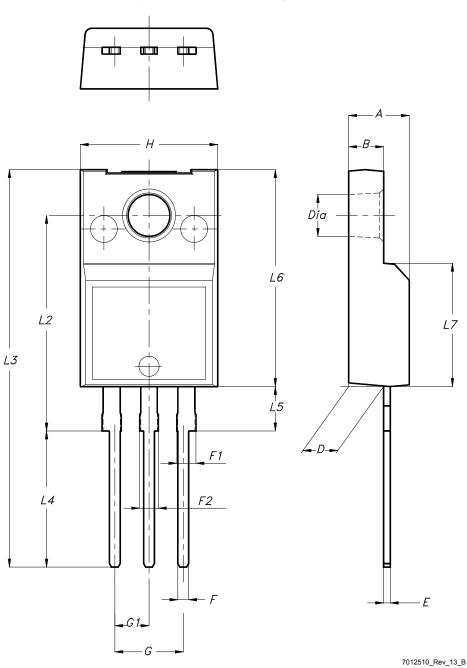
4.2 D²PAK packing information

57



AM08852v1

Figure 41. D²PAK reel outline

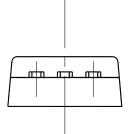

AM06038v1

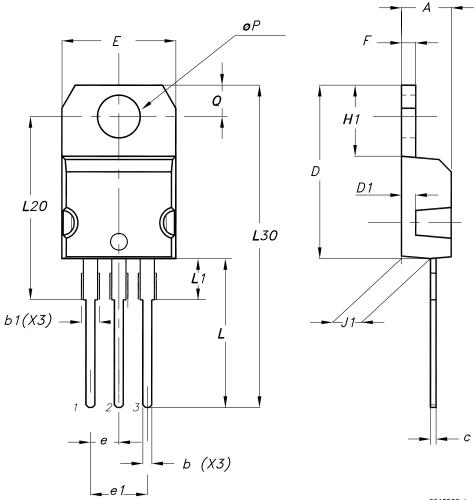
Таре				Reel	
Dim.	n	nm	Dim.	m	m
Dim.	Min.	Max.		Min.	Max.
A0	10.5	10.7	А		330
B0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
К0	4.8	5.0	Т		30.4
P0	3.9	4.1		·	
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk qu	uantity	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Table 9. D²PAK tape and reel mechanical data

4.3 TO-220FP package information

Figure 42. TO-220FP package outline


Dim.	mm				
Dini.	Min.	Тур.	Max.		
A	4.40		4.60		
В	2.50		2.70		
D	2.50		2.75		
E	0.45		0.70		
F	0.75		1.00		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.20		
G1	2.40		2.70		
Н	10.00		10.40		
L2		16.00			
L3	28.60		30.60		
L4	9.80		10.60		
L5	2.90		3.60		
L6	15.90		16.40		
L7	9.00		9.30		
Dia	3.00		3.20		


Table 10. TO-220FP package mechanical data

4.4 TO-220 type A package information

Figure 43. TO-220 type A package outline

0015988_typeA_Rev_23

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øP	3.75		3.85
Q	2.65		2.95
Slug flatness		0.03	0.10

Table 11. TO-220 type A package mechanical data

5 Ordering information

Order code	Marking	Package	Packing
STGB10H60DF	GB10H60DF	D ² PAK	Tape and reel
STGF10H60DF	GF10H60DF	TO-220FP	Tube
STGP10H60DF	GP10H60DF	TO-220	Tube

Revision history

Table 13. Document revision history

Date	Version	Changes
12-Aug-2013	1	Initial release.
31-Oct-2013	2	Document status promoted from preliminary to production data. Inserted Section 2.1: Electrical characteristics (curves). Minor text changes.
20-Jun-2019	3	Updated title, applications and description in cover page. Added Section 5 Ordering information. Updated Section 2.1 Electrical characteristics (curves). Minor text changes.
05-Mar-2020	4	Updated <i>Table 3. Static</i> and <i>Table 4. Dynamic</i> . Minor text changes.
21-Jan-2022	5	Modified Figure 30. Normalized transient thermal impedance for TO-220 and D ² PAK (IGBT) and Figure 32. Normalized transient thermal impedance for TO-220 and D ² PAK (diode). Added Figure 31. Normalized transient thermal impedance for TO-220FP (IGBT) and Figure 33. Normalized transient thermal impedance for TO-220FP (diode). Minor text changes.

Contents

1	Elect	rical ratings	2		
2	Electrical characteristics				
	2.1	Electrical characteristics (curves)	6		
3	Test	circuits	12		
4	Pack	age information	13		
	4.1	D ² PAK (TO-263) type A2 package information	13		
	4.2	D ² PAK packing information	16		
	4.3	TO-220FP package information	18		
	4.4	TO-220 type A package information	20		
5	Orde	ring information	22		
Revi	ision l	history	23		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved