

Future Technology Devices International Ltd TTL-232RG (€ F©

TTL to USB Serial Converter Generic Cables

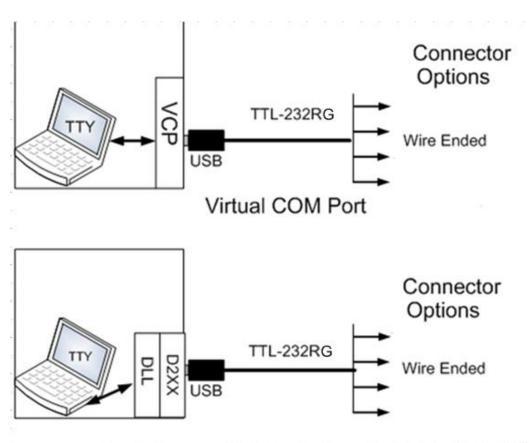
Datasheet

Version 1.5

Issue Date: 2018-05-04

Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow, G41 1HH, United Kingdom. Scotland Registered Number: SC136640

1 Introduction


The **TTL-232RG** generic cables are a family of USB to TTL serial UART converter cables incorporating FTDI's FT232RQ USB to Serial UART interface IC device which handles all the USB signalling and protocols. The cables provide a fast, simple way to connect devices with a logic level serial interface to USB.

Each TTL-232RG generic cable contains a small internal electronic circuit board, utilising the FT232R, which is encapsulated into the USB connector end of the cable. The FT232R datasheet is available at http://www.ftdichip.com/Support/Documents/DataSheets.htm. The other end of the cable is wire ended. The cables can be used for "TTL" or interface logic over a range to voltage levels.

Cables are FCC, CE, and RoHS compliant at TTL levels of + 5V to + 1.8V.

The USB side of the cable is USB powered and is USB 2.0 full speed compatible. Each cable is 1.8m long and supports a data transfer rate up to 3 Mbaud. Each cable supports the FTDIChip-ID™, with a unique USB serial number programmed into the FT232R. This feature can be used to create a security or password protected file transfer access using the cable. Further information and examples on this feature are available at http://www.ftdichip.com under FTDIChip-ID Projects.

The TTL-232RG generic cables require USB drivers, available free from http://www.ftdichip.com, which are used to make the FT232R in the cable appear as a virtual COM port (VCP). This then allows the user to communicate with the USB interface via a standard PC serial emulation port (for example TTY). Another FTDI USB driver, the D2XX driver, can also be used with application software to directly access the FT232R on the cable though a DLL. This is illustrated in the Figure 1.1

Software application access to USB via D2XX

Figure 1.1 - Using the TTL-232RG Generic Cable

1.1 Available Cables and Part Numbers

The following Table 1.1 gives details of the available TTL-232RG generic cables.

Part Number	Description	End Connector*	Cable details
TTL-232RG- VSW3V3-WE	USB to UART cable with +3.3V TTL level UART signals. Maximum output of 50mA on VCC (see <i>Note 1</i> and <i>Note 4</i>)	Wire Ended (no connector)	6 core, UL2464 24 AWG, diam=5mm
TTL-232RG- VREG3V3-WE	USB to UART cable with +3.3V TTL-232RG- TTL level UART signals. Maximum		6 core, UL2464 24 AWG, diam=5mm
TTL-232RG- VREG1V8-WE	USB to UART cable with +1.8V TTL level UART signals. Maximum output of 100mA on VCC (see Note 2 and 6)	Wire Ended (no connector)	6 core, UL2464 24 AWG, diam=5mm
TTL-232RG- VSW5V-WE	USB to UART cable with up to 5V TTL level UART signals. Maximum output of 450mA on VCC (see Note 7)	Wire Ended (no connector)	6 core, UL2464 24 AWG, diam=5mm
TTL-232RG- VIP-WE	USB to UART cable with TTL Voltage levels for the UART signals are supplied from the customers interface logic (see <i>Note 3 and 8</i>)	Wire Ended (no connector)	6 core, UL2464 24 AWG, diam=5mm

Table 1.1 TTL-232RG Generic Cables Descriptions and Part Numbers

Note 1: Fixed 3.3V signals and supply.

Note 2: Any regulator from 1.8V to 5V can be used. 1.8V and 3.3V versions are standard products. Others values are customized at the factory.

Note 3: Any INPUT voltage can be supplied by the customer from 1.8V (min value of VCCIO) to +5.25V (Max value of VCCIO)

Note 4: The VCC power output signal (RED wire) is 3.3V. The source of 3.3V is the FT232R regulator output, which is switched onto the power output signal.

