CHIP MONOLITHIC CERAMIC CAPACITOR FOR AUTOMOTIVE GCM1885C1H681JA16_ (0603, C0G, 680pF, 50Vdc)
_: packaging code
Reference Sheet

1.Scope

This product specification is applied to Chip Monolithic Ceramic Capacitor used for Automotive Electronic equipment.
2.MURATA Part NO. System
(Ex.) GCM

18	8
(1)L/W	(2) T
Dimensions	Dimensions

5 C
(3)Temperature Characteristics

1 H
$\substack{\text { (4)DC Rated } \\ \text { Voltage }}$

681
(5)Nominal Capacitance

J
(6)Capacitance
Tolerance

A16
(7)Murata's Control Code

D

(8)Packaging
Code

3. Type \& Dimensions

$(1)-1 \mathrm{~L}$	$(1)-2 \mathrm{~W}$	$(2) \mathrm{T}$	e	g
1.6 ± 0.1	0.8 ± 0.1	0.8 ± 0.1	0.2 to 0.5	0.5 min.

4.Rated value

(3) Temperature Characteristics (Public STD Code):C0G(EIA)		(4) DC Rated Voltage	(5) Nominal Capacitance	(6) Capacitance Tolerance	Specifications and Test Methods (Operationg Temp. Range)
Temp. coeff Cap. Change	Temp. Range (Ref.Temp.)	25 to $125{ }^{\circ} \mathrm{C}$ $\left(25^{\circ} \mathrm{C}\right)$	50 Vdc	680 pF	$\pm 5 \%$

5.Package

mark	(8) Packaging	Packaging Unit
D	$\phi 180 \mathrm{~mm}$ Reel PAPER W8P4	4000 pcs./Reel
J	$\phi 330 \mathrm{~mm}$ Reel PAPER W8P4	10000 pcs./Reel

[^0] Please consult the approval sheet before ordering.
Please read rating and !Cautions first.

	AEC-Q200 Test Item		Specification.		AEC-Q200 Test Method			
No			Temperature Compensating Type	High Dielectric Type				
1	Pre-and Post-Stress Electrical Test							
2	High Temperatu Exposure (Stora	ure Appearance Capacitance Change Q/D.F. I.R.	The measured and observed chara specifications in the following table. No marking defects	ristics should satisfy the	Set the capacitor for 1000 ± 12 hours at $150 \pm 3^{\circ} \mathrm{C}$. Set for 24 ± 2 hours at room temperature, then measure.			
3	Temperature Cy	ycling	The measured and observed chara specifications in the following table. No marking defects Within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ (Whichever is larger) $30 \mathrm{pFmin} . ~: ~ Q \geqq 1000$ $30 \mathrm{pFmax} .: ~ Q \geqq 400+20 \mathrm{C}$ C: Nominal Capacitance(pF) More than $10,000 \mathrm{M} \Omega$ or $500 \Omega \cdot \mathrm{~F}$ (Whichever is smaller)		Fix the capa the same co heat treatme room tempe - Initial mea Perform a h for 24 ± 2 hou Perform the	or to the ditions as listed in ure, then Time (min rement for treatme at room tial meas	ting jig in the sa Perform cycle tes llowing table. Se ure dielectric consta $50+0 /-10{ }^{\circ} \mathrm{C}$ for rature. nt.	manner and under according to the four or 24 ± 2 hours at type hour and then set
4	Destructive Phisical Analysis		No defects or abnormalities		Per EIA-469.			
5	Moisture Resista	Appearance Capacitance Change Q/D.F. I.R.		 R7/L8/R9: Within $\pm 12.5 \%$ R7/L8 : W.V.: $25 \mathrm{Vmin} .: ~$ W.V.: 163 max. R9 : 0.075 max. .0 .05 max.	Apply the 24 treatment sh Set for $24 \pm$ Temperature (${ }^{\circ} \mathrm{C}$)	our heat n below hours at r	$65^{\circ} \mathrm{C}$) and humid nsecutive times. mperature, then One cycle 24 hor \rightarrow Hours	$\text { (} 80 \text { to } 98 \% \text {) }$ easure. Humidity 80~98\% Humidity $\begin{array}{cccccccc\|} \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\ 24 \end{array}$
6	Biased Humidity	y Appearance Capacitance Change Q/D.F. I.R.	The measured and observed cha specifications in the following table No marking defects Within $\pm 3.0 \%$ or $\pm 0.30 \mathrm{pF}$ (Whichever is larger) 30 pF and over: $\mathrm{Q} \geqq 200$ 30 pF and below: $\mathrm{Q} \geqq 100+10 \mathrm{C} / 3$ C: Nominal Capacitance (pF) More than $1,000 \mathrm{M} \Omega$ or $50 \Omega \cdot \mathrm{~F}$ (Whichever is smaller)	ristics should satisfy the R7/L8/R9: Within $\pm 12.5 \%$ R7/L8 W.V.: $25 \mathrm{Vmin} .: ~$ R9: 0.035 max. W.V.: $16 \mathrm{~V} / 10 \mathrm{~V}: 0.05 \mathrm{max}$.	Apply the ra at $85 \pm 3^{\circ} \mathrm{C}$ a Remove and The charge	voltage 80 to 85 et for 24 charge	$3+0.2 /-0 \mathrm{vdc}(\mathrm{ad}$ idity for 1000 ± 12 rs at room tempr is less than 50 m	.8k Ω resister) ours. ure, then measure.

No	AEC-Q200 Test Item		Specification.		AEC-Q200 Test Method		
			Temperature Compensating Type	High Dielectric Type			
14	Thermal Sh	ockAppearance Capacitance Change Q/D.F. I.R.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ (Whichever is larger) 30pFmin. : Q $\geqq 1000$ 30pFmax.: $Q \geqq 400+20 \mathrm{C}$ C: Nominal Capacitance(pF) More than $10,000 \mathrm{M} \Omega$ or $500 \Omega \cdot \mathrm{~F}$ (Whichever is smaller)	eristics should satisfy the	Fix the capacitor to the same condition the two heat treatm transfer time is 20 temperature, then - Initial measureme Perform a heat trea for 24 ± 2 hours at ro Perform the initial m	supporting jig in the (19). Perform the 30 listed in the following nds). Set for 24 ± 2 h sure or high dielectric cons nt at $150+0 /-10^{\circ} \mathrm{C}$ temperature. surement.	me manner and under cycles according to table(Maximum urs at room ant type one hour and then set
15	ESD	Appearance Capacitance Change Q/D.F. I.R.	No marking defects Within the specified tolerance 30pFmin. : $\mathrm{Q} \geqq 1000$ $30 \mathrm{pFmax} .: ~$ C: Nominal Capacitance(pF) More than $10,000 \mathrm{M} \Omega$ or $500 \Omega \cdot \mathrm{~F}$ (Whichever is smaller)	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V/10V :0.035 max. R9: 0.05max.	Per AEC-Q200-002		
16	Solderability		95% of the terminations is to be soldered evenly and continuously.		(a) Preheat at $155^{\circ} \mathrm{C}$ capacitor in a so $5902)(25 \%$ rosin eutectic solder sold (b) should be placed After preheating, ethanol(JIS-K-81 propotion). Imme seconds at $235 \pm$ (c) should be placed After preheating, ethanol(JIS-K-8101 propotion). Imme seconds at 260 ± 5	4 hours. After prehe of ethanol(JIS-K-8 weight propotion). Im on for $5+0 /-0.5$ secon o steam aging for 8 merse the capacitor in and rosin (JIS-K-5902) in eutectic solder so o steam aging for 8 merse the capacitor in and rosin (JIS-K-59 in eutectic solder so	ting, immerse the 1) and rosin (JIS-K- merse in ds at $235 \pm 5^{\circ} \mathrm{C}$. urs ± 15 minutes. a solution of (25% rosin in weight tion for $5+0 /-0.5$ urs ± 15 minutes. a solution of (25% rosin in weight tion for 120 ± 5
17	Electrical Chatacterization	Appearance Capacitance Change Q/D.F.	No defects or abnormalities Within the specified tolerance 30pFmin. : $Q \geqq 1000$ 30 pFmax.: $Q \geqq 400+20$ C C: Nominal Capacitance(pF)	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: $16 \mathrm{~V} / 10 \mathrm{~V}: 0.035$ max. R9: 0.05max.	Visual inspection. The capacitance/Q frequency and volta	. should be measured shown in the table.	at $25^{\circ} \mathrm{C}$ at the
		I.R. $25^{\circ} \mathrm{C}$ I.R. $125^{\circ} \mathrm{C}$ I.R. $150^{\circ} \mathrm{C}$	More than $100,000 \mathrm{M} \Omega$ or $1000 \Omega \cdot \mathrm{~F}$ (Whichever is smaller) More than $10,000 \mathrm{M} \Omega$ or $100 \Omega \cdot \mathrm{~F}$ (Whichever is smaller) More than $10,000 \mathrm{M} \Omega$ or $100 \Omega \cdot \mathrm{~F}$ (Whichever is smaller)	More than $10,000 \mathrm{M} \Omega$ or $500 \Omega \cdot \mathrm{~F}$ (Whichever is smaller) More than $1,000 \mathrm{M} \Omega$ or $10 \Omega \cdot \mathrm{~F}$ (Whichever is smaller) More than $1,000 \mathrm{M} \Omega$ or $1 \Omega \cdot \mathrm{~F}$ (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at $25^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$ (for $\Delta \mathrm{C} / \mathrm{R} 7$)/ $150^{\circ} \mathrm{C}$ (for 5G/L8/R9) within 2 minutes of charging.		
		Dielectric Strength	No failure		No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/ discharge current is less than 50 mA .		

