

Cylindrical Sensors

CYLINDRICALINDUCTIVE PROXIMITY SENSORS

Altech Cylindrical sensors are available in diameters ranging from 8 mm (. 32 in .) to 30 mm (1.18 in .) with sensing distances up to 15 mm (0.59 in .). Most models feature nickel plated brass (BN) and stainless steel (SS). Both flush mount and nonflush mount sensors are available. Nonflush sensors have larger sensing distances than their flush mount counterparts. All Inductive sensors meet IP67 (NEMA1, 3, 4, 6, 12, 13) protection levels.

FLUSH MOUNT CYLINDRICAL SENSORS

Flush Mounted, sometimes called embedded or shielded sensors, have electromagnetic fields concentrated directly in front of the sensing heads and may be mounted directly onto metal mounting brackets or embedded directly into metal without causing a false output.
Figure 8 (located on page 7) also
illustrates that on Cylindrical Flush Mount sensors there should be at least 1 diameter of distance between adjacent sensors, and no non-target metal surfaces should be less than 3 times the sensing distance Sn directly across from the sensing head. Also, two directly opposite sensors mounted in metal should be greater than 6 times the sensing distance apart.

NON-FLUSH

CYLINDRICAL SENSORS

Sometimes called non-embedded or nonshielded, non-flush sensors have electromagnetic fields with a wide sensing angle and are unshielded (no metal surrounding the sensing head). Care must be taken to insure that no non-target metal comes in near proximity to the sensing head. Distances are demonstrated in Figure 8. Adjacent sensors should be separated by at least 2 times the diameter. Non-target metal should be at least 3 times the sensing distance directly across
from the sensing head. Two directly opposite sensors should be at least 6 times the sensing distance apart.

OUTPUT CONNECTIONS

AC,DC - Normally Open (NO), and Normally Closed (NC).
DC - Complementary output (NO/NC) available on some models.

OUTPUT CABLES

Cylindrical Sensors are provided with 2 meter PVC fixed cables. 5 meter PVC, 2 and 5 meter PUR cables are optional. Consult Altech for more information.

QUICK DISCONNECT CONNECTORS

Altech sensors are available in a wide selection of Quick Disconnect styles for DC circuits. Virtually any sensor can be custom manufactured with a Quick Disconnect connector. Consult Altech for more information.

Quick Disconnect models are designed to be user-friendly and to simplify installation.

Please see the product specification for sensors with quick disconnect connectors and matching cable assemblies on pages 26-31 in the accessory section.

HOUSING MATERIALS

AC - Nickel Plated Brass
DC - Nickel Plated Brass Stainless Steel

TIP MATERIAL
PBTB - Polybutelyne Terephthalate

Note: We have attempted to make this catalog as comprehensive as possible. However, not shown in this catalog are other Altech Proximity Sensors which are available. Details on request.

Selection Guide

Sensing Distances - AC, DC, Cylindrical Style Sensors

Type	Voltage	Flush (mm)	Non-Flush (mm)
Short Body	DC	$1.5-10$	$2-15$
Standard Series	AC, DC	$1.5-10$	$2-15$
Extended Sensing Range	DC	$4-8$	-

Operating Voltages - AC, DC Cylindrical Style

$A C$	$20-250 V A C$
$D C$	$10-30 V D C$

Operating Current- AC, DC Cylindrical Style

AC	250 mA	
DC	120 mA	250 mA

Sensor Wiring Systems - AC, DC Cylindrical Style

$A C$	2-Wire	
$D C$	2-Wire	3-Wire

All specifications subject to change without notice or obligation

Introduction

The Inductive Proximity Sensor (IPS) is a solid state device that generates an output signal when metal objects are either inside or entering into its sensing area from any direction. No physical contact is required nor desired. IPS's work best with ferrous metals, however, they also work well with non-ferrous metals (aluminum, brass, copper, etc.) at reduced sensing distances, see Figure 1.

First introduced in the mid 60's, Inductive Proximity Sensors were designed as an alternative to mechanical limit switches for many applications. Initially, IPS's were made with housings similar in size and dimension to the limit switch, but had short
sensing distances. Following very good results with these new devices, market pressure led to the development of larger sensors with increased sensing distances.

Inductive Proximity Sensors have no moving parts, operate very fast, are extremely reliable, require no maintenance and operate under extreme environmental conditions.

They typically interface with Programmable Logic Controllers (PLC) and personal computers with appropriate hardware and software. They also control relays, solenoids, valves, etc., up to their maximum output current.

Figure 1

Rated Operating Distance Correction Factors Target Material	
Correction Factor	
Mild Steel	$1.0 \times \mathrm{Sn}$
Nickel Chromium	$0.9 \times \mathrm{Sn}$
Stainless Steel	$0.85 \times \mathrm{Sn}$
Brass	$0.5 \times \mathrm{Sn}$
Aluminum	$0.45 \times \mathrm{Sn}$
Copper	$0.40 \times \mathrm{Sn}$

Other Factors

- Flat targets are preferable
- Targets larger than the sensing face may increase the sensing distance

An Inductive Proximity Sensor consists of an oscillator, a ferrite core with coil, a detector circuit, an output circuit, housing, and a cable or connector; see Figure 2. The oscillator generates a sine wave of a fixed frequency. This signal is used to drive the coil. The coil in conjunction with the ferrite core induces an electromagnetic field. When the field lines are interrupted by a metal object, the oscillator voltage is reduced proportional to the size and distance of the object from the coil. The reduction in the oscillator voltage is caused by eddy currents induced in the metal interrupting the field lines. This reduction in voltage of the oscillator is detected by the detecting circuit. In standard sensors, when the oscillator voltage drops below a present level, an output signal is generated.

OPERATING VOLTAGES

Most Altech Inductive Proximity Sensors are available in DC (10-30. VDC), AC (90-250VAC). Please refer to each product specification page for specific operating voltages.

OUTPUT CURRENT

Altech offers a range of IPS's with different output ratings from 5 mA to 500 mA . Please refer to each product specification page for specific output current.

OUTPUT CONFIGURATION

Outputs may be Normally Open (NO) or Normally Closed (NC).

DC Inductive Proximity Sensors are 3-wire. A 3 -wire DC sensor can be a NPN or PNP output transistor. If the output load is connected to the negative power source then a sensor with a PNP output transistor is required. A PNP sensor is also known as a source sensor. If the output load is connected to the positive power source, then a sensor with a NPN output transistor is required. A NPN sensor is also known as a sink sensor. Please see Figure 3 for PNP and NPN
electronic output circuits. AC Inductive Proximity Sensors are 2-wire devices, except when using a sensor with a metal housing where a third wire is available for connection to system ground.