<u>Note 5:</u> The VCC power output signal (RED wire) is 3.3V. The source of 3.3V is on board 3.3V regulator output, which is switched onto the power output signal

<u>Note 6:</u> The VCC power output signal (RED wire) is 1.8V. The source of 1.8V is on board 1.8V regulator output, which is switched onto the power output signal

Note 7: The VCC power output signal (RED wire) is 5.0V. The source of 5.0V is the USB VBUS input, which is switched onto the power output signal. At the time of releasing these cables, this cable was not available. It will become available at a later date. Please contact FTDI Sales for further information.

Note 8: The VCC power input signal (RED wire) is an output from customer electronics, an input to the cable. This value=i/pV. The source of i/pV is from customer's interface logic and this is used to drive the VCCIO and hence the signal levels on the wires. This makes the generic cable customisable to whatever output voltage the customer interface is operating at 1.8V to 5.25V range.

FTDI supports customised end connector designs. For more information, please contact your local FTDI sales office (see end of datasheet for contact details).

1.2 Certifications

The FTDI TTL-232RG range of generic cables is fully RoHS compliant and FCC/CE approved.

Document Reference No.: FT_000188 Clearance No.: FTDI# 129

Table of Contents

1 Ir	ntroduction	2
1.1	Available Cables and Part Numbers	3
1.2	Certifications	4
2 Ty	ypical Applications	6
2.1		
2.2		
3 F	T232R features applicable to TTL-232RG generic ca	
	TL-232RG generic cable connection/mechanical de	
4.1		
4.2	-	
	2.1 TTL-232RG-VSW3V3-WE Electrical Parameters	
	2.2 TTL-232RG-VREG3V3-WE Electrical Parameters	
	2.3 TTL-232RG-VREG1V8-WE Electrical Parameters	
	2.4 TTL-232RG-VSW5V-WE Electrical Parameters	
	2.5 TTL-232RG-VIP-WE Electrical Parameters	
5 C	able PCB Circuit Schematic	
	ontact Information	
	endix A - Cable EEPROM Configuration	
	endix B - References	
	cument References	
	onyms and Abbreviations	
Appe	endix C - List of Figures and Tables	19
List	of Figures	19
List	of Tables	19
Appe	endix C – Revision History	20

2 Typical Applications

- USB to Serial TTL Level Converter
- Upgrading Legacy Peripherals to USB
- Interface Microcontroller UART or I/O to USB
- Interface FPGA / PLD to USB
- Interface to FTDI VDRIVE2 or VMUSIC2 modules.
- Interface USB to none-standard (application dependant) logic levels.
- Replace MAX232 type level shifters allowing for direct connection of products to PC via USB
- USB Instrumentation PC interface
- USB Industrial Control
- USB Software / Hardware Encryption Dongles

2.1 Driver Support

Royalty free VIRTUAL COM PORT (VCP) DRIVERS for...

- Windows 10 32,64-bit
- Windows 8/8.1 32,64-bit
- Windows 7 32,64-bit
- Windows Vista and Vista 64-bit
- Windows XP and XP 64-bit
- Windows 98, 98SE, ME, 2000, Server 2003, XP, Server 2008 and server 2012 R2
- Windows XP Embedded
- Windows CE 4.2, 5.0 and 6.0
- Mac OS 8/9, OS-X
- Linux 2.4 and greater

Royalty free D2XX Direct Drivers (USB Drivers + DLL S/W Interface)

- Windows 10 32,64-bit
- Windows 8/8.1 32,64-bit
- Windows 7 32,64-bit
- Windows Vista and Vista 64-bit
- Windows XP and XP 64-bit
- Windows 98, 98SE, ME, 2000, Server 2003, XP, Server 2008 and server 2012 R2
- · Windows XP Embedded
- Windows CE 4.2, 5.0 and 6.0
- Linux 2.4 and greater
- Android (J2xx)

The drivers listed above are all available to download for free from http://www.ftdichip.com. Various 3rd Party Drivers are also available for various other operating systems - see http://www.ftdichip.com. for details.