AEC-Q200 Murata Standard Specification and Test Methods

No	AEC-Q200 Test ltem		Specification.		AEC-Q200 Test Method
			Temperature Compensating Type	High Dielectric Type	
18	Board Flex	Appearance Capacitance Change Q/D.F. I.R.	No marking defects Within $\pm 5.0 \%$ or $\pm 0.5 \mathrm{pF}$ (Whichever is larger) 30pFmin. : Q $\geqq 1000$ $30 \mathrm{pFmax} .: ~ \mathrm{Q} \geqq 400+20 \mathrm{C}$ C: Nominal Capacitance(pF) (Whichever is smaller) Hen $10,000 \mathrm{M} \Omega$ or 500Ω	R7/L8/R9: Within $\pm 10.0 \%$R7/L8 : W.V.: $25 \mathrm{Vmin} .: ~$ W. 0.025 max. W. 0.05 max.•F	Solder the capacitor on the test jig (glass epoxy board) shown in Fig1 using a eutectic solder. Then apply a force in the direction shown in Fig 2 for $5 \pm 1 \mathrm{sec}$. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. (in mm)
19	Terminal Strength	Appearance Capacitance Change Q/D.F. I.R.	No marking defects Within specified tolerance 30 pFmin. $30 \mathrm{pFmax} . \mathrm{Q} \geqq 1000$ C: Q Nominal Capacitance(pF) More than $10,000 \mathrm{M} \Omega$ or 500Ω (Whichever is smaller)	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V/10V : 0.035max. R9: 0.05max. $\Omega \cdot F$	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 3 using a eutectic solder. Then apply *18N force in parallel with the test jig for 60sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and gree of defects such as heat shock *2N(GCM03/15) (in mm) Fig. 3
20	Beam Load		Destruction value should be e < Chip L dimension : 2.5 mm m Chip thicknes Chip thicknes < Chip L dimension : 3.2mm max Chip thickness Chip thickness	exceed following one. max. > s $>0.5 \mathrm{~mm}$ rank : 20 N s $\leqq 0.5 \mathrm{~mm}$ rank : 8 N max. > s < 1.25 mm rank : 15 N $\geqq 1.25 \mathrm{~mm}$ rank : 54.5 N	Place the capacitor in the beam load fixture as Fig 4. Apply a force. < Chip Length : 2.5mm max. > < Chip Length : 3.2 mm min. > Fig. 4 Speed supplied the Stress Load : * $0.5 \mathrm{~mm} / \mathrm{sec}$. *GCM03: $0.1 \mathrm{~mm} / \mathrm{sec}$.

Table A

Char.	Nominal Values $\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	Capacitance Change from $25^{\circ} \mathrm{C}(\%)$					
			-55		-30		Min.
	Max.	Min.	Max.	Max.	Min.		
$5 \mathrm{C} / 5 \mathrm{G}$	0 ± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1: Nominal values denote the temperature coefficient within a range of $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (for $\Delta \mathrm{C}$)/ $150^{\circ} \mathrm{C}$ (for 5 G) $/ 85^{\circ} \mathrm{C}$ (for other TC).
1.Tape Carrier Packaging(Packaging Code:D/E/W/F/L/J/K)
1.1 Minimum Quantity(pcs./reel)

Type		$\varphi 180 \mathrm{~mm}$ reel			$\varphi 330 \mathrm{~mm}$ reel	
		Paper Tape		Plastic Tape	Paper Tape	Plastic Tape
		Code:D/E	Code:W	Code:L	Code:J/ F	Code:K
GCD03		15000(W8P2)	30000(W8P1)		50000(W8P2)	
GCD15		10000(W8P2)	20000(W8P1)		50000(W8P2)	
GCD18		4000	-	-	10000	
GCD21	6	4000			10000	
	9	4000	-	S	10000	
	B	-	-	3000	-	10000
GCD31	6	4000	-	-	10000	
	9	4000	S	T	10000	,
	M	-	-	3000	-	10000
	C	-	S	2000	-	6000
GCD32	9	4000	${ }^{-}$,	10000	,
	M	-	-	3000	-	10000
	N	-	\square	2000	\square	8000
	R/D/E	-	\bigcirc	1000	-	4000
GCD43	M	-	-	1000	\square	5000
	N/R	\bigcirc	-	1000	-	4000
	E	\bigcirc		500	-	2000
GCD55	M	-	-	1000	-	5000
	N/R			1000		4000

1.2 Dimensions of Tape
(1)GCD03/15(W8P2 CODE:D/E/J/F)
(in:mm)

(2)GCD03/15(W8P1 CODE:W)
(in:mm)

（3）GC口18／21／31／32 T：0．85 rank max．
（in：mm）

（4）GC口21／31／32
T：1．15 rank min．
（in：mm）

Code	GCD21	GCD31	GCD32
A	1.45 ± 0.2	1.9 ± 0.2	2.8 ± 0.2
B	2.25 ± 0.2	3.5 ± 0.2	3.5 ± 0.2

（5）GCD43／55

Code	GCD43	GCD55
$\mathrm{A} * 2$	3.6	5.2
$\mathrm{~B} * 2$	4.9	6.1

Fig. 1 Package Chips
(in:mm)

Fig. 2 Dimensions of Reel

Fig. 3 Taping Diagram

	W	W_{1}
GCD32 max.	16.5 max.	10 ± 1.5
GC $\square 43 / 55$	20.5 max.	14 ± 1.5

Feeding Hole :As specified in 1.2.

