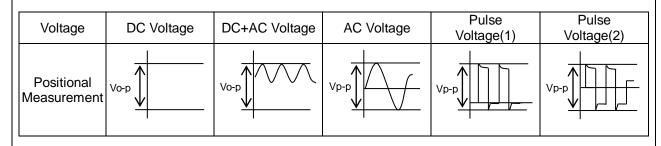
muRata

Reference Specification

Type RB Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Jun. 2019, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

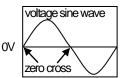
If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.


*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip : 400 °C max.

Soldering iron wattage : 50W max.

Soldering time : 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

3. PERFORMANCE CHÉCK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

\land ΝΟΤΕ

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type RB used for General Electric equipment.

Type RB is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL/cUL	UL60384-14	E37921	
ENEC (VDE)	DIN60384-14 EN60384-14 IEC60384-14	40046675	X1:760 Y1:500
CQC	IEC60384-14	CQC17001178139	

*Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range	-40 ~ +125°C
2-2. Rated Voltage	X1:AC760V(r.m.s.) Y1:AC500V(r.m.s.)

2-3. Part number configuration

ex.) <u>DE1</u>	B3	RB	471	<u> </u>	A4	В	R01F
Product	Temperature characteristic	21	Capacitance	Capacitance tolerance			Individual specification

Product code
 DE1 denotes X1,Y1 class.

• Temperature characteristic

Code	Temperature characteristic
1X	SL
B3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type RB.

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^{1} = 470 \text{pF}$$

• Capacitance tolerance Please refer to [Part number list].

Lead code

Code	Lead style
A*	Vertical crimp long type
ل*	Vertical crimp short type
N*	Vertical crimp taping type
* Diagon refer to	[Port number list]

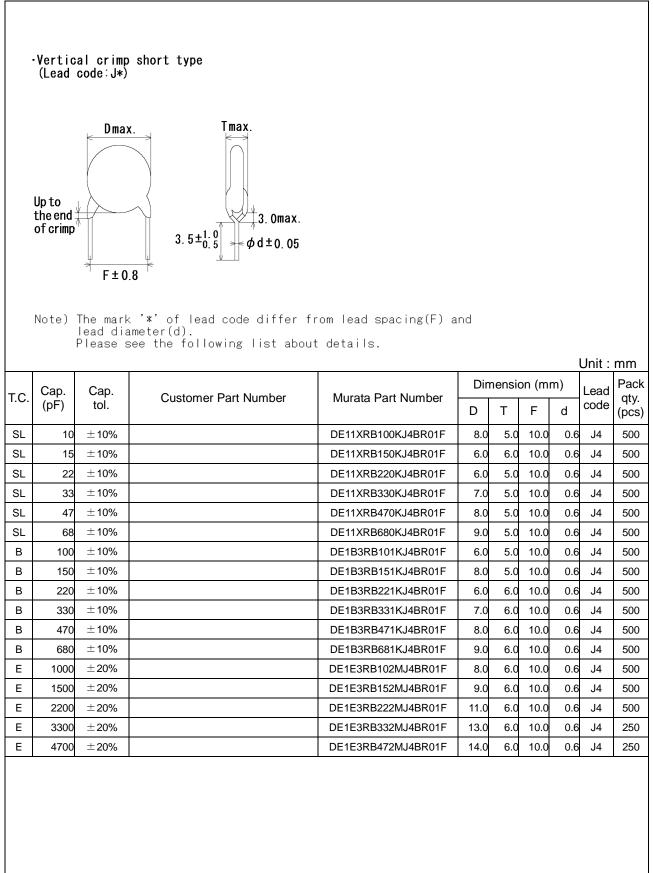
* Please refer to [Part number list]

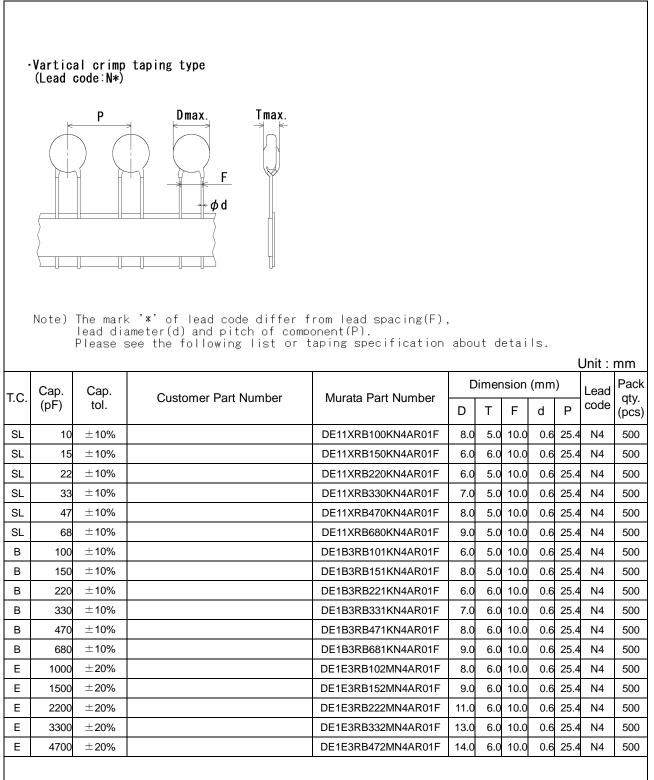
• Packing style code

····	ig etjie eede	
	Code	Packing type
	В	Bulk type
	A	Ammo pack taping type

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

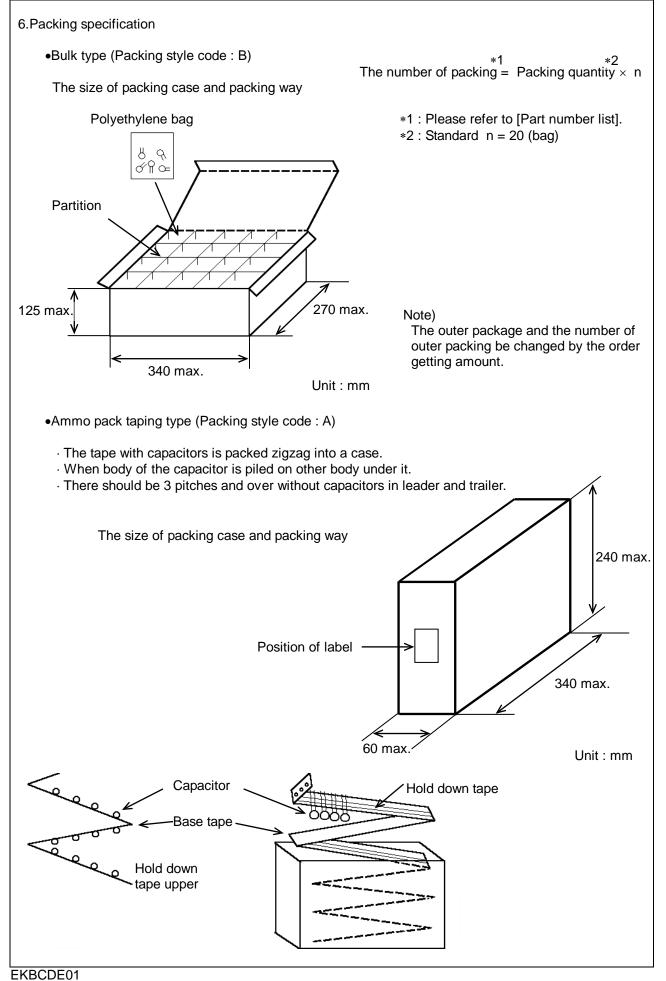

Code	Specification
	 Rated voltage : X1:AC760V(r.m.s.)
	Y1:AC500V(r.m.s.)
R01F	 Halogen free
NUIF	(Br ≤ 900ppm, Cl ≤ 900ppm)
	Br + Cl ≤ 1500ppm
	▸ CP wire

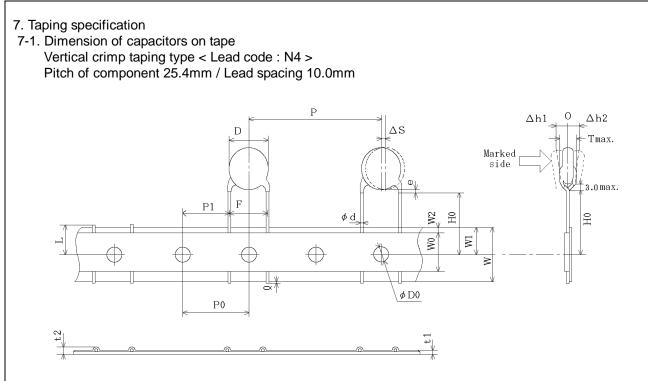

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(RB) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Type name	: RB
Nominal capacitance	: Actual value(under 100pF)
	3 digit system(100pF and over)
Capacitance tolerance	: Code
Class code and Rated voltage ma	rk : X1 760~
	Y1 500~
Manufacturing year	: Letter code(The last digit of A.D. year.)
Manufacturing month	: Code
	$($ Feb./Mar. $\rightarrow 2$ Aug./Sep. $\rightarrow 8$ $)$
	Apr./May \rightarrow 4 Oct./Nov. \rightarrow O
	$ \left(\begin{array}{ccc} \text{Feb./Mar.} \rightarrow 2 & \text{Aug./Sep.} \rightarrow 8 \\ \text{Apr./May} \rightarrow 4 & \text{Oct./Nov.} \rightarrow 0 \\ \text{Jun./Jul.} \rightarrow 6 & \text{Dec./Jan.} \rightarrow D \end{array} \right) $
Company name code	: CM15 (Made in Thailand)
	(Example)
	RB 471K X1 760~ Y1 500~ 5D @15