HOUSING MATERIALS

Altech Inductive Proximity Sensors use a variety of metallic housing materials. Please refer to each product specification for specific information on housing materials.

CONNECTIONS

Altech offers Inductive Proximity Sensors that feature either 2 meter fixed PVC cable or a variety of quick disconnects. All quick disconnect models require an optional matching cable assembly. Custom cable lengths and material choices are also available. For more information, please refer to each product specification or the cable assemblies section on page 26-31.

FLUSH MOUNT AND
 NON-FLUSH MOUNT

Flush Mount sensors are sometimes called Shielded or Embedded. A metal band surrounds the sensing head which contains a coil wound around a ferrite core as in Figure 4.

The resulting electromagnetic field is directed in front of the sensor face. Flush sensors have a narrow sensing field which may be desirable in certain applications. In a Non-Flush (Nonshielded or Non-embedded) sensor; Figure 4, there is no metal band and the resulting electromagnetic field lines are much wider than the sensor face. NonFlush sensors have a larger sensing distance than Flush sensors.

OTHER CONSIDERATIONS:

SENSORS IN SERIES
 AND PARALLEL

Sensors may be wired in series or parallel. Refer to page 7 for more information.

Figure 3

ELECTRONIC OUTPUT CIRCUITS

NPN TRANSISTOR

Figure 4

SENSOR ELECTRO- MAGNETIC FIELD

Non-Flush Installation

PROTECTION (Electrical)

Most of the Inductive Proximity Sensors Altech offers have short circuit, overload, reverse polarity, and wire break protection. Please refer to the Technical Glossary pages 32-33 and the product specification for more information.

PROTECTION (Sensor Housing)

All Altech sensors are rated in accordance with IEC Publication 529, which describes degrees of protection that enclosures or sensor housings are designed to provide, the degree of protection is indicated by two letters (IP) and two numerals for additional information see the product specification and page 34.

All Inductive sensors meet the following shock and vibration requirements: 30 g 's $/ 11 \mathrm{~ms}$, and $10-55 \mathrm{~Hz} / \mathrm{mm}$.

SENSING DISTANCE

There are several sensing distance definitions used in industry. The nominal sensing distance (Sn), is the conventional quantity to designate the operational distance. It is specified in the ordering pages, and does not include variations in production tolerances, supply voltage tolerances, and ambient temperature tolerances.

A standard target used to specify sensing distance is a square piece of mild steel having a thickness of 1 mm (0.04 in.). The sides of the square are equal to the diameter of the circle inscribed on the sensor face or three times the rated operating distance Sn , whichever is greater.

The assured operation distance (Sa) is the smallest useful sensing distance which guarantees operation under variations in temperature, voltage and manufacture. It is given as 81% of Sn . See Figure 5. $0<\mathrm{Sa}<.81 \mathrm{Sn}$.

CE MARK
 CE MARK

C

GENERAL INFORMATION
The CE Mark is a compliance symbol, which means that the product meets the standards set by the European Committee for Electrotechnical Standardization (CENELEC), and the International Electrotechnical Commission (IEC).

Products containing the CE mark are allowed to have free movement within the European Union (EU), and European Economic Area (EEA). Products manufactured in the USA that are exported to the EU and EEA should have the CE marking and utilize components also having the CE marking.

ACCESSORIES

Altech offers a full range of accessory products including quick disconnect cable assemblies, connectors, distribution boxes, etc. Please refer to each product specification and the accessory chapter starting on page 26.
The effective sensing distance (Sr), is measured at nominal supply voltage and nominal ambient temperature and takes into account manufacturing tolerances: 0.9 $\mathrm{Sn} \leq \mathrm{Sr} \leq 1.1 \mathrm{Sn}$

The usable sensing distance, (Su), takes into account temperature, voltage variations and manufacturing tolerances: . $81 \mathrm{Sn} \leq \mathrm{Su} \geq 1.21 \mathrm{Sn}$

HYSTERESIS

Hysteresis is the switch-on point when the object approaches the sensor's active surface, and switch-off point, when the object is moving away from the sensor's active surface. Without sufficient Hysteresis, an Inductive Proximity Sensor would chatter (continuously switching on and off), so it is designed into the sensor circuitry. The differential travel (Hysteresis) is given as a percent of the expected rated operating distance Sr .; See Figure 6.

MAXIMUM SWITCHING FREQUENCY

The switching frequency indicates the maximum number of switching operations of a sensor per second. The value listed in the product specifications is achieved with the conditions shown in Figure 7. The value is always dependent on target size, distance from sensing face and speed of target. Using a smaller target or space may result in a reduction of a specific sensor maximum switching frequency.

Figure 8

CYLINDRICAL SENSOR INSTALLATION

Opposing Installation

Series and Parallel Connection of Proximity Sensors

Series Connection of 3 and 4 wire DC switches (and

 Logic): Used when it is necessary to obtain two or more corresponding signals before an action is carried out. It is necessary to take into account the voltage drop Ud present at the output of each switch which will reduce the voltage available at the load correspondingly. (see figure A)Parallel Connection of 3 and 4 wire DC switches (or Logic): Used when any one of the switches are required to activate the load. (see figure B)

Series Connection of 2 Wire AC and DC switches (or Logic): see previous note for Series connection of 3 and 4 wire switches. (see figure C)

Parallel Connection of 2 Wire and AC and DC switches (or Logic): It is necessary to take into account the cumulative no-load currents of each of the switches which would flow through the load in the unactuated condition of the switch. This could, under certain circumstances, trigger the load without actually operating the switch. (see figure D)

Figure A

Figure C

Figure B

Figure D

DC - 3 WIRE-STANDARD
M8 Stainless Steel (SS), M12 Brass, Nickel Plated (BN), Cylindrical, Threaded, $10-30 \mathrm{~V}$ DC, 250 mA ,

LED for Output Energized

(ϵ

- IEC (529) IP67 (NEMA 1, 3, 4, 6, 12, 13) Protection
- Short Circuit Protection
- Overload Protection
- Reverse Polarity Protection
- Wire Break Resistance
- Transient Voltage Protection
- Temperature Range: -25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158^{\circ} \mathrm{F}\right)$

Fixed Cable

PVC 2m (6ft. 6in.). For other cable lengths and/or PUR cable, please consult Altech. M8 is supplied with stainless steel locknuts and M12 is supplied with brass, nickel plated locknuts.

65 Style Connector
4-pin, Micro style, 12 mm (. 47 in .). M8 is supplied with stainless steel locknuts and M12 is supplied with brass, nickel plated locknuts.

*Note short circuit protection is pending; contact Altech.

Metric/in. Conversion Table

$1.5 \mathrm{~mm}=.06 \mathrm{in}$.	$23.0 \mathrm{~mm}=.08 \mathrm{in}$.
$2.0 \mathrm{~mm}=.08 \mathrm{in}$.	$28.0 \mathrm{~mm}=1.10 \mathrm{in}$
$4.0 \mathrm{~mm}=.16 \mathrm{in}$	$30.0 \mathrm{~mm}=1.18 \mathrm{in}$.
$5.0 \mathrm{~mm}=.20 \mathrm{in}$.	$32.0 \mathrm{~mm}=1.26 \mathrm{in}$.
$6.0 \mathrm{~mm}=.23 \mathrm{in}$.	$34.0 \mathrm{~mm}=1.34 \mathrm{in}$.
$8.0 \mathrm{~mm}=.31 \mathrm{in}$.	$40.0 \mathrm{~mm}=1.57 \mathrm{in}$.
$10.0 \mathrm{~mm}=.39 \mathrm{in}$.	$50.0 \mathrm{~mm}=1.97 \mathrm{in}$.
$12.0 \mathrm{~mm}=.47 \mathrm{in}$.	$51.0 \mathrm{~mm}=2.01 \mathrm{in}$.
$15.0 \mathrm{~mm}=.59 \mathrm{in}$.	$60.0 \mathrm{~mm}=2.36 \mathrm{in}$.
$18.0 \mathrm{~mm}=.70 \mathrm{in}$.	$80.0 \mathrm{~mm}=3.12 \mathrm{in}.$.

This table converts millimeters to inches in reference to the illustrations included on these pages.

If you do not see a coverted dimension, multiply mm by 0.03937 to convert to inches.

M12 Non-Flush Mount 4mm (. 16 in.)

Cable	65
AIS12N04AP024-2M	AIS12N04AP024-Q65
AIS12N04UP024-2M	AIS12N04UP024-Q65
AIS12N04AN024-2M	AIS12N04AN024-Q65
AIS12N04UN024-2M	AIS12N04UN024-Q65
	$\leq 10 \%$
	$10-30 \mathrm{~V}$
	$\leq 15 \mathrm{~mA}$
	250 mA
	$\leq 2.5 \mathrm{~V}$
$1 \mu \mathrm{~A}$	
1000 Hz	
	$\leq 0.6 \mathrm{~mm}$
	$\pm 8 \mu \mathrm{~m} / \mathrm{K}$
0.3 mm	

Wiring Diagrams

Note: Wire colors are applicable on cables purchased from Altech

DC - 3 WIRE-STANDARD
Brass, Nickel Plated (BN), Cylindrical,
Threaded, 10-30V DC, 250mA,

LED for Output Energized

(ϵ

- IEC (529) IP67 (NEMA 1, 3, 4, 6, 12, 13) Protection
- Short Circuit Protection
- Overload Protection
- Reverse Polarity Protection
- Wire Break Resistance
- Transient Voltage Protection
- Temperature Range: -25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $158^{\circ} \mathrm{F}$)

	M18 Flush Mount		Non-Flush 18 Flush Mount	
Sensing Distance	5 mm (. 20 in .)		8 mm (. 31 in .)	
Cable or Connector Style Cat. No.	Cable	65	Cable	65
	AIS18F05AP024-2M AIS18F05UP024-2M	AIS18F05AP024-Q65 AIS18F05UP024-Q65	AIS18N08AP024-2M AIS18N08UP024-2M	AIS12N02AP024-Q65 AIS12N02UP024-Q65
NPN Normally Open Complementary NO/NC*	AIS18F05ANO24-2M AIS18F05UNO24-2M	AIS18F05AN024-Q65 AIS18F05UN024-Q65	AIS18N08ANO24-2M AIS18N08UN024-2M	AIS18N08AN024-Q65 AIS18N08UN024-Q65
Ripple Voltage	$\leq 10 \%$		$\leq 10 \%$	
Voltage Range	10-30V		10-30V	
No-Load Current	$\leq 15 \mathrm{~mA}$		$\leq 15 \mathrm{~mA}$	
Max. Load Current	250 mA		250 mA	
Voltage Drop Across Sensor	$\leq 2.5 \mathrm{~V}$		$\leq 2.5 \mathrm{~V}$	
Max. Leakage Currrent	$\leq 1 \mu \mathrm{~A}$		$1 \mu \mathrm{~A}$	
Switching Frequency	500 Hz		500 Hz	
Hysterisis	0.5 mm		$\leq 0.8 \mathrm{~mm}$	
Temperature Drift	$\leq \pm 10 \mu \mathrm{~m} / \mathrm{K}$		$\leq \pm 16 \mu \mathrm{~m} / \mathrm{K}$	
Repeatability	$\leq 0.2 \mathrm{~mm}$		$\leq 0.4 \mathrm{~mm}$	

Fixed Cable

PVC 2 m (6ft. 6in.). For other cable
lengths and/or PUR cable, please consult Altech. Supplied with brass, nickel plated locknuts.

65 Style Connector
4-pin, Micro style, 12 mm (. 47 in .).
Supplied with brass, nickel plated locknuts.

*Note short circuit protection is pending; contact Altech.
Note: Sensor dimensions in mm.

Alterh

DC - 3 WIRE-EXTENDED SENSING DISTANCE
Brass, Nickel Plated (BN), Cylindrical,
Threaded, 10-30V DC, 200mA,
LED for Output Energized
C

- IEC (529) IP67 (NEMA 1, 3, 4, 6, 12, 13) Protection
- Short Circuit Protection
- Overload Protection
- Reverse Polarity Protection
- Wire Break Resistance
- Transient Voltage Protection
- Temperature Range: -25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158^{\circ} \mathrm{F}\right)$

	M12 Flush Mount	
Sensing Distance	4 mm (.16 in.)	
Cable or Connector Style Cat. No.	Cable	65
PNP Normally Open \rightarrow -	AIS12F04AP024-2M	AIS12F04AP024-Q65
NPN Normally Open - -	AIS12F04AN024-2M	AIS12F04AN024-Q65
Ripple Voltage		
Voltage Range		
No Load Current		
Max. Load Current		
Voltage Drop Across Sensor		
Max. Leakage Currrent		
Switching Frequency		
Hysterisis		
Temperature Drift		
Repeatability		

Fixed Cable

PVC $2 m$ (6ft. 6in.). For other cable lengths and/or PUR cable, please consult Altech. Supplied with brass, nickel plated locknuts.