1.3 Tapes for capacitors are wound clockwise shown in Fig.3.
(The sprocket holes are to the right as the tape is pulled toward the user.)
1.4 Part of the leader and part of the vacant section are attached as follows.

1.5 Accumulate pitch : 10 of sprocket holes pitch $=40 \pm 0.3 \mathrm{~mm}$
1.6 Chip in the tape is enclosed by top tape and bottom tape as shown in Fig.1.
1.7 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
1.8 There are no jointing for top tape and bottom tape.
1.9 There are no fuzz in the cavity.
1.10 Break down force of top tape : 5 N min.

Break down force of bottom tape : 5 N min. (Only a bottom tape existence)
1.11 Reel is made by resin and appeaser and dimension is shown in Fig 2. There are possibly to change the material and dimension due to some impairment.
1.12 Peeling off force: 0.1 N to 0.6 N in the direction as shown below.

* GC $\square 03: 0.05 \mathrm{~N} \sim 0.5 \mathrm{~N}$

1.13 Label that show the customer parts number, our parts number, our company name, inspection number and quantity, will be put in outside of reel.

Limitation of use

Please contact our sales representatives or product engineers before using our products for the applications listed below which require of our products for other applications than specified in this product.
(1)Aircraft equipment (2)Aerospace equipment (3)Undersea equipment (4)Power plant control equipment
(5Medical equipment (6Transportation equipment(vehicles,trains,ships,etc.) (7)Traffic signal equipment
(8Disaster prevention / crime prevention equipment (9Data-processing equipment
(10Application of similar complexity and/or requirements to the applications listed in the above

- Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

Storage and Operation condition

1. The performance of chip monolithic ceramic capacitors may be affected by the storage conditions.

1-1. Store capacitors in the following conditions: Temperature of $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ and a Relative Humidity of 20% to 70%.
(1) Sunlight, dust, rapid temperature changes, corrosive gas atmosphere or high temperature and humidity conditions during storage may affect the solderability and the packaging performance.
Please use product within six months of receipt.
(2) Please confirm solderability before using after six months.

Store the capacitors without opening the original bag.
Even if the storage period is short, do not exceed the specified atmospheric conditions.
1-2. Corrosive gas can react with the termination (external) electrodes or lead wires of capacitors, and result in poor solderability. Do not store the capacitors in an atmosphere consisting of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.).

1-3. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes and/or the resin/epoxy coatings, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high huimidity conditions

- Rating

1.Temperature Dependent Characteristics

1. The electrical characteristics of the capacitor can change with temperature.

1-1. For capacitors having larger temperature dependency, the capacitance may change with temperature changes. The following actions are recommended in order to insure suitable capacitance values.
(1) Select a suitable capacitance for the operating temperature range.
(2) The capacitance may change within the rated temperature.

When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance.
Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics.
And check capacitors using your actual appliances at the intended environment and operating conditions.
\square Typical temperature characteristics Char.R6 (X5R)
\square Typical temperature characteristics Char.R7 (X7R)

\square Typical temperature characteristics Char.F5 (Y5V)

2.Measurement of Capacitance

1. Measure capacitance with the voltage and the frequency specified in the product specifications.

1-1. The output voltage of the measuring equipment may decrease when capacitance is high occasionally. Please confirm whether a prescribed measured voltage is impressed to the capacitor.

1-2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.

3.Applied Voltage

1. Do not apply a voltage to the capacitor that exceeds the rated voltage as called-out in the specifications.

1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
(1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
(2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

Typical voltage applied to the DC capacitor

DC voltage	DC voltage+AC	AC voltage	Pulse voltage
 \uparrow E \downarrow 0	 \uparrow $\ddots \backsim \backsim$ \pm \downarrow 0		

(E : Maximum possible applied voltage.)

1-2. Influence of overvoltage

Overvoltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers .
The time duration until breakdown depends on the applied voltage and the ambient temperature.

4. Applied Voltage and Self-heating Temperature

1. When the capacitor is used in a high-frequency voltage, pulse voltage, application, be sure to take into account self-heating may be caused by resistant factors of the capacitor.

1-1. The load should be contained to the level such that when measuring at atomospheric temperature of $25^{\circ} \mathrm{C}$, the product's self-heating remains below $20^{\circ} \mathrm{C}$ and surface temperature of the capacitor in the actual circuit remains wiyhin the maximum operating temperature.