2.2 Features

- TTL-232RG generic converter cable provides a USB to TTL Serial interface with various logic levels.
- On board FT232RQ provides single chip USB to asynchronous serial data transfer interface.
- Entire USB protocol handled by the electronics in the cable USB.
- Connect directly to a microcontroller UART or I/O pins.
- UART interface support for 7 or 8 data bits, 1 or 2 stop bits and odd / even / mark / space / no parity.
- Fully assisted hardware (RTS#/CTS#) or X-On / X-Off software handshaking.
- Data transfer rates from 300 baud to 3 Mbaud at TTL levels.
- Internal EEPROM with user writeable area.
- Wide range of output drive voltages 1.8V to 5.0V safe TTL inputs makes the TTL-232RG easy to interface to 5.0V MCU's.
- FTDI's royalty-free VCP allow for communication as a standard emulated COM port and D2XX 'direct' drivers provide DLL application programming interface.

- Support for FT232R FTDIChip-ID™ feature for improved security.
- Voltage output power allows external logic to be powered from the USB port.
- Cable can be used to accept IO voltage from application interface logic allowing users to supply IO voltage levels.
- 6 way outputs provide Tx, Rx, RTS#, CTS#, VCC and GND.
- Low USB bandwidth consumption.
- UHCI / OHCI / EHCI host controller compatible.
- USB 2.0 (12Mb/s) Full Speed compatible.
- -40°C to +85°C operating temperature range.
- Cable length is 1.80m (6 feet).
- FCC and CE compliant.
- Custom versions also available (subject to MOQ).

3 FT232R features applicable to TTL-232RG generic cables

The TTL-232RG generic cables use FTDI's FT232RQ USB to serial IC device. This section summarises the key features of the FT232RQ which apply to the TTL-232RG USB to serial TTL converter cables. For further details, and a full features and enhancements description consult the FT232R datasheet, this is available from http://www.ftdichip.com.

Internal EEPROM. The internal EEPROM in each cable is used to store USB Vendor ID (VID), Product ID (PID), device serial number, product description string and various other USB configuration descriptors. Each cable is supplied with the internal EEPROM pre-programmed as described in **Appendix AError! Reference source not found.**. A user area of the internal EEPROM is available to system designers to allow storing additional data. The internal EEPROM descriptors can be programmed in circuit, over USB without any additional voltage requirement. It can be programmed using the FTDI utility software called MPROG, which can be downloaded from FTDI Utilities on the FTDI website (www.ftdichip.com).

Lower Operating and Suspend Current. The FT232R has a low 15mA operating supply current and a very low USB suspend current of approximately 70µA. (Note that during suspend mode, the current drawn by application should not exceed 2.5mA to remain USB compliant)

Low USB Bandwidth Consumption. The USB interface of the FT232R, and therefore the TTL-232RG cables has been designed to use as little as possible of the total USB bandwidth available from the USB host controller.

High Output Drive Option. The UART interface I/O pins on the TTL-232RG cables (RXD, TXD, RTS#, and CTS#) can be configured to use the FT232R's high output drive option. This option allows the FT232R I/O pins to drive up to three times the standard signal drive level. This allows multiple devices to be driven, or devices that require greater signal drive strength to be interfaced to the cables. This option is enabled in the internal EEPROM.

UART Pin Signal Inversion. The sense of each of the eight UART signals can be individually inverted by configuring options in the internal EEPROM. For example CTS# (active low) can be changed to CTS (active high), or TXD can be changed to TXD#.

FTDIChip-IDTM. The FT232R includes the FTDIChip-IDTM security dongle feature. This FTDIChip-IDTM feature allows a unique number to be burnt into each cable during manufacture. This number cannot be reprogrammed. This number is only readable over USB can be used to form the basis of a security dongle which can be used to protect any customer application software being copied. This allows the possibility of using the TTL-232RG cables as a dongle for software licensing. Further to this, a renewable license scheme can be implemented based on the FTDIChip-IDTM number when encrypted with other information. This encrypted number can be stored in the user area of the FT232R internal EEPROM, and can be decrypted, then compared with the protected FTDIChip-IDTM to verify that a license is valid. Web based applications can be used to maintain product licensing this way. An application note, AN232R-02, available from FTDI website (www.ftdichip.com) describes this feature.

Improved EMI Performance. The TTL-232RG cables are FCC and CE certified.

Extended Operating Temperature Range - The TTL-232RG generic cables are capable of operating over an extended temperature range of -40° to +85° C thus allowing them to be used in automotive or industrial applications.

4 TTL-232RG generic cable connection/mechanical details

The following Figure 4.1 shows the cable signals and the wire colours for these signals on the TTL-232RG generic cables.

