SLLS098C - MAY 1980 - REVISED FEBRUARY 2004

 Meets or Exceeds Requirements of ANSI TIA/EIA-422-B and ITU 	D, N, OR NS PACKAGE (TOP VIEW)						
Recommendation V.11							
• 3-State, TTL-Compatible Outputs	1A [] 1 1Y [] 2	16 V _{CC} 15 4A					
Fast Transition Times	1Z [] 3	14 🛛 4Y					
High-Impedance Inputs	1,2EN 🛛 4	13 🛛 4Z					
• Single 5-V Supply	2Z [5	12 3,4EN					
 Power-Up and Power-Down Protection 	2Y 🛽 6	11] 3Z					
	2A 🛛 7	10 🛛 3Y					
description/ordering information	GND 🛛 8	9 🛛 3A					

The MC3487 offers four independent differential line drivers designed to meet the specifications of ANSI TIA/EIA-422-B and ITU Recommendation V.11. Each driver has a TTL-compatible input buffered to reduce current and minimize loading.

The driver outputs utilize 3-state circuitry to provide high-impedance states at any pair of differential outputs when the appropriate output enable is at a low logic level. Internal circuitry is provided to ensure the high-impedance state at the differential outputs during power-up and power-down transition times, provided the output enable is low.

The MC3487 is designed for optimum performance when used with the MC3486 quadruple line receiver. It is supplied in a 16-pin dual-in-line package and operates from a single 5-V supply.

TA	PACKA	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
PDIF	PDIP – N	Tube	MC3487N	MC3487N
0°C to 70°C		Tube	MC3487D	M02407
0010700	SOIC – D	Tape and reel	MC3487DR	MC3487
	SOP – NS	Tape and reel	MC3487NSR	MC3487

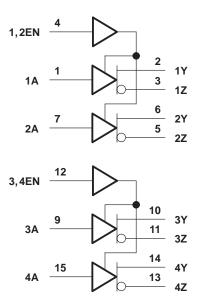
ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

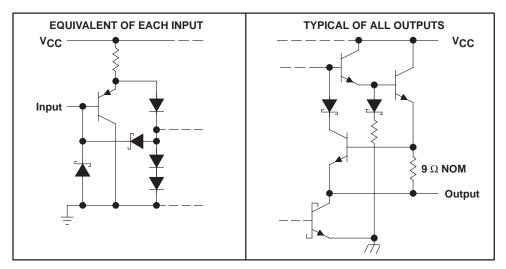
FUNCTION TABLE
(each driver)

INPUT	OUTPUT	OUT	OUTPUTS		
	ENABLE	Y	Z		
Н	Н	Н	L		
L	Н	L	Н		
Х	L	Z	Z		

H = TTL high level, L = TTL low level, X = irrelevant, Z = High impedance


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



SLLS098C - MAY 1980 - REVISED FEBRUARY 2004

logic diagram (positive logic)

schematics of inputs and outputs

SLLS098C - MAY 1980 - REVISED FEBRUARY 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	
Output voltage, V _O	
Package thermal impedance, θ_{IA} (see Notes 2 and 3):	
Package mermai impedance, OJA (see Notes 2 and 3).	
	N package
	NS package 64°C/W
Operating virtual junction temperature, T _J	150°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential output voltage, VOD, are with respect to the network ground terminal.

- 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.75	5	5.25	V
VIH	High-level input voltage	2			V
VIL	Low-level input voltage			0.8	V
ТĄ	Operating free-air temperature	0		70	°C

SLLS098C - MAY 1980 - REVISED FEBRUARY 2004

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS		MIN	MAX	UNIT
VIK	Input clamp voltage	Ij = -18 mA				-1.5	V
Vон	High-level output voltage	V _{IL} = 0.8 V,	V _{IH} = 2 V,	I _{OH} = -20 mA	2.5		V
VOL	Low-level output voltage	V _{IL} = 0.8 V,	V _{IH} = 2 V,	I _{OL} = 48 mA		0.5	V
Vod	Differential output voltage	R _L = 100 Ω,	See Figure 1		2		
∆ V _{OD}	Change in magnitude of differential output voltage [†]	R _L = 100 Ω,	See Figure 1			±0.4	V
Voc	Common-mode output voltage [‡]	R _L = 100 Ω,	See Figure 1			3	V
∆ V _{OC}	Change in magnitude of common-mode output voltage [†]	R _L = 100 Ω,	See Figure 1			±0.4	V
IO Output current with power off		N 0	VO = 6 V			100	
		$V_{CC} = 0 \qquad \qquad V_{O} = -0.25 \text{ V}$			-100		μA
	I Pak Serie da se adata a da da serie d		V _O = 2.7 V			100	•
IOZ	High-impedance-state output current	Output enables at 0.8 V	V _O = 0.5 V		-100	μA	
II	Input current at maximum input voltage	V _I = 5.5 V				100	μΑ
Iн	High-level input current	V _I = 2.7 V				50	μA
۱ _L	Low-level input current	V _I = 0.5 V				-400	μA
los	Short-circuit output current§	V _I = 2 V			-40	-140	mA
	Supply surrent (all drivers)	Outputs disabled			105	m (
ICC	Supply current (all drivers)	Outputs enabled,	No load		85	mA	

 $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

[‡] In ANSI Standard TIA/EIA-422-B, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, VOS.