65 Style Connector

4-pin, Micro style, 12 mm (. 47 in .).
Supplied with brass, nickel plated locknuts.

Metric/in. Conversion Table

$1.5 \mathrm{~mm}=.06 \mathrm{in}$.	$23.0 \mathrm{~mm}=.08 \mathrm{in}$.
$2.0 \mathrm{~mm}=.08 \mathrm{in}$.	$28.0 \mathrm{~mm}=1.10 \mathrm{in}$
$4.0 \mathrm{~mm}=.16 \mathrm{in}$	$30.0 \mathrm{~mm}=1.18 \mathrm{in}$.
$5.0 \mathrm{~mm}=.20 \mathrm{in}$.	$32.0 \mathrm{~mm}=1.26 \mathrm{in}$.
$6.0 \mathrm{~mm}=.23 \mathrm{in}$.	$34.0 \mathrm{~mm}=1.34 \mathrm{in}$.
$8.0 \mathrm{~mm}=.31 \mathrm{in}$.	$40.0 \mathrm{~mm}=1.57 \mathrm{in}$.
$10.0 \mathrm{~mm}=.39 \mathrm{in}$.	$50.0 \mathrm{~mm}=1.97 \mathrm{in}$.
$12.0 \mathrm{~mm}=.47 \mathrm{in}$.	$51.0 \mathrm{~mm}=2.01 \mathrm{in}$.
$15.0 \mathrm{~mm}=.59 \mathrm{in}$.	$60.0 \mathrm{~mm}=2.36 \mathrm{in}$.
$18.0 \mathrm{~mm}=.70 \mathrm{in}$.	$80.0 \mathrm{~mm}=3.12 \mathrm{in}$.

This table converts millimeters to inches in reference to the illustrations included on these pages.

If you do not see a

coverted dimension, multiply mm by 0.03937 to convert to inches.

Wiring Diagrams

Note: Wire colors are applicable on cables purchased from Altech

DC - 3 WIRE-SHORT BODY
Brass, Nickel Plated (BN), Cylindrical,
Threaded, $\mathbf{1 0 - 3 0 V}$ DC, 250 mA , LED for Output Energized
C

- IEC (529) IP67 (NEMA 1, 3, 4, 6, 12, 13) Protection
- Short Circuit Protection
- Overload Protection
- Reverse Polarity Protection
- Wire Break Resistance
- Transient Voltage Protection
- Temperature Range: -25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $158^{\circ} \mathrm{F}$)

	M12 Flush Mount		M12 Non-Flush Mount	
Sensing Distance	2mm (0.08 in.)		4 mm (.16 in.)	
Cable or Connector Style Cat. No.	Cable	65	Cable	65
PNP Normally Open \rightarrow -	AIK12F02AP024-2M	AIK12F02AP024-Q65	AIK12N04AP024-2M	AIK12N04AP024-Q65
Normally Open \rightarrow -	AIK12F02AN024-2M	AIK12F02AN024-Q65	AIK12N04AN024-2M	AIK12N04AN024-Q65
Ripple Voltage	$\leq 10 \%$		$\leq 10 \%$	
Voltage Range	$10-30 \mathrm{~V}$		10-30V	
No-Load Current	$\leq 15 \mathrm{~mA}$		$\leq 15 \mathrm{~mA}$	
Max. Load Current	250 mA		250 mA	
Voltage Drop Across Sensor	$\leq 2.5 \mathrm{~V}$		$\leq 2.5 \mathrm{~V}$	
Max. Leakage Currrent	$\leq 1 \mu \mathrm{~A}$		$1 \mu \mathrm{~A}$	
Switching Frequency	1000 Hz		1000 Hz	
Hysterisis	$\leq 0.2 \mathrm{~mm}$		$\leq 0.6 \mathrm{~mm}$	
Temperature Drift	$\leq \pm 4 \mu \mathrm{~m} / \mathrm{K}$		$\pm 8 \mu \mathrm{~m} / \mathrm{K}$	
Repeatability	$\leq 0.1 \mathrm{~mm}$		$\leq 0.3 \mathrm{~mm}$	

Fixed Cable

PVC $2 m$ (6ft. 6in.). For other cable lengths and/or PUR cable, please consult Altech. Supplied with brass, nickel plated locknuts.

65 Style Connector
4-pin, Micro style, 12 mm (. 47 in .). Supplied with brass, nickel plated locknuts.

Metric/in. Conversion Table

$1.5 \mathrm{~mm}=.06 \mathrm{in}$.	23.0 mm $=.08 \mathrm{in}$.
$2.0 \mathrm{~mm}=.08 \mathrm{in}$.	28.0 mm $=1.10 \mathrm{in}$
$4.0 \mathrm{~mm}=.16 \mathrm{in}$	30.0 mm $=1.18 \mathrm{in}$.
$5.0 \mathrm{~mm}=.20 \mathrm{in}$.	32.0 mm $=1.26 \mathrm{in}$.
$6.0 \mathrm{~mm}=.23 \mathrm{in}$.	$34.0 \mathrm{~mm}=1.34 \mathrm{in}$.
$8.0 \mathrm{~mm}=.31 \mathrm{in}$.	$40.0 \mathrm{~mm}=1.57 \mathrm{in}$.
10.0 mm $=.39 \mathrm{in}$.	$50.0 \mathrm{~mm}=1.97 \mathrm{in}$.
12.0 mm $=.47 \mathrm{in}$.	$51.0 \mathrm{~mm}=2.01 \mathrm{in}$.
15.0 mm $=.59 \mathrm{in}$.	$60.0 \mathrm{~mm}=2.36 \mathrm{in}$.
18.0 mm $=.70 \mathrm{in}$.	$80.0 \mathrm{~mm}=3.12 \mathrm{in}$.

This table converts
millimeters to inches in reference to the illustrations included on these pages.

If you do not seea coverted dimension, coverted dimension,
multiply mm by 0.03937 to convert to inches.

Note: Sensor dimensions in mm.