5. DC Voltage and AC Voltage Characteristic

1. The capacitance value of a high dielectric constant type capacitor changes depending on the DC voltage applied. Please consider the DC voltage characteristics when a capacitor is selected for use in a DC circuit.

1-1. The capacitance of ceramic capacitors may change sharply depending on the applied voltage. (See figure) Please confirm the following in order to secure the capacitance.
(1) Whether the capacitance change caused by the applied voltage is within the range allowed or not.

DC voltage characteristics

(2) In the DC voltage characteristics, the rate of capacitance change becomes larger as voltage increases. Even if the applied voltage is below the rated voltage. When a high dielectric constant type capacitor is in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions.

2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.
\square AC voltage characteristics

6. Capacitance Aging

1. The high dielectric constant type capacitors have the characteristic in which the capacitance value decreases with the passage of time.
When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics.
And check capacitors using your actual appliances at the intended environment and operating conditions.

7.Vibration and Shock

1. The capacitors mechanical actress (vibration and shock) shall be specified for the use environment. Please confirm the kind of vibration and/or shock, its condition, and any generation of resonance. Please mount the capacitor so as not to generate resonance, and do not allow any impact on the terminals.
2. Mechanical shock due to falling may cause damage or a crack in the dielectric material of the capacitor. Do not use a fallen capacitor because the quality and reliability may be deteriorated.

3. When printed circuit boards are piled up or handled, the corners of another printed circuit board should not be allowed to hit the capacitor in order to avoid a crack or other damage to the capacitor.

Soldering and Mounting

1.Mounting Position

1. Confirm the best mounting position and direction that minimizes the stress imposed on the capacitor during flexing or bending the printed circuit board.

1-1.Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.
[Component Direction]

Locate chip horizontal to the direction in which stress acts

[Chip Mounting Close to Board Separation Point]

Chip arrangement
Worst A-C-(B~D) Best

2.Information before mounting

1. Do Not re-use capacitors that were removed from the equipment.
2. Confirm capacitance characteristics under actual applied voltage.
3. Confirm the mechanical stress under actual process and equipment use.
4. Confirm the rated capacitance, rated voltage and other electrical characteristics before assembly.
5. Prior to use, confirm the Solderability for the capacitors that were in long-term storage.
6. Prior to measuring capacitance, carry out a heat treatment for capacitors that were in long-term storage.
7.The use of $\mathrm{Sn}-\mathrm{Zn}$ based solder will deteriorate the reliability of the MLCC.

Please contact our sales representative or product engineers on the use of $\mathrm{Sn}-\mathrm{Zn}$ based solder in advance.

3.Maintenance of the Mounting (pick and place) Machine

1. Make sure that the following excessive forces are not applied to the capacitors.

1-1. In mounting the capacitors on the printed circuit board, any bending force against them shall be kept to a minimum to prevent them from any bending damage or cracking. Please take into account the following precautions and recommendations for use in your process.
(1) Adjust the lowest position of the pickup nozzle so as not to bend the printed circuit board.
(2) Adjust the nozzle pressure within a static load of 1 N to 3 N during mounting.

2.Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes greater force upon the chip during mounting, causing cracked chips. Also the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

4-1.Reflow Soldering

1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causes deformation inside the components. In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board. Preheating conditions are shown in table 1. It is required to keep the temperature differential between the solder and the components surface (ΔT) as small as possible.
2. Solderability of Tin plating termination chips might be deteriorated when a low temperature soldering profile where the peak solder temperature is below the melting point of Tin is used. Please confirm the Solderability of Tin plated termination chips before use.
3. When components are immersed in solvent after mounting be sure to maintain the temperature difference (ΔT) between the component and the solvent within the range shown in the table 1.

Table 1

Part Number	Temperature Differential
GC口03/15/18/21/31	
	$\Delta T \leqq 190^{\circ} \mathrm{C}$
GC口32	$\Delta T \leqq 130^{\circ} \mathrm{C}$

Recommended Conditions

	Pb-Sn Solder		Lead Free Solder
	Infrared Reflow	Vapor Reflow	
Peak Temperature	$230 \sim 250^{\circ} \mathrm{C}$	$230 \sim 240^{\circ} \mathrm{C}$	$240 \sim 260^{\circ} \mathrm{C}$
Atmosphere	Air	Air	Air or N2
Pb-Sn Solder: Sn-37Pb	Lead Free Solder: Sn-3.0Ag-0.5Cu		

4. Optimum Solder Amount for Reflow Soldering

4-1. Overly thick application of solder paste results in a excessive solder fillet height.
This makes the chip more susceptible to mechanical and thermal stress on the board and may cause the chips to crack.
4-2. Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
$4-3$. Make sure the solder has been applied smoothly to the end surface to a height of 0.2 mm * min .

4-2.Flow Soldering

1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causes deformation inside the components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in table 2. It is required to keep temperature differential between the solder and the components surface (ΔT) as small as possible.
2. Excessively long soldering time or high soldering temperature can result in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
3. When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the table 2.
4. Do not apply flow soldering to chips not listed in Table 2.