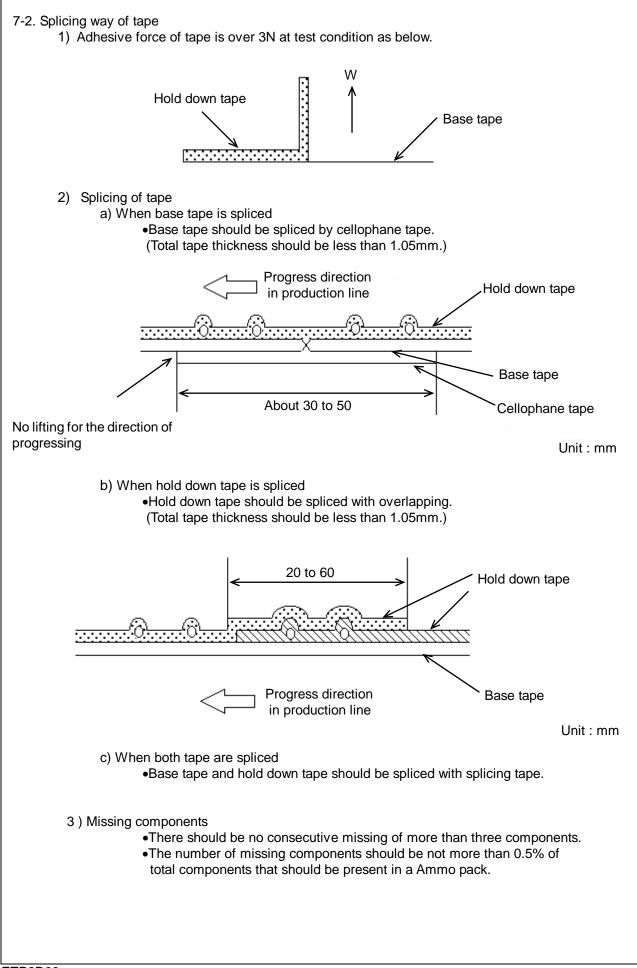
				ence only						
	Vertica	mberlist al crimp sode:A*)	long type							
		0 The mark lead dia	x. Tmax. 3.0max. 25.0min. $\phi d_{\pm 0.05}$ x. x. x. x. x. x. x. x. y. y. y. y. y. y. y. y. y. y		nd					
	,								Unit :	mm
1										
тс	Cap.	Cap.	Customer Part Number	Murata Part Number	Din	nensi	on (m	m)	Lead	
T.C.	Cap. (pF)	Cap. tol.	Customer Part Number	Murata Part Number	Din D	nensio T	on (m F	m) d	Lead code	atv
T.C. SL		-	Customer Part Number	Murata Part Number DE11XRB100KA4BR01F				-	code	qty.
	(pF)	tol.	Customer Part Number		D	Т	F	d	code A4	qty. (pcs)
SL	(pF) 10	tol. ±10%	Customer Part Number	DE11XRB100KA4BR01F	D 8.0	T 5.0	F 10.0	d 0.6	code A4 A4	qty. (pcs) 250
SL SL	(pF) 10 15	tol. ±10% ±10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F	D 8.0 6.0	T 5.0 6.0	F 10.0 10.0	d 0.6 0.6	code A4 A4 A4	qty. (pcs) 250 500
SL SL SL	(pF) 10 15 22	tol. ±10% ±10% ±10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F	D 8.0 6.0 6.0	T 5.0 6.0 5.0	F 10.0 10.0 10.0	d 0.6 0.6	code A4 A4 A4 A4	qty. (pcs) 250 500 500
SL SL SL	(pF) 10 15 22 33	tol. ± 10% ± 10% ± 10% ± 10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F	D 8.0 6.0 6.0 7.0	T 5.0 6.0 5.0 5.0	F 10.0 10.0 10.0 10.0	d 0.6 0.6 0.6	A4 A4 A4 A4 A4 A4	qty. (pcs) 250 500 250
SL SL SL SL	(pF) 10 15 22 33 47	tol. ± 10% ± 10% ± 10% ± 10% ± 10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F	D 8.0 6.0 7.0 8.0	T 5.0 6.0 5.0 5.0 5.0	F 10.0 10.0 10.0 10.0 10.0	d 0.6 0.6 0.6 0.6 0.6	code A4 A4 A4 A4 A4 A4	qty. (pcs) 250 500 250 250 250
SL SL SL SL SL	(pF) 10 15 22 33 47 68	tol. ± 10% ± 10% ± 10% ± 10% ± 10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F DE11XRB680KA4BR01F	D 8.0 6.0 7.0 8.0 9.0	T 5.0 6.0 5.0 5.0 5.0 5.0	F 10.0 10.0 10.0 10.0 10.0 10.0	d 0.6 0.6 0.6 0.6 0.6	code A4 A4 A4 A4 A4 A4 A4	qty. (pcs) 250 500 250 250 250
SL SL SL SL SL B	(pF) 10 15 22 33 47 68 100	tol. ± 10% ± 10% ± 10% ± 10% ± 10% ± 10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F DE11XRB680KA4BR01F DE1B3RB101KA4BR01F	D 8.0 6.0 7.0 8.0 9.0 6.0	T 5.0 5.0 5.0 5.0 5.0 5.0 5.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0	d 0.6 0.6 0.6 0.6 0.6 0.6	code A4 A4 A4 A4 A4 A4 A4 A4	qty. (pcs) 250 500 250 250 250 250 500
SL SL SL SL SL B B	(pF) 10 15 22 33 47 68 100 150	tol. ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F DE11XRB680KA4BR01F DE1B3RB101KA4BR01F DE1B3RB151KA4BR01F	D 8.0 6.0 7.0 8.0 9.0 6.0 8.0	T 5.0 5.0 5.0 5.0 5.0 5.0 5.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	d 0.6 0.6 0.6 0.6 0.6 0.6 0.6	code A4	qty. (pcs) 250 500 250 250 250 250 500 250
SL SL SL SL SL B B B B	(pF) 10 15 22 33 47 68 100 150 220	tol. $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F DE11XRB680KA4BR01F DE1B3RB101KA4BR01F DE1B3RB151KA4BR01F DE1B3RB221KA4BR01F	D 8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0	T 5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	d 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Code A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	qty. (pcs) 250 500 250 250 250 500 250 500
SL SL SL SL SL B B B B B B B	(pF) 10 15 222 333 47 68 100 150 220 330	tol. ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F DE11XRB680KA4BR01F DE1B3RB101KA4BR01F DE1B3RB151KA4BR01F DE1B3RB221KA4BR01F DE1B3RB331KA4BR01F	D 8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0 7.0	T 5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	d 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Code A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	qty. (pcs) 250 500 250 250 250 250 250 500 250 500 250
SL SL SL SL SL B B B B B B B B	(pF) 10 15 22 33 47 68 100 150 220 330 470	tol. ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F DE11XRB680KA4BR01F DE1B3RB101KA4BR01F DE1B3RB151KA4BR01F DE1B3RB221KA4BR01F DE1B3RB331KA4BR01F DE1B3RB471KA4BR01F	D 8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0 7.0 8.0	T 5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	d 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Code A4	qty. (pcs) 250 500 250 250 250 500 250 500 250 250
SL SL SL SL SL B B B B B B B B B B B	(pF) 10 15 22 33 47 68 100 150 220 330 470 680	tol. ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10% ± 10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F DE11XRB680KA4BR01F DE1B3RB101KA4BR01F DE1B3RB151KA4BR01F DE1B3RB221KA4BR01F DE1B3RB331KA4BR01F DE1B3RB471KA4BR01F DE1B3RB681KA4BR01F	D 8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0 7.0 8.0 9.0	T 5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	d 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Code A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	qty. (pcs) 250 500 250 250 250 250 250 250 250 250
SL SL SL SL B B B B B B B B E	(pF) 10 15 22 33 47 68 100 150 220 330 470 680 1000	tol. ± 10% ± 10%	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F DE11XRB680KA4BR01F DE1B3RB101KA4BR01F DE1B3RB151KA4BR01F DE1B3RB221KA4BR01F DE1B3RB471KA4BR01F DE1B3RB681KA4BR01F DE1B3RB681KA4BR01F	D 8.0 6.0 7.0 8.0 9.0 6.0 8.0 7.0 8.0 9.0 8.0 9.0 8.0	T 5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	d 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	code A4 A4	qty. (pcs) 250 500 250 250 250 500 250 250 250 250
SL SL SL SL SL B B B B B B B E E E	(pF) 10 15 22 33 47 68 100 150 220 330 470 680 1000 1500	tol. $\pm 10\%$ $\pm 20\%$	Customer Part Number	DE11XRB100KA4BR01F DE11XRB150KA4BR01F DE11XRB220KA4BR01F DE11XRB330KA4BR01F DE11XRB470KA4BR01F DE11XRB470KA4BR01F DE1B3RB101KA4BR01F DE1B3RB151KA4BR01F DE1B3RB221KA4BR01F DE1B3RB331KA4BR01F DE1B3RB471KA4BR01F DE1B3RB681KA4BR01F DE1B3RB681KA4BR01F DE1E3RB102MA4BR01F	D 8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0 7.0 8.0 9.0 8.0 9.0	T 5.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	F 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	d 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Code A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	qty. (pcs) 250 500 250 250 250 250 250 250 250 250




5. S	pecification and	I test methods									
No.	Iter			cification					nethod		
1	Appearance and di	mensions	No marked defe	ect on appearance			apacitor sh ible eviden			naked eyes	5
			-	[Part number list] of	on					slide calipe	ers.
			dimensions.			Dimo				ondo odnpo	
2	Marking	-	To be easily leg	jible.						naked eyes	S.
3	Dielectric	Between lead	No failure.						e damaged		
	strength	wires					vires for 60		Is applied	d between t	ne
		Body	No failure.						apacitor sh	ould be	
		insulation				conne	ected togeth	ner.		V	
							a metal foi		Э	ý.	
							y wrapped ody of the c		Metal	A	
							distance o		foil		oout o 6 mm
						about	3 to 6mm			<u> 888</u> 888888888888888888888888888888888	etal
							each termir		-000-00	000000 ba	alls
									be inserted alls of abou		
						diame					
										s applied fo	r
							between the	e capacitor	lead wires	and metal	
4	Insulation Resistan	L ce(LR)	10000MΩ min.		+	balls.	sulation re	sistance s	hould he m	easured wi	th
-				•					of charging		
						The v	oltage shou	uld be appl	ied to the c		
	0						gh a resisto				
5	Capacitance		Within specifie	d tolerance.					measured .m.s.) max.	at 20°C wit	th
6	Dissipation Factor	(D.F.)	2.5% max.						Ild be meas		
						at 20°	C with 1±0	.1kHz and	AC1±0.2V	(r.m.s.) ma	х
7	Temperature chara	cteristic		0 to -1000 ppm/°C						l be made a	at
			(Temp. range :			each	step specif	ied in Tabl	е.		
			Char. B: With Char. E: With								
			(Temp. range :								
				Step		1	2	3	4	5	
				Temp.(°C)	20	0±2	-25±2	20±2	85±2	20±2	
8	Active flammability		The cheese-clo	oth should not be		The c	apacitors s	hould be i	ndividually	wrapped in	at
			on fire.			least o	one but mo	re than two	o complete	layers of	
									r should be		
									val betweer The UAc sł	n successiv hould be	/e
									ne last disc		
						S1 🗆	F	<u>L1 L2</u>	<u> </u>	<u>R</u>	
									= 3		·
										Ϋ́ΤΤ́Τ	υτ
									- <u>+</u> _		
									ц.,	sciloscope	
									-		
						C1,2	•	,	0.033µF±5		
									Rod core		
						R UAc	: UR ±5		μF±5% 10 Rated volta		
						Cx		itor under t		ge	
						F	: Fuse, I	Rated 10A			
						Ut	Ϋ.	e applied to	o Ct		
							Ux	-			
								5kV Û			
								∇h	\sim		
								'			
							l		1	ime	