DC - 3 WIRE-SHORT BODY
Brass, Nickel Plated (BN), Cylindrical, Threaded, 1030V DC, 250mA, LED for Output Energized
(ϵ

- IEC (529) IP67 (NEMA 1, 3, 4, 6, 12, 13) Protection
- Short Circuit Protection
- Overload Protection
- Reverse Polarity Protection
- Wire Break Resistance
- Transient Voltage Protection
- Temperature Range: -25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $158^{\circ} \mathrm{F}$)

	M30 Flush Mount		M30 Non-Flush Mount	
Sensing Distance	10 mm (. 39 in.$)$		15 mm (. 59 in.$)$	
Cable or Connector Style Cat. No.	Cable	65	Cable	65
PNP Normally Open \rightarrow -	AIK30F10AP024-2M	AIK30F10AP024-Q65	AIK30N15AP024-2M	AlK30N15AP024-Q65
NPN Normally Open	AIK30F10AN024-2M	AIK30F10AN024-Q65	AIK30N15ANO24-2M	AIK30N15AN024-Q65
Ripple Voltage	<10\%		<10\%	
Voltage Range	10-30V		10-30V	
Supply Current	$\leq 15 \mathrm{~mA}$		$\leq 15 \mathrm{~mA}$	
Max. Load Current	250 mA		250 mA	
Voltage Drop Across Sensor	$\leq 2.5 \mathrm{~V}$		$\leq 2.5 \mathrm{~V}$	
Max. Leakage Currrent	$\leq 1 \mu \mathrm{~A}$		$\leq 1 \mu \mathrm{~A}$	
Switching Frequency	300 Hz		300 Hz	
Hysterisis	$\leq 1.0 \mathrm{~mm}$		$\leq 1.5 \mathrm{~mm}$	
Temperature Drift	$\leq \pm 20 \mu \mathrm{~m} / \mathrm{K}$		$\leq \pm 30 \mu \mathrm{~m} / \mathrm{K}$	
Repeatability	$\leq 0.5 \mathrm{~mm}$		$\leq 1.0 \mathrm{~mm}$	

Fixed Cable

PVC $2 m$ (6ft. 6in.). For other cable lengths and/or PUR cable, please consult Altech. Supplied with brass, nickel plated locknuts.

65 Style Connector
4-pin, Micro style, 12 mm (. 47 in .). Supplied with brass, nickel plated locknuts.

Note: Sensor dimensions in mm.

Metric/in. Conversion Table

$1.5 \mathrm{~mm}=.06 \mathrm{in}$.	23.0 mm $=.08 \mathrm{in}$.	This table converts
$2.0 \mathrm{~mm}=.08 \mathrm{in}$.	28.0 mm $=1.10 \mathrm{in}$	
$4.0 \mathrm{~mm}=.16 \mathrm{in}$	30.0 mm $=1.18 \mathrm{in}$.	strations in
$5.0 \mathrm{~mm}=.20 \mathrm{in}$.	32.0 mm $=1.26 \mathrm{in}$.	these pages.
$6.0 \mathrm{~mm}=.23 \mathrm{in}$.	34.0 mm $=1.34 \mathrm{n}$.	
$8.0 \mathrm{~mm}=.31 \mathrm{in}$.	40.0 mm $=1.57 \mathrm{in}$.	If you do not see a
$10.0 \mathrm{~mm}=.39 \mathrm{in}$.	$50.0 \mathrm{~mm}=1.97 \mathrm{in}$.	coverted dimensio
12.0 mm $=.47 \mathrm{in}$.	$51.0 \mathrm{~mm}=2.01 \mathrm{in}$.	
15.0 mm $=.59 \mathrm{in}$.	$60.0 \mathrm{~mm}=2.36 \mathrm{in}$.	inches.
18.0 mm $=.70 \mathrm{in}$.	$80.0 \mathrm{~mm}=3.12 \mathrm{in}$.	

Wiring Diagrams
Note: Wire colors are applicable on cables purchased from Altech

DC - 2 WIRE-STANDARD

Brass, Nickel Plated (BN), Cylindrical, Threaded, 10-30V DC, 200mA,
LED for Output Energized
(ϵ

M12 Flush Mount		M12 Non-Flush Mount
Sensing Distance	2mm (. 08 in.)	4 mm (. 16 in.)
Cable or Connector Style Cat. No.	Cable	Cable
Normally Open $\quad \bullet$ -	AIS12F02AD024-2M	AIS12N04AD024-2M
Normally Closed \rightarrow -	AIS12F02RD024-2M	AIS12N04RD024-2M
Ripple Voltage		<10\%
Voltage Range	10-30V	10-30V
Holding Current	$\leq 4 \mathrm{~mA}$	$\leq 4 \mathrm{~mA}$
Max. Load Current	200 mA	200 mA
Voltage Drop Across Sensor	$\leq 4.5 \mathrm{~V}$	$\leq 4.5 \mathrm{~V}$
Max. Leakage Currrent	$\leq 1 \mathrm{~mA}$	$\leq 1 \mathrm{~mA}$
Switching Frequency	400 Hz	400 Hz
Hysterisis	$\leq 0.2 \mathrm{~mm}$	$\leq 0.6 \mathrm{~mm}$
Temperature Drift	$\leq \pm 4 \mu \mathrm{~m} / \mathrm{K}$	$\leq \pm 8 \mu \mathrm{~m} / \mathrm{K}$
Repeatability	$\leq 0.1 \mathrm{~mm}$	$\leq 0.3 \mathrm{~mm}$

Fixed Cable

PVC $2 m$ (6ft. 6in.) encapsulated oil resistant cable. For other cable lengths and/or PUR cable, please consult Altech. Supplied with brass, nickel plated locknuts.