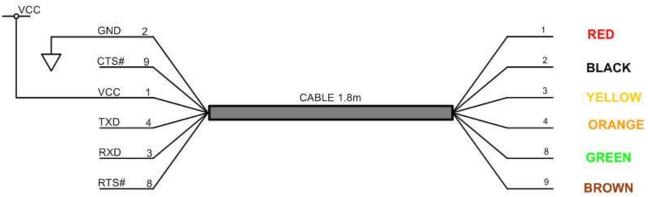


Figure 4.1 TTL-232RG Generic Cables Connections (numbers refer to pad numbers on the PCB)

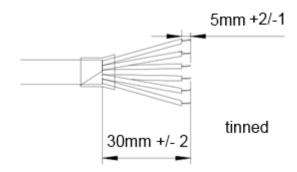


Figure 4.2 TTL-232RG Generic Cables Mechanical Details (dimensions in mm)

4.1 TTL-232RG Generic Cables Signal Descriptions

Colour	Name	Туре	Description	
Black	GND	GND	Device ground supply pin.	
Brown	CTS#	Input	Clear to Send Control input / Handshake signal.	
Red	VCC	Output or input	Power Supply Output except for the TTL-232RG-VIP-WE were this is an input and power is supplied by the application interface logic.	
Orange	TXD	Output	Transmit Asynchronous Data output.	
Yellow	RXD	Input	Receive Asynchronous Data input.	
Green	RTS#	Output	Request To Send Control Output / Handshake signal.	

Table 4.1 TTL-232RG Generic Cables Signal Descriptions

4.2 TTL-232RG Generic Cables Electrical Parameters

4.2.1 TTL-232RG-VSW3V3-WE Electrical Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
VCC	Output Power Voltage	3.2	3.3	3.4	٧	
Io	Output Power Current	-	50	-	mA	Must be less than 2.5mA during suspend.
Т	Operating Temperature Range	-40		+85	°C	

Table 4.2 TTL-232RG-VSW3V3-WE I/O Operating Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	2.2	2.8	3.2	٧	I source = 1mA
Vol	Output Voltage Low	0.3	0.4	0.6	٧	I sink = 2mA
Vin	Input Switching Threshold	1.0	1.2	1.5	V	
VHys	Input Switching Hysteresis	20	25	30	mV	

Table 4.3 TTL-232RG-VSW3V3-WE I/O Pin Characteristics

4.2.2 TTL-232RG-VREG3V3-WE Electrical Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
VCC	Output Power Voltage	3.2	3.3	3.4	V	
Io	Output Power Current		250		mA	Must be less than 2.5mA during suspend.
Т	Operating Temperature Range	-40		+85	°C	

Table 4.4 TTL-232RG-VREG3V3-WE I/O Operating Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	2.2	2.8	3.2	V	I source = 3mA
Vol	Output Voltage Low	0.3	0.4	0.6	V	I sink = 8mA
Vin	Input Switching Threshold	1.0	1.2	1.5	V	
VHys	Input Switching Hysteresis	20	25	30	mV	

Table 4.5 TTL-232RG-VREG3V3 Pin Characteristics

4.2.3 TTL-232RG-VREG1V8-WE Electrical Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
VCC	Output Power Voltage	1.32	1.62	1.8	٧	
Io	Output Power Current		100		mA	100mA for output powerless than 3.0V
Т	Operating Temperature Range	-40		+85	°C	

Table 4.6 TTL-232RG-VREG1V8 I/O Operating Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	1.32	1.62	1.8	V	I source = 6mA
Vol	Output Voltage Low	0.06	0.1	0.18	V	I sink = 6mA
Vin	Input Switching Threshold	1.0	1.2	1.5	V	
VHys	Input Switching Hysteresis	20	25	30	mV	

Table 4.7 TTL-232RG-VREG1V8-WE I/O Pin Characteristics

4.2.4 TTL-232RG-VSW5V-WE Electrical Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
VCC	Output Power Voltage	4.25	5.0	5.25	٧	
IO	Supply Current	1	450		mA	Must be less than 2.5mA during suspend.
Т	Operating Temperature Range	-40		+85	οС	

Table 4.8 TTL-232RG-VSW5V-WE I/O Operating Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	3.2	4.1	4.9	٧	I source = 6mA
Vol	Output Voltage Low	0.3	0.4	0.6	V	I sink = 6mA
Vin	Input Switching Threshold	1.0	1.2	1.5	V	
VHys	Input Switching Hysteresis	20	25	30	mV	