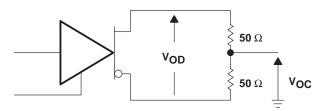
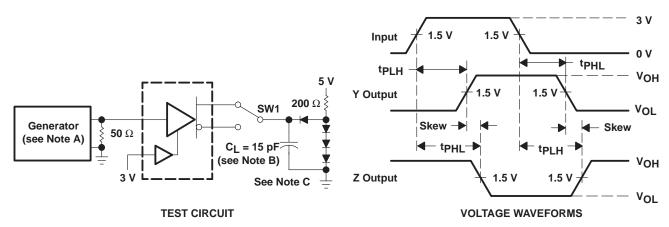
§ Only one output at a time should be shorted, and duration of the short circuit should not exceed one second.

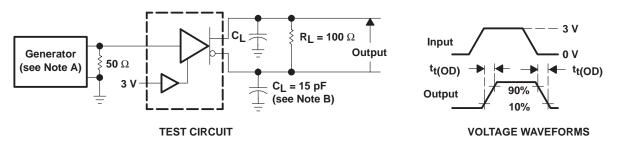
switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V

	PARAMETER	TEST	MIN	MAX	UNIT	
^t PLH	Propagation delay time, low- to high-level output	Ci = 15 pE	Soo Figuro 2		20	20
^t PHL	Propagation delay time, high- to low-level output	C _L = 15 pF, See Figure 2			20	ns
t _{sk}	Skew time	C _L = 15 pF,	See Figure 2		6	ns
^t t(OD)	Differential-output transition time	C _L = 15 pF,	See Figure 3		20	ns
^t PZH	Output enable time to high level	C: 50 pF			30	
t _{PZL}	Output enable time to low level	C _L = 50 pF, See Figure			30	ns
^t PHZ	Output disable time from high level	C. 50 pF	See Figure 4		25	
^t PLZ	Output disable time from low level	C _L = 50 pF,	See Figure 4		30	ns

SLLS098C - MAY 1980 - REVISED FEBRUARY 2004

PARAMETER MEASUREMENT INFORMATION

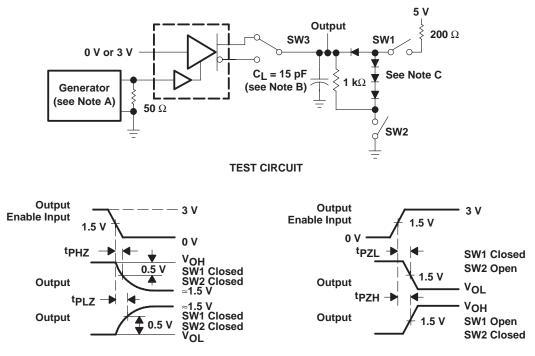




Figure 1. Differential and Common-Mode Output Voltages

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_f \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_O = 50 \Omega$.

- B. $\tilde{C_L}$ includes probe and stray capacitance.
- C. All diodes are 1N916 or 1N3064.

Figure 2. Test Circuit and Voltage Waveforms



- NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_f \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_O = 50 \Omega$.
 - B. CL includes probe and stray capacitance.

Figure 3. Test Circuit and Voltage Waveforms

SLLS098C - MAY 1980 - REVISED FEBRUARY 2004

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_f \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_O = 50 \Omega$.
 - B. CL includes probe and stray capacitance.
 - C. All diodes are 1N916 or 1N3064.

Figure 4. Driver Test Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	•		Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MC3487D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC3487	Samples
MC3487DE4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC3487	Samples
MC3487DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC3487	Samples
MC3487DRE4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC3487	Samples
MC3487N	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	MC3487N	Samples
MC3487NE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	MC3487N	Samples
MC3487NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC3487	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

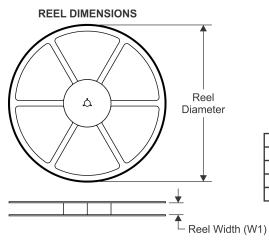
www.ti.com

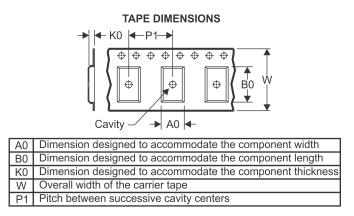
PACKAGE OPTION ADDENDUM

10-Dec-2020

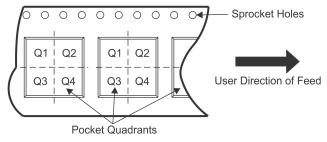
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MC3487DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
MC3487DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
MC3487NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

30-Dec-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MC3487DR	SOIC	D	16	2500	333.2	345.9	28.6
MC3487DR	SOIC	D	16	2500	853.0	449.0	35.0
MC3487NSR	SO	NS	16	2000	853.0	449.0	35.0

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated