MOSFET – N-Channel, POWERTRENCH[®]

80 V, 100 A, 4.2 m Ω

FDD86367

Features

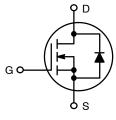
- Typical $R_{DS(on)} = 3.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 80 \text{ A}$
- Typical $Q_{g(tot)} = 68 \text{ nC}$ at $V_{GS} = 10 \text{ V}$, $I_D = 80 \text{ A}$
- UIS Capability
- This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant

Applications

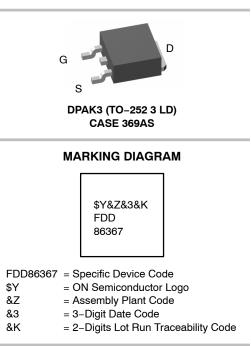
- PowerTrain Management
- Solenoid and Motor Drivers
- Integrated Starter/Alternator
- Primary Switch for 12 V Systems

MOSFET MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Parameter Ratings	
VDSS	Drain-to-Source Voltage	80	V
Vgs	Gate-to-Source Voltage	±20	V
۱ _D	$ Drain Current - Continuous (V_{GS} = 10) \\ (Note 1) T_C = 25^\circ C $	100	A
	Pulsed Drain Current $T_C = 25^{\circ}C$	See Figure 4	
EAS	Single Pulse Avalanche Energy (Note 2)	82	mJ
PD	Power Dissipation	227	W
	Derate Above 25°C	1.52	W/°C
T _J , T _{STG}	Operating and Storage Temperature	–55 to + 175	°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.66	°C/W
R _{θJA}	Maximum Thermal Resistance, Junction to Ambient (Note 3)	52	°C/W


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Current is limited by bondwire configuration.
- Starting T_J = 25°C, L = 40 μH, I_{AS} = 64 A, V_{DD} = 80 V during inductor charging and V_{DD} = 0V during time in avalanche.
 R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal
- 3. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{qJC} is guaranteed by design, while R_{0JA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.



ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

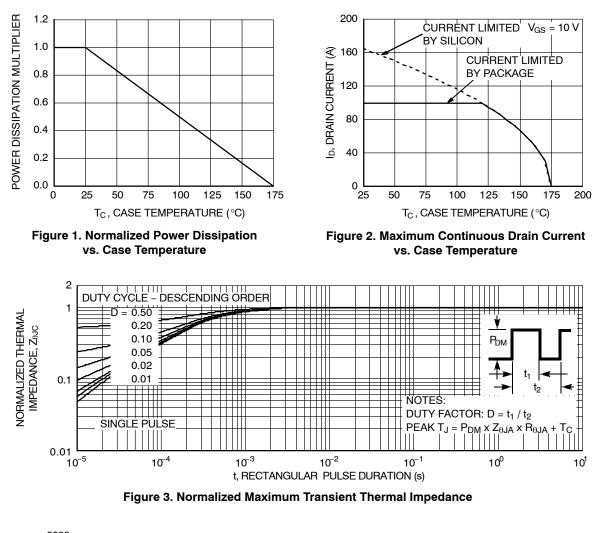
PACKAGE MARKING AND ORDERING INFORMATION