Table 4.9 TTL-232RG-VSW5V-WE I/O Pin Characteristics

Document Reference No.: FT_000188 Clearance No.: FTDI# 129

4.2.5 TTL-232RG-VIP-WE Electrical Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
VCC	Power Input for I/O Buffer	1.8	INPUT i/p	5.25	٧	
I _O	Supply Current	*	*	*	mA	Must be less than 2.5mA during suspend.
Т	Operating Temperature Range	-40		+85	°C	

Table 4.10 TTL-232RG-VIP-WE I/O Operating Parameters

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	*	*	*	٧	I source = 6mA
Vol	Output Voltage Low	*	*	*	V	I sink = 6mA
Vin	Input Switching Threshold	*	*	*	V	
VHys	Input Switching Hysteresis	*	*	*	mV	

Table 4.11 TTL-232RG-VIP-WE I/O Pin Characteristics

^{*}depends on supplied voltage

5 Cable PCB Circuit Schematic

The circuit schematic for the small internal electronic circuit board, utilising the FTDI FT232R, which is encapsulated into the USB connector end of the cable, is shown in

Figure 5.1.

Customised versions of these cables are also available. Users interested in customised versions of these cables should contact FTDI sales (sales1@ftdichip.com).

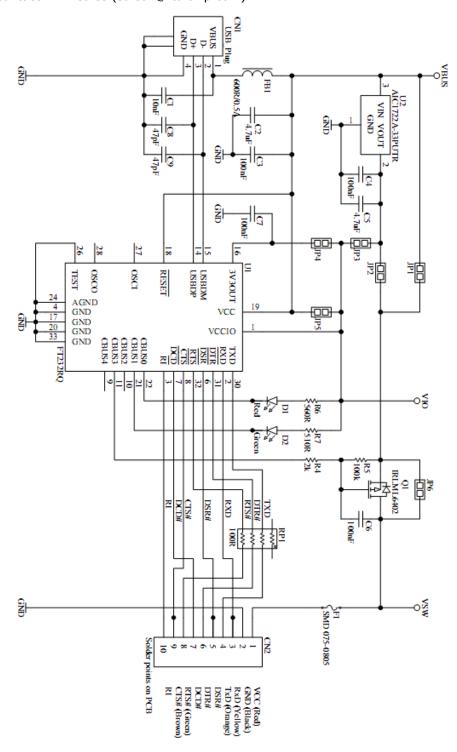


Figure 5.1 Circuit Schematic of PCB Used in the generic TTL to USB Serial Converter Cables

TTL to USB Serial Converter Generic Cables Datasheet Version 1.5

6 Contact Information

Head Office - Glasgow, UK

Future Technology Devices International Limited Unit 1, 2 Seaward Place, Centurion Business Park Glasgow, G41 1HH United Kingdom

Tel: +44 (0) 141 429 2777 Fax: +44 (0) 141 429 2758

E-mail (Sales)

E-mail (Support)

E-mail (General Enquiries)

Web Shop URL

sales1@ftdichip.com
support1@ftdichip.com
admin1@ftdichip.com
http://www.ftdichip.com

Branch Office - Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)

2F, No. 516, Sec. 1, NeiHu Road Taipei 114

Taiwan, R.O.C.

Tel: +886 (0) 2 8797 1330 Fax: +886 (0) 2 8751 9737

Web Site URL: http://www.ftdichip.com

Branch Office - Tigard, Oregon, USA

Future Technology Devices International Limited (USA) 7130 SW Fir Loop Tigard, OR 97223-8160

USA

Tel: +1 (503) 547 0988 Fax: +1 (503) 547 0987

E-Mail (Sales) <u>us.sales@ftdichip.com</u>
E-mail (Support) <u>us.support@ftdichip.com</u>
E-mail (General Enquiries) <u>us.admin@ftdichip.com</u>

Branch Office - ShangHai, China

Future Technology Devices International Limited (China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China

Tel: +86 (21) 62351596 Fax: +86 (21) 62351595

E-Mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-Mail (General Enquiries) cn.admin@ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the <u>FTDI Web site</u> for the contact details of our distributor(s) and sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

Appendix A - Cable EEPROM Configuration

Each TTL-232RG cable is controlled by the FTDI FT232R IC. This FT232R device contains an EEPROM which contains the USB configuration descriptors for that device. When the cable is plugged into a PC or a USB reset is performed, the PC will read these descriptors. The default values stored into the internal EEPROM are defined in the following table.