Table 2

Part Number	Temperature Differential
GCD18/21/31	$\Delta T \leqq 150^{\circ} \mathrm{C}$

Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Preheating Peak Temperature	$90 \sim 110^{\circ} \mathrm{C}$	$100 \sim 120^{\circ} \mathrm{C}$
Soldering Peak Temperature	$240 \sim 250^{\circ} \mathrm{C}$	$250 \sim 260^{\circ} \mathrm{C}$
Atmosphere	Air	N_{2}
Pb-Sn Solder: $\mathrm{Sn}-37 \mathrm{~Pb}$	Lead Free Solder: $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$	

5. Optimum Solder Amount for Flow Soldering

5-1. The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessive, the risk of cracking is higher during board bending or any other stressful condition.
[Standard Conditions for Flow Soldering]

[Allowable Solderina Temperature and Timel

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

4-3. Correction with a Soldering Iron

1. When sudden heat is applied to the components when using a soldering iron, the mechanical strength of the components will decrease because the extreme temperature change can cause deformations inside the components. In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board. Preheating conditions, (The "Temperature of the Soldering Iron tip", "Preheating Temperature", "Temperature Differential" between the iron tip and the components and the PCB), should be within the conditions of table 3. It is required to keep the temperature differential between the soldering Iron and the component surfaces (ΔT) as small as possible.
2. After soldering, do not allow the component/PCB to rapidly cool down.
3. The operating time for the re-working should be as short as possible. When re-working time is too long, it may cause solder leaching, and that will cause a reduction in the adhesive strength of the terminations.

Table 3

Part Number	Temperature of Soldering Iron tip	Preheating Temperature	Temperature Differential $(\Delta \mathrm{T})$	Atmosphere
GC $\square 03 / 15 / 18 / 21 / 31$	$350^{\circ} \mathrm{C}$ max.	$150^{\circ} \mathrm{C}$ min.	$\Delta \mathrm{T} \leqq 190^{\circ} \mathrm{C}$	Air
GC $\square 32$	$280^{\circ} \mathrm{C}$ max.	$150^{\circ} \mathrm{C}$ min.	$\Delta \mathrm{T} \leqq 130^{\circ} \mathrm{C}$	Air

*Applicable for both $\mathrm{Pb}-\mathrm{Sn}$ and Lead Free Solder $\mathrm{Pb}-\mathrm{Sn}$ Solder: $\mathrm{Sn}-37 \mathrm{~Pb}$
Lead Free Solder: Sn-3.0Ag-0.5Cu
4. Optimum Solder amount when re-working with a Soldering Iron

4-1. In case of sizes smaller than 0603, (GC $\square 03 / 15 / 18$), the top of the solder fillet should be lower than $2 / 3$'s of the thickness of the component or 0.5 mm whichever is smaller. In case of 0805 and larger sizes, (GC口21/ $31 / 32$), the top of the solder fillet should be lower than $2 / 3$'s of the thickness of the component. If the
 in section solder amount is excessive, the risk of cracking is higher during board bending or under any other stressful condition.

4-2. A Soldering iron with a tip of $ø 3 \mathrm{~mm}$ or smaller should be used. It is also necessary to keep the soldering iron from touching the components during the re-work.
$4-3$. Solder wire with $\varnothing 0.5 \mathrm{~mm}$ or smaller is required for soldering.

4-4.Leaded Component Insertion

1. If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.
Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

A Caution

5.Washing

Excessive ultrasonic oscillation during cleaning can cause the PCBs to resonate, resulting in cracked chips or broken solder joints. Take note not to vibrate PCBs.

6.Electrical Test on Printed Circuit Board

1. Confirm position of the support pin or specific jig, when inspecting the electrical performance of a capacitor after mounting on the printed circuit board.

1-1. Avoid bending printed circuit board by the pressure of a test pin, etc.
The thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints.
Provide support pins on the back side of the PCB to prevent warping or flexing.
1-2. Avoid vibration of the board by shock when a test pin contacts a printed circuit board.
 Not recommended}

\square Recommended

7.Printed Circuit Board Cropping

1. After mounting a capacitor on a printed circuit board, do not apply any stress to the capacitor that is caused by bending or twisting the board.

1-1. In cropping the board, the stress as shown right may cause the capacitor to crack.
Try not to apply this type of stress to a capacitor.

Bending

Twisting

2. Check of the cropping method for the printed circuit board in advance.

2-1. Printed circuit board cropping shall be carried out by using a jig or an apparatus to prevent the mechanical stress which can occur to the board.
(1) Example of a suitable jig

Recommended example: the board should be pushed as close to the near the cropping jig as possible and from the back side of board in order to minimize the compressive stress applied to capacitor. Not recommended example* when the board is pushed at a point far from the cropping jig and from the front side of board as below, the capacitor may form a crack caused by the tensile stress applied to capacitor.