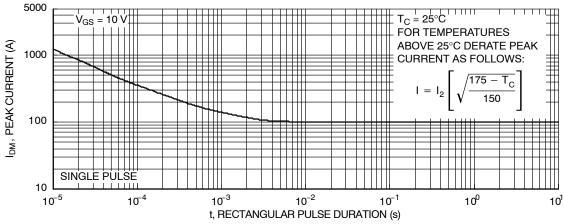
Device	Device Marking	Package	Reel Size	Tape Width	Shipping [†]
FDD86367	FDD86367	DPAK3 (TO-252 3 LD) (Pb-Free)	13"	16 mm	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Condition		Min	Тур	Max	Unit
OFF CHA	RACTERISTICS						
B _{VDSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$		80	-	-	V
I _{DSS}	Drain-to-Source Leakage Current	V _{DS} = 80 V, V _{GS} = 0 V	$T_J = 25^{\circ}C$	-	-	1	mA
			T _J = 175°C (Note 4)	-	-	1	mA
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20 V		-	-	±100	nA
ON CHAR	ACTERISTICS						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$		2	3	4	V
R _{DS(on)}	Drain to Source On Resistance	I _D = 80 A, V _{GS} = 10 V	$T_J = 25^{\circ}C$	-	3.3	4.2	mΩ
			T _J = 175°C (Note 4)	_	6.6	8.4	mΩ
DYNAMIC	CHARACTERISTICS	-					-
C _{iss}	Input Capacitance	V _{DS} = 40 V, V _{GS} = 0 V, f = 1 MHz		-	4840	-	pF
C _{oss}	Output Capacitance			-	814	-	pF
C _{rss}	Reverse Transfer Capacitance			-	31	-	pF
Rg	Gate Resistance	V _{GS} = 0.5 V, f = 1 MHz		-	2.3	-	Ω
Q _{g(ToT)}	Total Gate Charge	V_{GS} = 0 to 10 V	$V_{DD} = 40 V$,	-	68	88	nC
Q _{g(th)}	Threshold Gate Charge	V_{GS} = 0 to 2 V	I _D = 80 A	-	8.8	-	nC
Q _{gs}	Gate-to-Source Gate Charge	V _{DD} = 40 V, I _D = 80 A		-	22	-	nC
Q _{gd}	Gate-to-Drain "Miller" Charge			-	14	-	nC
SWITCHIN	NG CHARACTERISTICS	•			•	-	•
t _{on}	Turn-On Time	$V_{DD} = 40 \text{ V}, \text{ I}_{D} = 80 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$ $R_{GEN} = 6 \Omega$		-	-	104	ns
					+	+	———


t _{on}	Turn-On Time	$V_{DD} = 40 \text{ V}, \text{ I}_{D} = 80 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	-	-	104	ns
t _{d(on)}	Turn-On Delay	$R_{GEN} = 6 \Omega$	-	20	-	ns
t _r	Rise Time		-	49	_	ns
t _{d(off)}	Turn-Off Delay		-	36	_	ns
t _f	Fall Time		-	16	_	ns
t _{off}	Turn-Off Time		-	-	80	ns

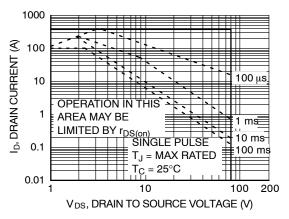
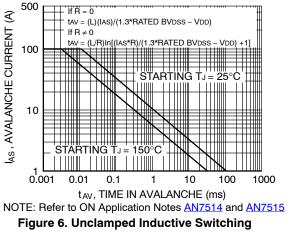
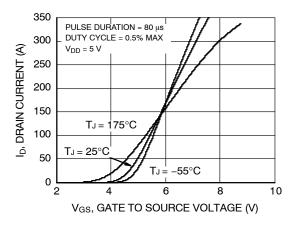
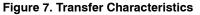

DRAIN-SOURCE DIODE CHARACTERISTICS

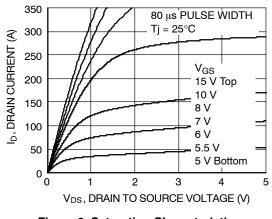
V _{SD}	Source-to-Drain Diode Voltage	$I_{SD} = 80 \text{ A}, V_{GS} = 0 \text{ V}$	-	-	1.3	V
		$I_{SD} = 40 \text{ A}, V_{GS} = 0 \text{ V}$	-	-	1.2	V
t _{rr}	Reverse-Recovery Time	V_{DD} = 64 V, I_F = 80 A, dI_{SD}/dt = 100 A/ $\!\mu s$	-	68	102	ns
Q _{rr}	Reverse-Recovery Charge		-	66	106	nC

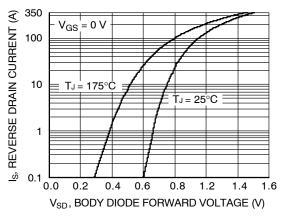
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. The maximum value is specified by design at $T_J = 175^{\circ}$ C. Product is not tested to this condition in production.