- IEC (529) IP67 (NEMA 1, 3, 4, 6, 12, 13) Protection
- Short Circuit Protection
- Overload Protection
- Reverse Polarity Protection
- Wire Break Resistance
- Transient Voltage Protection
- Temperature Range: -25 to $70^{\circ} \mathrm{C}$ (-13 to $158^{\circ} \mathrm{F}$)

Metric/in. Conversion Table

Wiring Diagrams

Note: Wire colors are applicable on cables purchased from Altech

DC - 2 WIRE-STANDARD
Brass, Nickel Plated (BN), Cylindrical,
Threaded, 10-30V DC, 200mA,
LED for Output Energized
(ϵ

- IEC (529) IP67 (NEMA 1, 3, 4, 6, 12, 13) Protection
- Short Circuit Protection
- Overload Protection
- Reverse Polarity Protection
- Wire Break Resistance
- Transient Voltage Protection
- Temperature Range: -25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $158^{\circ} \mathrm{F}$)

M18 Flush Mount		M18 Non-Flush Mount
Sensing Distance	5 mm (. 20 in.)	8 mm (. 31 in .)
Cable or Connector Style Cat. No.	Cable	Cable
Normally Open \rightarrow -	AIS18F05AD024-2M	AIS18N08AD024-2M
Normally Closed $\bullet \bullet$ -	AIS18F05RD024-2M	AIS18N08RD024-2M
Ripple Voltage	<10\%	<10\%
Voltage Range	10-30V	10-30V
Holding Current	$\leq 4 \mathrm{~mA}$	$\leq 4 \mathrm{~mA}$
Max. Load Current	200 mA	200 mA
Voltage Drop Across Sensor	$\leq 4.5 \mathrm{~V}$	$\leq 4.5 \mathrm{~V}$
Max. Leakage Currrent	$\leq 1 \mathrm{~mA}$	$\leq 1 \mathrm{~mA}$
Switching Frequency	200 Hz	200 Hz
Hysterisis	$\leq 0.5 \mathrm{~mm}$	$\leq 0.8 \mathrm{~mm}$
Temperature Drift	$\leq \pm 10 \mu \mathrm{~m} / \mathrm{K}$	$\leq \pm 16 \mu \mathrm{~m} / \mathrm{K}$
Repeatability	$\leq 0.2 \mathrm{~mm}$	$\leq 0.4 \mathrm{~mm}$

Fixed Cable

PVC 2m (6ft. 6in.) encapsulated oil resistant cable. For other cable lengths and/or PUR cable, please consult Altech. Supplied with brass, nickel plated locknuts.

Metric/in. Conversion Table

$1.5 \mathrm{~mm}=.06 \mathrm{in}$.	23.0 mm $=.08 \mathrm{in}$.	This table converts
$2.0 \mathrm{~mm}=.08 \mathrm{in}$.	28.0 mm $=1.10 \mathrm{in}$	in reference to the
$4.0 \mathrm{~mm}=.16 \mathrm{in}$	30.0 mm $=1.18 \mathrm{in}$.	illustrations included
$5.0 \mathrm{~mm}=.20 \mathrm{in}$.	32.0 mm $=1.26 \mathrm{in}$.	on these pages.
$6.0 \mathrm{~mm}=.23 \mathrm{in}$.	34.0 mm $=1.34 \mathrm{in}$.	
$8.0 \mathrm{~mm}=.31 \mathrm{in}$.	$40.0 \mathrm{~mm}=1.57 \mathrm{in}$.	If you do not seea
10.0 mm $=.39 \mathrm{in}$.	50.0 mm $=1.97 \mathrm{in}$.	coverted dimension, multiply mm by
12.0 mm $=.47 \mathrm{in}$.	$51.0 \mathrm{~mm}=2.01 \mathrm{in}$.	0.03937 to convert to
$15.0 \mathrm{~mm}=.59 \mathrm{in}$.	$60.0 \mathrm{~mm}=2.36 \mathrm{in}$.	inches.
$18.0 \mathrm{~mm}=.70 \mathrm{in}$.	80.0 mm $=3.12 \mathrm{in}$.	

Wiring Diagrams
Note: Wire colors are applicable on cables purchased from Altech

AC-2 WIRE-STANDARD
Brass, Nickel Plated (BN), Cylindrical,
Threaded, 90-250V AC, 250mA,
LED for Output Energized

- IEC (529) IP67 (NEMA 1, 3, 4, 6, 12, 13) Protection
- Overload Protection
- Wire Break Resistance
- Transient Voltage Protection
- Temperature Range: -25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158^{\circ} \mathrm{F}\right)$

	M12 Flush Mount	M12 Non-Flush Mount
Sensing Distance	2mm (.08 in.)	4mm (.16 in.)
Cable or Connector Style Cat. No.	Cable	Cable
Normally Open	Als12F02AW220-2M	AlS12N04AW220-2M
Normally Closed	-	-
Ripple Voltage	-	-
Voltage Range	$90-250 \mathrm{~V}$	$90-250 \mathrm{~V}$
Supply Current	$\geq 10 \mathrm{~mA}$	$\geq 10 \mathrm{~mA}$
Max. Load Current	250 mA	250 mA
Voltage Drop Across Sensor	$\leq 9 \mathrm{~V}$	$\leq 9 \mathrm{~V}$
Max. Leakage Currrent	$\leq 3 \mathrm{~mA}$	$\leq 3 \mathrm{~mA}$
Switching Frequency	10 Hz	10 Hz
Hysterisis	$\leq 0.4 \mathrm{~mm}$	$\leq 0.6 \mathrm{~mm}$
Temperature Drift	$\leq \pm 4 \mu \mathrm{~m} / \mathrm{K}$	$\leq \pm 84 \mathrm{~m} / \mathrm{K}$
Repeatability	$\leq 0.1 \mathrm{~mm}$	$\leq 0.4 \mathrm{~mm}$

Fixed Cable

PVC 2m (6ft. 6in.) encapsulated oil resistant cable. For other cable lengths and/or PUR cable, please consult Altech. Supplied with brass, nickel plated locknuts.

Metric/in. Conversion Table

$1.5 \mathrm{~mm}=.06 \mathrm{in}$.	23.0 mm $=.08 \mathrm{in}$.
$2.0 \mathrm{~mm}=.08 \mathrm{in}$.	28.0 mm $=1.10 \mathrm{in}$
$4.0 \mathrm{~mm}=.16 \mathrm{in}$	30.0 mm $=1.18 \mathrm{in}$.
$5.0 \mathrm{~mm}=.20 \mathrm{in}$.	32.0 mm $=1.26 \mathrm{in}$.
$6.0 \mathrm{~mm}=.23 \mathrm{in}$.	34.0 mm $=1.34 \mathrm{in}$.
$8.0 \mathrm{~mm}=.31 \mathrm{in}$.	$40.0 \mathrm{~mm}=1.57 \mathrm{in}$.
10.0 mm $=.39 \mathrm{in}$.	$50.0 \mathrm{~mm}=1.97 \mathrm{in}$.
12.0 mm $=.47 \mathrm{in}$.	$51.0 \mathrm{~mm}=2.01 \mathrm{n}$.
15.0 mm $=.59 \mathrm{in}$.	$60.0 \mathrm{~mm}=2.36 \mathrm{in}$.
18.0 mm $=.70 \mathrm{in}$.	80.0 mm $=3.12 \mathrm{in}$.