10 Vibra resis 11 Sold 12 Sold (Nor 13 Sold	Item bustness of minations	Tensile Bending Appearance Capacitance D.F.	Specification Lead wire should not cut off. Capacitor should not be broken. No marked defect. Within the specified tolerance. 2.5% max. Lead wire should be soldered With uniformly coated on the axial direction over 3/4 of the circumferential direction. No marked defect.	Test method Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the capacitor is held by its body in such a manner that the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the end of the termination. The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of approximately 90° in the vertical plane and then returned to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction. The capacitor should be firmly soldered to the supporting lead wire and vibration which is 10 to 55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions. The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder : 24F ±5°C L cod Erge Solder (Sp 2Ag 0.5Cu)
term 10 Vibra 11 Sold 12 Sold 13 Sold	minations pration sistance Iderability of leads	Bending Bending Appearance Capacitance D.F. S Appearance Capacitance chape	Capacitor should not be broken. No marked defect. Within the specified tolerance. 2.5% max. Lead wire should be soldered With uniformly coated on the axial direction over 3/4 of the circumferential direction.	 gradually to each lead wire in the radial direction of capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the capacitor is held by its body in such a manner that the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the end of the termination. The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of approximately 90° in the vertical plane and then returned to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction. The capacitor should be firmly soldered to the supporting lead wire and vibration which is 10 to 55Hz in the vibration frequency range, 1.5mm in total amplitude, and about 1min in the rate of vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions. The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder :
12 Sold (Nor	Idering effect	Appearance Capacitance change	With uniformly coated on the axial direction over 3/4 of the circumferential direction.	 vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions. The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder :
12 Sold (Nor	Idering effect	Appearance Capacitance change	With uniformly coated on the axial direction over 3/4 of the circumferential direction.	ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder :
(Nor	0	Capacitance change	No marked defect.	245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
13 Sold	on-preheat)	change		Solder temperature: 350±10°C or 260±5°C
			Within ±10%	Immersion time : 3.5 ± 0.5 s
			1000MΩ min.	$(In case of 260\pm5^{\circ}C : 10\pm1 s)$ The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		Thermal insulating 1.5 to 2.0mm Molten solder
				Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed a *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
(On-	Idering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
	n-preheat)	Capacitance change	Within ±10%	for 60+0/-5 s. Then, as in figure, the lead wires should be
		I.R.	1 000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm fro
		Dielectric	Per item 3	the root of terminal for 7.5+0/-1 s.
		strength		Thermal insulating 1.5 to 2.0mm
				Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the
				AC4000V(r.m.s.) 60s then placed a * ¹ room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to
				$2 \text{ h at }^{1} \text{ room condition.}$
¹ "room co				
	ondition" Temper	ature: 15 to 35°C	, Relative humidity: 45 to 75%, Atmos	

No. 14			Reference only	
14	Item	1	Specification	Test method
. –	Flame test		The capacitor flame discontinue	The capacitor should be subjected to applied flame
			as follows.	for 15 s. and then removed for 15 s until 5 cycle.
				II.
				Capacitor
			Cycle Time	16 Flame
			1 to 4 30 s max.	1 27 >
			5 60 s max.	
				Gas Burner
15	Doooiyo flommohilit	,	The burning time abould not be	The connector under test should be held in the flowe
15	Passive flammability	/	The burning time should not be	The capacitor under test should be held in the flame
			exceeded the time 30 s.	in the position which best promotes burning.
			The tissue paper should not	Time of exposure to flame is for 30 s.
			ignite.	
			Ũ	Length of flame : 12±1mm
				Gas burner : Length 35mm min.
				Inside Dia. 0.5±0.1mm
				Outside Dia. 0.9mm max.
				Gas : Butane gas Purity 95% min.
				Gas . Butane gas r unity 9378 min.
				Capacitor
				About 8mm
				Gas burner -> Flame
				200+5mm
				45°
				Tissue
				\wedge
				About 10mm thick board
16	Humidity	Appearance	No marked defect.	Set the capacitor for 500±12 h at 40±2°C in 90 to
.0			Char. SL : Within ±5%	
	(Under steady	Capacitance		95% relative humidity.
	state)	change	Char. B : Within ±10%	
			Char. E : Within ±15%	Pre-treatment : Capacitor should be stored at
		D.F.	Char. SL : 2.5% max.	125±2°C for 1 h, and apply the
			Char. B, E : 5.0% max.	AC4000V(r.m.s.) 60s then placed a
			Ghai: D, E : 5.070 max.	- * ¹ room condition for 24±2 h
		I.R.	3000MΩ min.	
		Dielectric	Per item 3	- before initial measurements.
		strength		(Do not apply to Char. SL)
		Sirengin		Post-treatment : Capacitor should be stored for 1 to
				2 h at *1room condition.
17	Humidity loading	Appearance	No marked defect.	Apply AC760V(r.m.s.) for 500±12 h at 40±2°C in
	, , , , , , , , , , , , , , , , , , , ,	Capacitance	Char. SL : Within ±5%	90 to 95% relative humidity.
		change	Char. B : Within ±10%	
		change		Dro treatment : Consoiter abould be stared at
			Char. E : Within ±15%	Pre-treatment : Capacitor should be stored at
		D.F.	Char. SL : 2.5% max.	125±2°C for 1 h, and apply the
			Char. B, E : 5.0% max.	AC4000V(r.m.s.) 60s then placed a
			,	*1 room condition for 24±2 h
		I.R.	3000MΩ min.	before initial measurements.
				(Do not apply to Char. SL)
		Dielectric	Per item 3	
				Doot treatment . Consister should be stored for 1 to
		strength		
		strength		2 h at *1room condition.
¹ "rc	om condition" Temper	strength	, Relative humidity: 45 to 75%, Atmosp	2 h at *1room condition.
¹ "rc	xom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmosp	2 h at *1room condition.
¹ "rc	pom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmost	2 h at *1room condition.
¹ "rc	xom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmost	2 h at *1room condition.
¹ "rc	xom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	xom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	xom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	bom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	pom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmosį	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
⁻¹ "rc	pom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmosį	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	pom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
⁻¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
^{₊1} "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
⁻¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	pom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
¹ "rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
"rc	pom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
"rc	oom condition" Temper	strength	, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.