(2) Example of a suitable machine

An outline of a printed circuit board cropping machine is shown as follows. Along the lines with the V -grooves on printed circuit board, the top and bottom blades are aligned to one another when cropping the board.
The misalignment of the position between top and bottom blades may cause the capacitor to crack.

- Others

1. Under Operation of Equipment

1-1. Do not touch a capacitor directly with bare hands during operation in order to avoid the danger of a electric shock.

1-2. Do not allow the terminals of a capacitor to come in contact with any conductive objects (short-circuit). Do not expose a capacitor to a conductive liquid, inducing any acid or alkali solutions.

1-3. Confirm the environment in which the equipment will operation is under the specified conditions. Do not use the equipment under the following environment.
(1) Being spattered with water or oil.
(2) Being exposed to direct sunlight.
(3) Being exposed to Ozone, ultraviolet rays or radiation.
(4) Being exposed to toxic gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.)
(5) Any vibrations or mechanical shocks exceeding the specified limits.
(6) Moisture condensing environments.

1-4. Use damp proof countermeasures if using under any conditions that can cause condensation.

2. Others

2-1. In an Emergency
(1) If the equipment should generate smoke, fire or smell, immediately turn off or unplug the equipment. If the equipment is not turned off or unplugged, the hazards may be worsened by supplying continuous power.
(2) In this type of situation, do not allow face and hands to come in contact with the capacitor or burns may be caused by the capacitors high temperature.

2-2. Disposal of waste
When capacitors are disposed, they must be burned or buried by the industrial waste vender with the appropriate licenses.

2-3. Circuit Design

GC \square Series capacitors in this specification are not safety recognized products.

2-4. Remarks

Failure to follow the cautions may result, worst case, in a short circuit and smoking when the product is used.
The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions.
Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings.

- Rating

1.Operating Temperature

1. The operating temperature limit depends on the capacitor.

1-1.Do not apply temperatures exceeding the upper operating temperature.
It is necessary to select a capacitor with a suitable rated temperature which will cover the operating temperature range.
Also it is necessary to consider the temperature distribution in equipment and the seasonal temperature variable factor.

1-2.Consider the self-heating of the capacitor
The surface temperature of the capacitor shall be the upper operating temperature or less when including the self-heating factors.

2.Atmosphere surroundings (gaseous and liquid)

1. Restriction on the operating environment of capacitors.

1-1. The capacitor, when used in the above, unsuitable, operating environments may deteriorate due to the corrosion of the terminations and the penetration of moisture into the capacitor.

1-2. The same phenomenon as the above may occur when the electrodes or terminals of the capacitor are subject to moisture condensation.

1-3. The deterioration of characteristics and insulation resistance due to the oxidization or corrosion of terminal electrodes may result in breakdown when the capacitor is exposed to corrosive or volatile gases or solvents for long periods of time.

3.Piezo-electric Phenomenon

1. When using high dielectric constant type capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated.
Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

- Soldering and Mounting

1.PCB Design

1. Notice for Pattern Forms

1-1. Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.
They are also more sensitive to mechanical and thermal stresses than leaded components.
Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

1-2. It is possible for the chip to crack by the expansion and shrinkage of a metal board.
Please contact us if you want to use our ceramic capacitors on a metal board such as Aluminum.
Pattern Forms

	Prohibited	Correct
Placing Close to Chassis		
Placing of Chip Components and Leaded Components		
Placing of Leaded Components after Chip Component		
Lateral Mounting		Solder Resist

2．Land Dimensions

2－1．Chip capacitor can be cracked due to the stress of PCB bending／etc if the land area is larger than needed and has an excess amount of solder．
Please refer to the land dimensions in table 1 for flow soldering，table 2 for reflow soldering．

Please confirm the suitable land dimension by evaluating of the actual SET／PCB．
Table 1 Flow Soldering Method

Part Number	Chip（L×W）	a	b	C
GC口18	1.6×0.8	$0.6 \sim 1.0$	$0.8 \sim 0.9$	$0.6 \sim 0.8$
GC口21	2.0×1.25	$1.0 \sim 1.2$	$0.9 \sim 1.0$	$0.8 \sim 1.1$
GC口31	3.2×1.6	$2.2 \sim 2.6$	$1.0 \sim 1.1$	$1.0 \sim 1.4$

（in mm）

Table 2 Reflow Soldering Method

Dimensions Part Number	Chip（L×W）	a	b	C
GCD03	0.6×0.3	$0.2 \sim 0.3$	$0.2 \sim 0.35$	$0.2 \sim 0.4$
GCD15	1.0×0.5	$0.3 \sim 0.5$	$0.35 \sim 0.45$	$0.4 \sim 0.6$
GCD18	1.6×0.8	$0.6 \sim 0.8$	$0.6 \sim 0.7$	$0.6 \sim 0.8$
GCD21	2.0×1.25	$1.0 \sim 1.2$	$0.6 \sim 0.7$	$0.8 \sim 1.1$
GCD31	3.2×1.6	$2.2 \sim 2.4$	$0.8 \sim 0.9$	$1.0 \sim 1.4$
GCD32	3.2×2.5	$2.0 \sim 2.4$	$1.0 \sim 1.2$	$1.8 \sim 2.3$