This table converts millimeters to inches in reference to the illustrations included on these pages.

If you do not see a coverted dimension, multiply mm by 0.03937 to convert to inches.

M18 Flush Mount	M18 Non-Flush Mount
5mm (.20 in.)	8mm (.31 in.)
Cable	Cable
AIS18F05AW220-2M	AIS18N08AW220-2M
AIS18F05RW220-2M	AIS18N08RW220-2M
-	-
$90-250 \mathrm{~V}$	$90-250 \mathrm{~V}$
10 mA	$\geq 10 \mathrm{~mA}$
250 mA	250 mA
9 V	$\leq 9 \mathrm{~V}$
3 mA	$\leq 3 \mathrm{~mA}$
10 Hz	10 Hz
0.5 mm	$\leq 0.8 \mathrm{~mm}$
$\leq \pm 10 \mu \mathrm{~m} / \mathrm{K}$	$\leq \pm 16 \mu \mathrm{~m} / \mathrm{K}$
$\leq 0.2 \mathrm{~mm}$	$\leq 0.4 \mathrm{~mm}$

Wiring Diagrams

Note: Wire colors are applicable on cables purchased from Altech

AC - 2 WIRE-STANDARD
Brass, Nickel Plated (BN), Cylindrical, Threaded, 90-250V AC, 250mA, LED for Output Energized

- IEC (529) IP67 (NEMA 1, 3, 4, 6, 12, 13) Protection
- Overload Protection
- Wire Break Resistance
- Transient Voltage Protection
- Temperature Range: -25 to $70^{\circ} \mathrm{C}$ (-13 to $158^{\circ} \mathrm{F}$)

	M30 Flush Mount	M30 Non-Flush Mount
Sensing Distance	10 mm (. 39 in.$)$	15 mm (. 59 in.$)$
Cable or Connector Style Cat. No.	Cable	Cable
Normally Open	AIS30F10AW220-2M	AIS30N15AW220-2M
Normally Closed \rightarrow -	AIS30F10RW220-2M	AIS30N15RW220-2M
Ripple Voltage	-	-
Voltage Range	90-250V	90-250V
Supply Current	$\geq 10 \mathrm{~mA}$	$\geq 10 \mathrm{~mA}$
Max. Load Current	250 mA	250 mA
Voltage Drop Across Sensor	$\leq 9 \mathrm{~V}$	$\leq 9 \mathrm{~V}$
Max. Leakage Currrent	$\leq 3 \mathrm{~mA}$	$\leq 3 \mathrm{~mA}$
Switching Frequency	10 Hz	10 Hz
Hysterisis	$\leq 1.0 \mathrm{~mm}$	$\leq 1.5 \mathrm{~mm}$
Temperature Drift	$\leq \pm 20 \mu \mathrm{~m} / \mathrm{K}$	$\leq \pm 30 \mu \mathrm{~m} / \mathrm{K}$
Repeatability	$\leq 0.3 \mathrm{~mm}$	$\leq 0.5 \mathrm{~mm}$

Fixed Cable

PVC 2m (6ft. 6in.) encapsulated oil resistant cable. For other cable lengths and/or PUR cable, please consult Altech. Supplied with brass, nickel plated locknuts.

Metric/in. Conversion Table

$1.5 \mathrm{~mm}=.06 \mathrm{in}$.	23.0 mm $=.08 \mathrm{in}$.	
$2.0 \mathrm{~mm}=.08 \mathrm{in}$.	28.0 mm $=1.10 \mathrm{in}$	
$4.0 \mathrm{~mm}=.16 \mathrm{in}$	30.0 mm $=1.18 \mathrm{in}$.	illustrations include
$5.0 \mathrm{~mm}=.20 \mathrm{in}$.	32.0 mm $=1.26 \mathrm{in}$.	on these pages.
$6.0 \mathrm{~mm}=.23 \mathrm{in}$.	34.0 mm $=1.34 \mathrm{in}$.	
$8.0 \mathrm{~mm}=.31 \mathrm{in}$.	$40.0 \mathrm{~mm}=1.57 \mathrm{in}$.	If you do not seea
10.0 mm $=.39 \mathrm{in}$.	50.0 mm $=1.97 \mathrm{in}$.	coverted dimension,
$12.0 \mathrm{~mm}=.47 \mathrm{in}$.	$51.0 \mathrm{~mm}=2.01 \mathrm{in}$.	multiply mm by 0.03037 to conve
$15.0 \mathrm{~mm}=.59 \mathrm{in}$.	$60.0 \mathrm{~mm}=2.36 \mathrm{in}$.	inches.
18.0 mm $=.70 \mathrm{in}$.	80.0 mm $=3.12 \mathrm{in}$.	