18 Life Appearance change No marked defect. Impulse voltage Each individual capacitor should be subjected to a 12N impulses for three times. Then the capacitor are applied to life test. Diefectric strength Per item 3 Per item 3 The capacitor should be subjected to 500 rs. The tabulates of the test. 19 Temperature and immersion cycle Appearance LR No marked defect. The capacitor should be stored at 1252-120 rs. The stored at 1252-120 rs. The capacitor should be stored at 1252-120 rs. The ca		140			nly Tost mothod			
18 Capacitance Within 320% 1.R. 3000MQ min. Dielectric Per item 3 strength Per item 3 10 The capacitors are placed in a circulating air oven for a period of 1000 Hz-atternation of 120 second of 120 second at a temperature of 125 second ate	10	Life		Specification No marked defect.	Test method Impulse voltage			
18. 3 3000MΩ min. Dielectric strength Per item 3 17. Winpulses for three time. Then the capacitors are applied to life test. 18. 3 000MΩ min. Dielectric strength 19. Temperature and immersion cycle Appearance Char. B. 1: 90% max. Char. B. 2: 50% max. Char. B. 2: 50% max. Li.R. 19. Temperature and immersion cycle Appearance Char. B. 2: Within ±0% Char. B. 2: 50% max. Li.R. 19. Temperature and immersion cycle Appearance Char. B. 2: Within ±0% Char. B. 2: 50% max. Li.R. 18. Temperature and immersion cycle Appearance Char. B. 2: 50% max. Li.R. 19. Temperature and immersion cycle Appearance Char. B. 2: 50% max. Char. B. 2: 50% max. Li.R. 19. Temperature and immersion cycle Appearance Char. B. 2: 50% max. Char. B. 2: 50% max. Li.R. 19. Temperature and immersion cycle Appearance Char. B. 2: 50% max. Char. B. 2: 50% max. Li.R. 10. F. Char. SL: Within ±0% Char. B. 2: 50% max. Li.R. 11.R. 3000MΩ min. Dietectric strength 12. Experime 3 13. F. 14. Room temp. 2. 2. 2. 2. 50% max. Char. B. 2: 50% max. Li.R. 11.R. 3000MΩ min. Dietectric strength 12. Eventime 3 13. Per item 3 13. Per item 3 14. Room temp. 2. 2. 2. 50% max. Char. B. 2: 50% max. Li.R. 17. Per item 3 18. Temperature(*C) Time texplot the temperature(*C) Time texplot the tex		Life			Each individual capacitor should be subjected to a			
Diedectric strength Per item 3 Diedectric strength Per item 3 The capacitors are placed in a circulating air oven for a period 4000 h. The air in the oven its maintained at a temperature of 125/2-00 CC, and relative humidity of 50% max. Throughout the test, the capacitors are subjected to a AC950V(rm.s.) < 400Hz- alternative of the oven its of mains frequency, except that once each hour the votage is increased to AC1 000V(rm.s.) < 505 then place "room condition for 24-22 before initial measurements. (Do not apply to Char. SL: Within ±5% Char. B. :: S0% max. I.R. The capacitor should be stored to 24:2 h at "froom condition 24:2 h at "froom condition for 24:2 h heffer 2 heffer 2 hef					12kV impulses for three times. Then the capacitors			
strength Frontime (1):-17.45-167 30 30 30 30 30 30 30 30 30 30 30 30 30					are applied to life test.			
19 Temperature and immersion cycle Appearance No marked defect. The capacitor should be stored at a temperature of 125-2/2 for 1 h, and apply the AC4000V(rm.s.) for 3 then 125-2/2 for 1 h, and apply the Char. SL: 19 Temperature and immersion cycle Appearance No marked defect. 19 Temperature and immersion cycle Char. SL: Within ±10% Char. SL: Within ±20% Char. E : Within ±10% Char. E : 2/5% max. 17 Temperature cycle D.F. 18 Appearance No marked defect. 19 Temperature and immersion cycle Char. SL: Within ±10% Char. E : 2/5% max. 17 Temperature cycle 18 Appearance No marked defect. 19 Temperature cycle The capacitor should be subjected to 500 temperator cycles. 19 Temperature cycle D.F. 10 Char. SL : 2/5% max. The capacitor should be subjected to 500 temperator cycles. 10 Temperature cycle D.F. 11 R. 3000M(2 min.) DIF. 11 +125+3/-0 30 min. 11 +65+6/-0 15 min 11 +65+6/-0 15 min 12 0:3 15 min 13 +65+6/-0 15 min 14 +65+6/-0 15 min 15 0:43 15				Per Item 3	100 (%) Front time (T1) = 1.7μ s= 1.67 T			
19 Temperature and immersion cycle Appearance No marked defect. 19 Temperature and immersion cycle Appearance No marked defect. 10 The apacitor should be stored at concernation within ±0% char. B: Within ±5% char. B: 10 Temperature and immersion cycle Appearance No marked defect. 10 Temperature and immersion cycle No marked defect. The capacitor should be stored at 128:22°C for 1, h, and apply the AC4000V(rm.s.) for 0.1 here are initial measurements. 10 Temperature and immersion cycle No marked defect. 11 The capacitor should be stored for 24:2 h at *1com condition. 12 Capacitance Char. SL: Vitin ±5% char. B: 13 Temperature cycles D.F. 14 Char. B: Store Store Store Stored for 24:2 h at *1com condition. 15 Char. B: Store Stor			ouorigui		γ_{11} γ			
19 Temperature and immersion cycle Appearance Char. SL: Within 15% Char. B: Within 19% Char. B: Within 25% Char. B: Within 25					30-			
19 Temperature and immersion cycle Appearance Char. E.: Within ±5% Char. B.: Within ±2% Char. B.: Char. S.L: 2.5% max. Char. B.: Char. S.L: 2.5% max. Char. B.: Char. S.L: 2.5% max. Char. B.: Char. B.: Char. S.L: 2.5% max. Char. B.: C								
19 Temperature and immersion cycle Appearance No marked defect. The capacitor should be stored at information working of the subjected to 50% max. 19 Temperature and immersion cycle Appearance No marked defect. The capacitor should be stored at information working of the subjected to 50% max. 19 Temperature and immersion cycle Appearance No marked defect. The capacitor should be stored at information working of the subjected to 500 temperature ("C) temperature ("C) information cycles. 19 Temperature and immersion cycle Char. S. L: Within ±5% Char. E: Within ±5% Char. B. E : 5.0% max. The capacitor should be subjected to 500 temperaticy cycles. 19 Temperature and immersion cycle Char. B. E : 5.0% max. The capacitor should be subjected to 500 temperaticy cycles. 19 Temperature ("C) Time immersion cycles. Char. B. E : 5.0% max. The capacitor should be subjected to 500 temperaticy cycles. 18 Appearance No marked defect. Time immersion cycles. 19 Temperature ("C) Time immersion cycles. The capacitor should be subjected to 500 temperaticy cycles. 18 Appearance Char. B. E : 5.0% max. The capacitor should be subjected to 500 temperaticy cycles. 19 Temperature("C) Time immersion cycles. Timmersion cycles.								
