G3VM-61GR2

MOS FET Relays

MOS FET Relays with 1.7-A switching Designed for Switching Minute Signals and Analog Signals.

- Continuous load current of 1.7 A.

Note: The actual product is marked differently from the

■ Application Examples

- Semiconductor test equipment

- Test \& Measurement equipment
- Communication equipment
- Data loggers

Terminal Arrangement/Internal Connections

Note: The actual product is marked differently from the image shown here. * The indentation in the corner diagonally opposite from the pin 1 mark is from a pin on the mold.

List of Models

Package type	Contact form	Terminals	Load voltage (peak value) *	Model	Minimum package quantity	
					Number per tube	Number per tape and reel
SOP4	$\begin{gathered} 1 \mathrm{a} \\ \text { (SPST-NO) } \end{gathered}$	Surface-mounting Terminals	60 V	G3VM-61GR2	100	-
				G3VM-61GR2 (TR05)	-	500

* The AC peak and DC value are given for the load voltage.
\square Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Rating	Unit	Measurement conditions	Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.
LED forward current	IF	30	mA		
\% LED forward current reduction rate	$\Delta \mathrm{l} /{ }^{\circ} \mathrm{C}$	-0.3	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$	
드 LED reverse voltage	VR	5	V		
Connection temperature	TJ	125	${ }^{\circ} \mathrm{C}$		
Load voltage (AC peak/DC)	Voff	60	V		
\pm Continuous load current (AC peakDC)	10	1.7	A		
은 ON current reduction rate	$\Delta \mathrm{lo} /{ }^{\circ} \mathrm{C}$	-17	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$	
O Pulse ON current	lop	5	A	$\mathrm{t}=100 \mathrm{~ms}$, Duty $=1 / 10$	
Connection temperature	TJ	125	${ }^{\circ} \mathrm{C}$		
Dielectric strength between I/O (See note 1.)	VI-O	1500	Vrms	AC for 1 min	
Ambient operating temperature	Ta	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation	
Ambient storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation	
Soldering temperature	-	260	${ }^{\circ} \mathrm{C}$	10 s	

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
LED forward voltage	VF	1.18	1.33	1.48	V	$\mathrm{IF}=10 \mathrm{~mA}$
\# Reverse current	IR	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}=5 \mathrm{~V}$
읃 Capacity between terminals	Ст	-	70	-	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
- Trigger LED forward current	IfT	-	0.6	3	mA	$\mathrm{lo}=100 \mathrm{~mA}$
Turn-OFF LED forward current	Ifc	0.1	-	-	mA	loff $=100 \mu \mathrm{~A}$
\pm Maximum resistance with output ON	Ron	-	0.08	0.13	Ω	$\mathrm{IF}=5 \mathrm{~mA}, \mathrm{lo}=1.7 \mathrm{~A}, \mathrm{t}<1 \mathrm{~s}$
윽 Current leakage when the relay is open	ILEAK	-	1	10	nA	Voff $=60 \mathrm{~V}$
O Capacity between terminals	Coff	-	250	-	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
Capacity between I/O terminals	Cl-o	-	0.8	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance between //O terminals	RI-O	1000	10^{8}	-	$\mathrm{M} \Omega$	V -O $=500 \mathrm{VDC}, \mathrm{RoH} \leq 60 \%$
Turn-ON time	ton	-	0.7	3	ms	$\begin{aligned} & \hline \mathrm{IF}=5 \mathrm{~mA}, \mathrm{RL}=200 \Omega, \\ & \mathrm{VDD}=20 \mathrm{~V} \text { (See note 2.) } \end{aligned}$
Turn-OFF time	toff	-	0.1	0.5	ms	

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions

For usage with high reliability, Recommended Operation Conditions is a measure that takes into account the derating of Absolute Maximum Ratings and Electrical Characteristics. Each item on this list is an independent condition, so it is not simultaneously satisfy several conditions.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	VDD	-	-	48	V
Operating LED forward current	IF	5	10	25	mA
Continuous load current (AC peakIDC)	Io	-	-	1.3	A
Ambient operating temperature	Ta	-20	-	65	${ }^{\circ} \mathrm{C}$

Engineering Data

LED forward current vs. Ambient temperature

Continuous load current vs. On-state voltage

Turn ON, Turn OFF time vs. LED forward current

LED forward current IF (mA)

Continuous load current vs. Ambient temperature

On-state resistance vs. Ambient temperature

Turn ON, Turn OFF time vs. Ambient temperature

LED forward current vs. LED forward voltage

Trigger LED forward current vs. Ambient temperature

Current leakage vs. Ambient temperature

Safety Precautions

- Refer to "Common Precautions" for all G3VM models.

Appearance

SOP (Small Outline Package)

SOP4

Note: The actual product is marked differently from the image shown here.

* The indentation in the corner diagonally opposite from the pin 1 mark is from a pin on the mold.

Dimensions

Surface-mounting Terminals

Weight: 0.1 g

Actual Mounting Pad

 Dimensions(Recommended Value, TOP VIEW)

Note: The actual product is marked differently from the image shown here.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Omron:
G3VM-61GR2 G3VM-61GR2(TR05)