Wiring Diagrams

Note: Wire colors are applicable on cables purchased from Altech

Index

Part No.	Page	Part No.	Page	Part No.	Page
AIK12F02AN024-2M	14	AIS12F04AN024-Q65	12	AIS18N08UP024-2M	10
AIK12F02AN024-Q65	14	AIS12F04AP024-2M	12	AIS18N08UP024-Q65	10
AIK12F02AP024-2M	14	AIS12F04AP024-Q65	12	AIS30F10AN024-2M	11
AIK12F02AP024-Q65	14	AIS12N04AD024-2M	18	AIS30F10AN024-Q65	11
AIK12N04AN024-2M	14	AIS12N04AN024-2M	9	AIS30F10AP024-2M	11
AIK12N04AN024-Q65	14	AIS12N04AN024-Q65	9	AIS30F10AP024-Q65	11
AIK12N04AP024-2M	14	AIS12N04AP024-2M	9	AIS30F10AW220-2M	24
AIK12N04AP024-Q65	14	AIS12N04AP024-Q65	9	AIS30F10RW220-2M	24
AIK18F05AN024-2M	15	AIS12N04AW220-2M	22	AIS30F10UN024-2M	11
AIK18F05AN024-Q65	15	AIS12N04RD024-2M	18	AIS30F10UN024-Q65	11
AIK18F05AP024-2M	15	AIS12N04UN024-2M	9	AIS30F10UP024-2M	11
AIK18F05AP024-Q65	15	AIS12N04UN024-Q65	9	AIS30F10UP024-Q65	11
AIK18N08AN024-2M	15	AIS12N04UP024-2M	9	AIS30N15AN024-2M	11
AIK18N08AN024-Q65	15	AIS12N04UP024-Q65	9	AIS30N15AN024-Q65	11
AIK18N08AP024-2M	15	AIS18F05AD024-2M	20	AIS30N15AP024-2M	11
AIK18N08AP024-Q65	15	AIS18F05AN024-2M	10	AIS30N15AP024-Q65	11
AIK30F10AN024-2M	16	AIS18F05AN024-Q65	10	AIS30N15AW220-2M	24
AIK30F10AN024-Q65	16	AIS18F05AP024-2M	10	AIS30N15RW220-2M	24
AIK30F10AP024-2M	16	AIS18F05AP024-Q65	10	AIS30N15UN024-2M	11
AIK30F10AP024-Q65	16	AIS18F05AW220-2M	23	AIS30N15UN024-Q65	11
AIK30N15AN024-2M	16	AIS18F05RD024-2M	20	AIS30N15UP024-2M	11
AIK30N15AN024-Q65	16	AIS18F05RW220-2M	23	AIS30N15UP024-Q65	11
AIK30N15AP024-2M	16	AIS18F05UN024-2M	10	K1F90VA	29
AIK30N15AP024-Q65	16	AIS18F05UN024-Q65	10	K1FDVA	29
AIS08F1.5AN024-2M	8	AIS18F05UP024-2M	10	K2F90V5	28
AIS08F1.5AN024-Q65	8	AIS18F05UP024-Q65	10	K2F90V5R	28
AIS08F1.5AP024-2M	8	AIS18F08AN024-2M	13	K2FDV5	28
AIS08F1.5AP024-Q65	8	AIS18F08AN024-Q65	13	K2FDV5R	28
AIS12F02AD024-2M	18	AIS18F08AP024-2M	13	KB4	31
AIS12F02AN024-2M	8	AIS18F08AP024-Q65	13	KB4DPC5	31
AIS12F02AN024-Q65	8	AIS18N08AD024-2M	20	KB8DP	31
AIS12F02AP024-2M	8	AIS18N08AN024-2M	10	KB8PC5	31
AIS12F02AP024-Q65	8	AIS18N08AN024-Q65	10	KF90	29
AIS12F02AW220-2M	22	AIS18N08AP024-2M	10	KF90C53N	27
AIS12F02RD024-2M	18	AIS18N08AP024-Q65	10	KF90C53NR	27
AIS12F02UN024-2M	8	AIS18N08AW220-2M	23	KF90C53P	27
AIS12F02UN024-Q65	8	AIS18N08RD024-2M	20	KF90C53PR	27
AIS12F02UP024-2M	8	AIS18N08RW220-2M	23	KF90C54	27
AIS12F02UP024-Q65	8	AIS18N08UN024-2M	10	KF90C54R	27
AIS12F04AN024-2M	12	AIS18N08UN024-Q65	10	KFD	29

Part No.	Page
KFDC53N	27
KFDC53NR	27
KFDC53P	27
KFDC53PR	27
KFDC54	27
KFDC54R	27
KFM90D300R	30
KFMDD300R	30
KFMY	30
KM90	29
KMD	29

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Altech:
KJ4-M12MN60-ANU-V2 KJ15-M30MN40-ANI KJ10-M18MN60-AZO KJ14-M30MN80-ANU-F1 KJ4-M12MN40-DPSX0409 KJ8-M18MN61-ANU-V2 KJ15-M30MN73-AZS-X0407 KJ5-M18MB60-DPS-V2-T KJ4-M12MN60-ANI-V2 KJ10-M18MN60-AZS KJ14-M30MN80-ANU-F2 KJ8-M18MN50-ANU KJ40-Q80KB-DPA KJ6-Q22KB-DPS KJ20-M18MN65DPS KJ5-M18MB85-DPS-V2-T KJ6-M12MN60-DPS-V2 KJ14-M30MN80-ANU-4BIT KJ4-M12MN60-DPS-V2-T KJ3-M12MB60-ANI-V2 KJ2-M12MB50-DPS-SF KJ5-M18MB61-ANI-V2 KJ3-M12MB50-ANI KJ8-M18EN75-DPA-V2 KJ2-G6.5MB40-ANU KJ15-M30MN40-ANU KJ4-M12MN50-DPS-SF KJ4-M12MN50-ANU KJ2-M12MB70-DPS-V2-SF KJ10-M18MN60-ANU-DPSS KJ9-M30MB50-ANU-V2 KJ15-M30MN50-ANI-V2 KJ2-M12MB60-DPS-V2-T KJ9-M30MB40-ANI KJ2-M8MN30-NA KJ5-M18MB60-AZS KJ9-M30MB40-ANU KJ4-M18MB80-ANU-X0409 KJ5-M18MB40-DPS-T KJ9-M30MB50-ANI-V2 KJ50-Q80KN-DPA KJ4-M12MN50-ANI KJ5-M18MB60-AZO KJ4-M12MN70-DPS-V2-SF KJ4-M18MB80-ANU-X0419 KJ8-PG11MN60-DPS-X1020 EGT18X08AW220-2000L KJ20-Q40KN-ANU KJ8-M18MN61-ANI-V2 KJ5-M18MB60-DPS-SF KJ2-M8MB40-ANU KJ2-M12MB40-DPS-T KJ4-M12MN40-DPS-T KJ8-M18MN50-ANI KJ15-M30MN50-ANU-V2 KJ5-M18MB61-ANU-V2 KJ2-M8MB60-ANU-V1 KJ5-M18MB50-ANI $08400830063 \underline{08400832600 ~} 08400830200 \underline{08409861363} \underline{08409843763} \underline{08400830000}$ $08409862563 \underline{08400834664} \underline{08400830600} \underline{08400830500} \underline{08409861300} 0840083666408409861290 \underline{08400836700}$ $08409861200 \underline{08400832000} \underline{08400832200} 08400830563 \underline{08400836764} \underline{08400830100} \underline{08400830163}$ $\underline{08409843330} \underline{08400832263} \underline{08409861063} \underline{08400832563} \underline{08409843163} \underline{08409843700} \underline{08400830263} \underline{08400830463}$ $\underline{08400832500} \underline{08400832963} \underline{08409862663} \underline{08400830300} \underline{08409843600} \underline{08400832663} \underline{08400832300}$ $08409843000 \underline{08409843630} 08409843230084098612630840083036308409843063$