19 Temperature and immersion cycle Appearance No marked defect. The capacitor should be subjected to 500 temperature cycles, then consecutively to 2 immersion cycles. 19 Temperature and immersion cycle Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±10% Char. E : Within ±10% Char. E : Within ±20% Char. B : Stow max. The capacitor should be subjected to 500 temperature cycles. D.F. Char. SL : 2.5% max. Char. SL : 2.5% max. Temperature cycle> 1.R. 3000MΩ min. 2 Room temp. 3 min 3 + 125+3/-0 30 min 4 Room temp. 3 min 3 + 125+3/-0 30 min 4 Room temp. 3 min 3 + 125+3/-0 15 min water 1.R. 3000MΩ min. Cycle time:500 cycles Vertextment : Capacitor cycle> I.R. 3000MΩ min. Dielectric strength Per item 3 Vertextment : Capacitor cycle> Step Temperature(°C) Time water 1 +65+5/-0 15 min water 2 0±3 15 min water 2 0±3 15 min water Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4400V(rm.s.) 60s then place *'room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for <td></td> <td></td> <td></td> <td></td> <td colspan="3">for a period of 1000 h. The air in the oven is maintained at a temperature of 125+2/-0 °C, and relative humidity of 50% max Throughout the test, the capacitors are subjected to a AC950V(r.m.s.)<50/60Hz> alternating voltage of mains frequency, except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1 Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed *¹room condition for 24±2 h before initial measurements.</td>					for a period of 1000 h. The air in the oven is maintained at a temperature of 125+2/-0 °C, and relative humidity of 50% max Throughout the test, the capacitors are subjected to a AC950V(r.m.s.)<50/60Hz> alternating voltage of mains frequency, except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1 Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed * ¹ room condition for 24±2 h before initial measurements.			
19 Temperature and immersion cycle Appearance No marked defect. Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% The capacitor should be subjected to 500 temperat cycles, then consecutively to 2 immersion cycles. D.F. Char. SL : 2.5% max. Char. B : 5.0% max.								
19 Temperature and immersion cycle Appearance No marked defect. The capacitor should be subjected to 500 temperature cycles. Char. B : Within ±5% Char. B : Within ±2% Char. B : Within ±2% D.F. Char. SL : Vithin ±20% I.R. 3000MΩ min. 2 Room temp. 3 min Dielectric strength Per item 3 +125+3/-0 30 min 4 Room temp. 3 min 2 0±3 15 min water 2 0±3 15 min Salt water 2 0±3 15 min Salt 2 0±3 15 min Salt water 2 0±3 15 min Salt water 25±2°C for 1 h, and apply the AC4000V(rm.s.) 60s then place *'room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for					24±2 h at *1room condition.			
change Char. B: Within ±10% Char. E: Within ±20% D.F. Char. SL: 2.5% max. Char. B, E: 5.0% max. I.R. 3000MΩ min. 2 Dielectric strength Per item 3 3 min Cycle time:500 cycles Step Temperature(°C) Time 1 Cycle time:500 cycles Step Temperature(°C) Time 3 min Cycle time:500 cycles Step Temperature(°C) Time water 1 +65+5/-0 15 min water 2 0±3 15 min water 2 0±3 15 min water Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for	19				The capacitor should be subjected to 500 temperat			
Char. EWithin $\pm 20\%$ <		immersion cycle			cycles, then consecutively to 2 immersion cycles.			
D.F. Char. SL : 2.5% max. Char. B, E : 5.0% max. I.R. 3000MΩ min. Dielectric strength Per item 3 Example Per item 3 Cycle time:500 cycles Step Temperature(°C) Time 3 min 2 Room temp. 3 +125+3/-0 3 +125+3/-0 3 +125+3/-0 3 min 2 Room temp. 3 min 4 Room temp. 7 Time 7 Time 8 Temperature(°C) 1 +65+5/-0 15 min 2 0±3 15 min 2 0±3 15 min 2 0±3 15 min 8 2 9 +15 9 +15 1 +65+5/-0 15 min 1 +65+2°C for 1 h, and apply the AC4000V(r.ms.) 60s then place			onungo		<temperature cycle=""></temperature>			
I.R. 3000MΩ min. Dielectric strength Per item 3 Question Per item 3 Question Question Question Per item 3 Question Question Question Question Question Per item 3 Question Per item 4 Question <td></td> <td></td> <td>D.F.</td> <td>Char. SL : 2.5% max.</td> <td>Step Temperature(°C) Time</td>			D.F.	Char. SL : 2.5% max.	Step Temperature(°C) Time			
Dielectric strength Per item 3 3 +125+3/-0 30 min 4 Room temp. 3 min Cycle time:500 cycles Step Temperature(°C) Time Immersion water 1 +65+5/-0 15 min Clean water 2 0±3 15 min Salt Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place * ¹ room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for				Char. B, E : 5.0% max.				
strength 4 Room temp. 3 min Cycle time:500 cycles Step Temperature(°C) Time Immersion 1 +65+5/-0 15 min Clean 2 0±3 15 min Salt Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place *1'room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for								
Cycle time:500 cycles Step Temperature(°C) Time Immersion 1 +65+5/-0 15 min Clean 2 0±3 15 min Salt 2 0±3 15 min Salt 125±2°C for 1 h, and apply the ACCMOOV(r.m.s.) 60s then place *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for Contraction of the stored for				Per item 3				
Immersion cycle> Step Temperature(°C) Time Immersion water 1 +65+5/-0 15 min Clean water 2 0±3 15 min Salt water Cycle time:2 cycles Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place *1'room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for			Suchgui					
Step Temperature(°C) Time Immersion water 1 +65+5/-0 15 min Clean water 2 0±3 15 min Salt water Cycle time:2 cycles Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for								
1 +65+5/-0 15 min Clean water 2 0±3 15 min Salt water Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for					Immersion			
1 +65+5/-0 15 min water 2 0±3 15 min Salt water Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for					Waler			
2 0±3 15 min Salt water Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for					1 1 1 +65+5/-0 1 15 min 1			
2 0±3 15 min water Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for					Salt			
Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for					$1 1 2 1 0 \pm 3 1 15 min 1$			
125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place * ¹ room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for					Cycle time:2 cycles			
¹ "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa				, Relative humidity: 45 to 75%, Atm	125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then place * ¹ room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at * ¹ room condition.			