（in mm）

2.Adhesive Application

1. Thin or insufficient adhesive can cause the chips to loosen or become disconnected during flow soldering. The amount of adhesive must be more than dimension c , shown in the drawing at right, to obtain the correct bonding strength.
The chip's electrode thickness and land thickness must also be taken into consideration.

$$
\begin{aligned}
& a=20 \sim 70 \mu \mathrm{~m} \\
& \mathrm{~b}=30 \sim 35 \mu \mathrm{~m} \\
& \mathrm{c}=50 \sim 105 \mu \mathrm{~m}
\end{aligned}
$$

2. Low viscosity adhesive can cause chips to slip after mounting. The adhesive must have a viscosity of $5000 \mathrm{~Pa} \cdot \mathrm{~s}(500 \mathrm{ps}) \mathrm{min}$. (at $25^{\circ} \mathrm{C}$)

3.Adhesive Coverage

Part Number	Adhesive Coverage *
GC $\square 18$	0.05 mg min.
GC $\square 21$	0.1 mg min.
GC $\square 31$	0.15 mg min.
*Nominal Value	

3.Adhesive Curing

1. Insufficient curing of the adhesive can cause chips to disconnect during flow soldering and causes deterioration in the insulation resistance between the outer electrodes due to moisture absorption. Control curing temperature and time in order to prevent insufficient hardening.

4.Flux Application

1. An excessive amount of flux generates a large quantity of flux gas, which can cause a deterioration of Solderability.
So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
2. Flux containing too a high percentage of halide may cause corrosion of the outer electrodes unless there is sufficient cleaning. Use flux with a halide content of 0.2% max.
3. Do not use strong acidic flux.
4. Do not use water-soluble flux.
(*Water-soluble flux can be defined as non rosin type flux including wash-type flux and non-wash-type flux.)

5.Flow Solderina

Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown right) and 25% of the length $A-B$ shown below as mounted on substrate.
[As a Single Chip]

[As Mounted on Substrate]

6.Washing

1. Please evaluate a capacitor by actual cleaning equipment and condition surely for confirming the quality and select the applicable solvent.
2. Unsuitable cleaning solvent may leave residual flux, other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors.
3. Select the proper cleaning conditions.

3-1. Improper cleaning conditions (excessive or insufficient) may result in the deterioration of the performance of the capacitors.

7.Coating

1. A crack may be caused in the capacitor due to the stress of the thermal contraction of the resin during curing process.
The stress is affected by the amount of resin and curing contraction.
Select a resin with small curing contraction.
The difference in the thermal expansion coefficient between a coating resin or a molding resin and capacitor may cause the destruction and deterioration of the capacitor such as a crack or peeling, and lead to the deterioration of insulation resistance or dielectric breakdown.
Select a resin for which the thermal expansion coefficient is as close to that of capacitor as possible.
A silicone resin can be used as an under-coating to buffer against the stress.
2. Select a resin that is less hygroscopic.

Using hygroscopic resins under high humidity conditions may cause the deterioration of the insulation resistance of a capacitor.
An epoxy resin can be used as a less hygroscopic resin.

Others

1.Transportation

1. The performance of a capacitor may be affected by the conditions during transportation.

1-1. The capacitors shall be protected against excessive temperature, humidity and mechanical force during transportation.
(1) Climatic condition

- low air temperature : $-40^{\circ} \mathrm{C}$
- change of temperature air/air : $-25^{\circ} \mathrm{C} /+25^{\circ} \mathrm{C}$
- low air pressure : 30 kPa
- change of air pressure : $6 \mathrm{kPa} / \mathrm{min}$
(2) Mechanical condition

Transportation shall be done in such a way that the boxes are not deformed and forces are not directly passed on to the inner packaging.

1-2. Do not apply excessive vibration, shock, and pressure to the capacitor.
(1) When excessive mechanical shock or pressure is applied to a capacitor, chipping or cracking may occur in the ceramic body of the capacitor.
(2) When a sharp edge of an air driver, a soldering iron, tweezers, a chassis, etc. impacts strongly on the surface of capacitor, the capacitor may crack and short-circuit.

1-3. Do not use a capacitor to which excessive shock was applied by dropping etc. The capacitor dropped accidentally during processing may be damaged.
1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
2. Your are requested not to use our product deviating from this product specification.
3. We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions such as warranty clause, product liability clause, or intellectual property infringement liability clause, they will be deemed to be invalid.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Murata:
GCM1885C1H681JA16D GCM1885C1H681JA16J

[^0]: Product specifications in this catalog are as of Jan.25,2013,and are subject to change or obsolescence without notice.