Parameter	Value	Notes
USB Vendor ID (VID)	0403h	FTDI default VID (hex)
USB Product UD (PID)	6001h	FTDI default PID (hex)
Serial Number Enabled?	Yes	
Serial Number	See Note	A unique serial number is generated and programmed into the EEPROM during device final test.
Pull down I/O Pins in USB Suspend	Disabled	Enabling this option will make the device pull down on the UART interface lines when the power is shut off (PWREN# is high).
Manufacturer Name	FTDI	
Product Description	See note	Product description depends on the cable. The following lists a few of the Product description for each different cable. TTL-232RG-VSW3V3 TTL-232RG-VREG3V3 TTL-232RG-VREG1V8 TTL-232RG-VREGxVx TTL-232RG-VIP
Max Bus Power Current	90mA	
Power Source	Bus Powered	
Device Type	FT232R	
USB Version	0200	Returns USB 2.0 device description to the host. Note: The device is a USB 2.0 Full Speed device (12Mb/s).
Remote Wake Up	Disabled	500uA suspend limit when in this state
High Current I/Os	Enabled	Enables the high drive level on the UART and CBUS I/O pins.
Load VCP Driver	Enabled	Makes the device load the VCP driver interface for the device.
Invert TXD	Disabled	Signal on this pin becomes TXD# if enable.
Invert RXD	Disabled	Signal on this pin becomes RXD# if enable.

TTL to USB Serial Converter Generic Cables Datasheet Version 1.5

Parameter	Value	Notes
Invert RTS#	Disabled	Signal on this pin becomes RTS if enable.
Invert CTS#	Disabled	Signal on this pin becomes CTS if enable.

Appendix B - References

Document References

NA

Acronyms and Abbreviations

Terms	Description
DLL	Dynamic Link Library
EEPROM	Electrically Erasable Programmable Read Only Memory
EHCI	Enhanced Host Controller Interface
FCC	Federal Communications Commission
FPGA	Field Programmable Gate Array
I/O	Input Output
OHCI	Open Host Controller Interface
PC	Personal Computer
PLD	Programmable Logic Device
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver Transmitter
UHCI	Universal Host Controller Interface
USB	Universal Serial Bus
VCP	Virtual COM Port

Appendix C - List of Figures and Tables List of Figures

Figure 1.1 - Using the TTL-232RG Generic Cable	2
Figure 4.1 TTL-232RG Generic Cables Connections (numbers refer to pad numbers on the PCB)	9
Figure 4.2 TTL-232RG Generic Cables Mechanical Details (dimensions in mm)	9
Figure 5.1 Circuit Schematic of PCB Used in the generic TTL to USB Serial Converter Cables	13
List of Tables	
Table 1.1 TTL-232RG Generic Cables Descriptions and Part Numbers	3
Table 4.1 TTL-232RG Generic Cables Signal Descriptions	9
Table 4.2 TTL-232RG-VSW3V3-WE I/O Operating Parameters	10
Table 4.3 TTL-232RG-VSW3V3-WE I/O Pin Characteristics	10
Table 4.4 TTL-232RG-VREG3V3-WE I/O Operating Parameters	10
Table 4.5 TTL-232RG-VREG3V3 Pin Characteristics	10
Table 4.6 TTL-232RG-VREG1V8 I/O Operating Parameters	11
Table 4.7 TTL-232RG-VREG1V8-WE I/O Pin Characteristics	11
Table 4.8 TTL-232RG-VSW5V-WE I/O Operating Parameters	11
Table 4.9 TTL-232RG-VSW5V-WE I/O Pin Characteristics	11
Table 4.10 TTL-232RG-VIP-WE I/O Operating Parameters	12
Table 4.11 TTL-232RG-VIP-WE I/O Pin Characteristics	12

Document Reference No.: FT_000188 Clearance No.: FTDI# 129

Appendix C - Revision History

Document Title: TTL-232RG Datasheet

Document Reference No.: FT_000188
Clearance No.: FTDI# 129

Product Page: http://www.ftdichip.com/FTProducts.htm

Document Feedback: Send Feedback

Revision	Changes	Date
Version 1.0	Initial Release	2009-11-17
Version 1.1	Updated release	2010-04-02
Version 1.2	A note added about the availability of the TTL_232RG-VSW5V-WE at the time of launch; Updated FCC/CE testing and approval status	2010-15-21
Version 1.3	Updated parametric value tables; update contact details; updated list of drivers supported	2015-08-11
Version 1.4	Changed the tolerance of wire length in 4.2	2016-05-23
Version 1.5	Updated table 4.2 and table 4.4	2018-05-04