Unit : mm

1		Unit . Initi	
Code	Dimensions	Remarks	
Р	25.4±2.0		
P0	12.7±0.3		
F	10.0±1.0		
P1	7.7±1.5		
D	Please refer to [P	art number list].	
ΔS	0±2.0	They include deviation by lead bend .	
W	18.0±0.5		
W1	9.0±0.5	Deviation of tape width direction	
H0	18.0± ^{2.0} ₀		
Q	+0.5~-1.0		
φD0	4.0±0.1		
φd	0.60±0.05		
t1	0.6±0.3		
t2	1.5 max.	They include hold down tape thickness.	
∆h1	2.0 mov		
∆h2			
L	0 11.0± ⁰ _{1.0}		
WO	11.5 min.		
W2	1.5±1.5		
е	Up to the end of crimp		
Т	Please refer to [P	Part number list].	
	P P0 F P1 D ΔS W W1 H0 Q φD0 φD0 φD0 φd t1 t2 Δh1 Δh2 L W0 W2 e	P 25.4±2.0 P0 12.7±0.3 F 10.0±1.0 P1 7.7±1.5 D Please refer to [F ΔS 0±2.0 W 18.0±0.5 W1 9.0±0.5 H0 18.0± $_0^{2.0}$ ϕ +0.5~-1.0 ϕ D0 4.0±0.1 ϕ d 0.60±0.05 t1 0.6±0.3 t2 1.5 max. Δ h1 2.0 max. Δ h2 11.0± $_{1.0}^{0}$ W0 11.5 min. W2 1.5±1.5 e Up to the end of c	

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials •1000 ppm maximum Lead

- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

DE1B3RB471KN4AR01F	DE11XRB150KA4BR01F	DE11XRB330KN4AR01F
DE1B3RB101KJ4BR01F	DE11XRB330KJ4BR01F	DE1E3RB472MJ4BR01F
DE11XRB150KJ4BR01F	DE11XRB100KJ4BR01F	DE1B3RB151KA4BR01F
DE1B3RB101KN4AR01F	DE1B3RB471KJ4BR01F	DE11XRB220KJ4BR01F
DE1E3RB102MN4AR01F	DE1B3RB681KN4AR01F	DE1B3RB151KN4AR01F
DE11XRB220KN4AR01F	DE1E3RB222MJ4BR01F	DE1B3RB331KN4AR01F
DE11XRB680KN4AR01F	DE1B3RB471KA4BR01F	DE1B3RB221KA4BR01F
DE1E3RB152MN4AR01F	DE1B3RB331KJ4BR01F	DE1E3RB222MA4BR01F
DE1E3RB332MA4BR01F	DE11XRB680KJ4BR01F	DE11XRB470KN4AR01F
DE11XRB330KA4BR01F	DE1E3RB102MA4BR01F	DE11XRB220KA4BR01F
DE1E3RB472MA4BR01F	DE1B3RB681KA4BR01F	DE1B3RB221KN4AR01F
DE1E3RB472MN4AR01F	DE1E3RB102MJ4BR01F	DE1B3RB221KJ4BR01F
DE1E3RB222MN4AR01F	DE1B3RB331KA4BR01F	
	DE1B3RB101KJ4BR01F DE11XRB150KJ4BR01F DE1B3RB101KN4AR01F DE1E3RB102MN4AR01F DE11XRB220KN4AR01F DE11XRB680KN4AR01F DE1E3RB152MN4AR01F DE1E3RB332MA4BR01F DE1E3RB330KA4BR01F DE1E3RB472MA4BR01F DE1E3RB472MN4AR01F	DE1B3RB101KJ4BR01FDE11XRB330KJ4BR01FDE11XRB150KJ4BR01FDE11XRB100KJ4BR01FDE1B3RB101KN4AR01FDE1B3RB471KJ4BR01FDE1E3RB102MN4AR01FDE1B3RB681KN4AR01FDE11XRB220KN4AR01FDE1E3RB222MJ4BR01FDE11XRB680KN4AR01FDE1B3RB471KA4BR01FDE1E3RB152MN4AR01FDE1B3RB331KJ4BR01FDE1E3RB332MA4BR01FDE11XRB680KJ4BR01FDE11XRB330KA4BR01FDE1E3RB102MA4BR01FDE1E3RB472MA4BR01FDE1E3RB102MA4BR01FDE1E3RB472MA4BR01FDE1B3RB681KA4BR01FDE1E3RB472MA4BR01FDE1B3RB681KA4BR01F