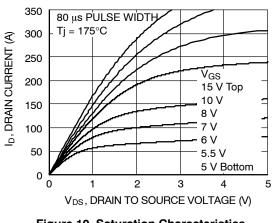
TYPICAL CHARACTERISTICS

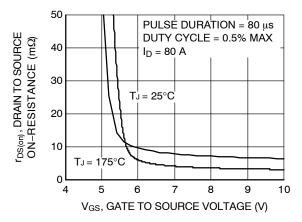
TYPICAL CHARACTERISTICS (continued)

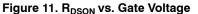






Figure 5. Forward Bias Safe Operating Area


Capability







TYPICAL CHARACTERISTICS (continued)

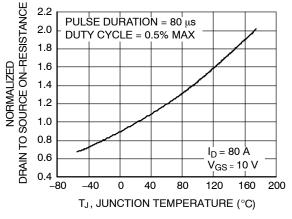


Figure 12. Normalized RDSON vs. Junction Temperature

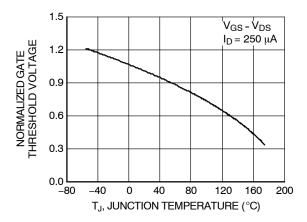


Figure 13. Normalized Gate Threshold Voltage vs. Temperature

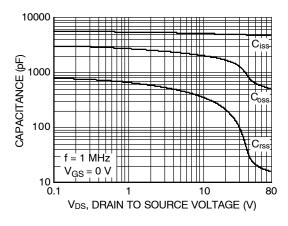


Figure 15. Capacitance vs. Drain to Source Voltage

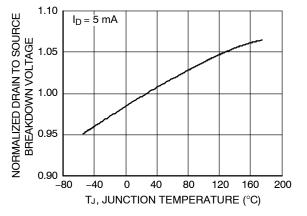


Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

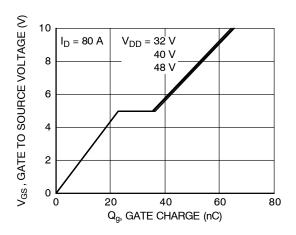
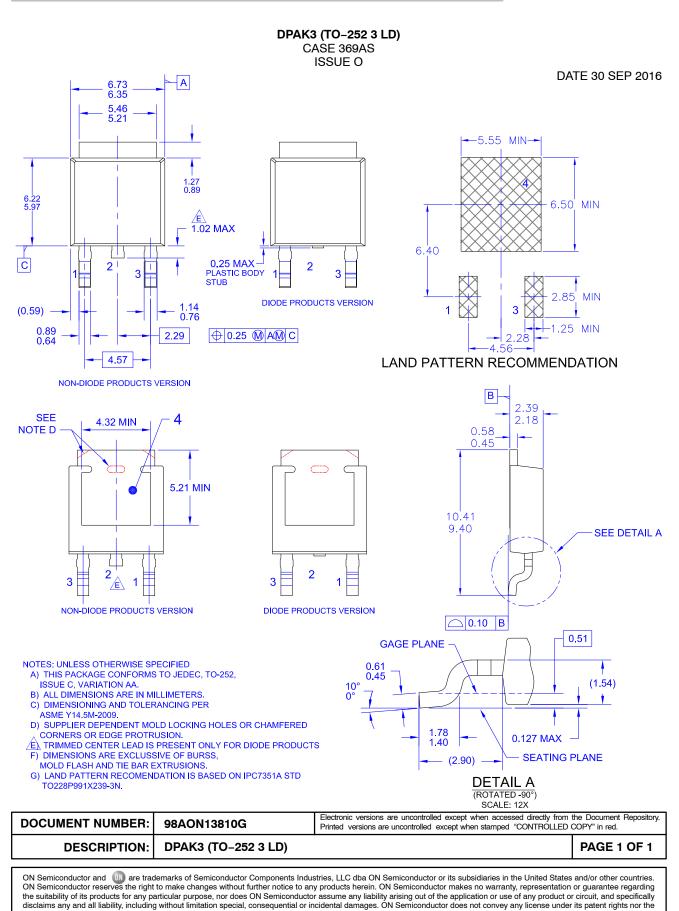



Figure 16. Gate Charge vs. Gate to Source Voltage

POWERTRENCH is registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: FDD86367