RENESAS

3.3V Synchronous SRAMs

2.5V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect

Features

- $128 \mathrm{~K} \times 36$ memory configuration
- Supports high system speed: Commercial and Industrial:
- 200MHz 3.1ns clock access time
- 183MHz 3.3ns clock access time
- 166MHz 3.5ns clock access time
- $\overline{\mathrm{LBO}}$ input selects interleaved or linear burst mode
- Self-timed write cycle with global write control ($\overline{\mathrm{GW}}$), byte write enable ($\overline{\mathrm{BWE}}$), and byte writes ($\overline{\mathrm{BW}} \mathrm{x}$)
- 3.3 V core power supply
- Power down controlled by ZZ input
- 2.5 V I/O
- Packaged in a JEDEC Standard 100-pin plastic thin quad flatpack (TQFP)
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available for selected speeds
- Green parts available, see Ordering Information

Functional Block Diagram

Description

The IDT71V25761 arehigh-speed SRAMs organized as $128 \mathrm{~K} \times 36$. The IDT71V25761 SRAMs contain write, data, address and control registers. Internal logic allows the SRAM to generate a self-timed write based upon a decision which can be left until the end of the write cycle.

The burst mode feature offers the highestlevel of performance to the system designer, as the IDT71V25761 can provide four cycles of data for a single address presented to the SRAM. An internal burst address counter accepts the first cycle address from the processor, initiating the access sequence. The first cycle of output data will be pipelined for one
cycle before it is available on the next rising clock edge. If burst mode operation is selected ($\overline{\mathrm{ADV}}=\mathrm{LOW}$), the subsequentthree cycles of output data will be available to the user on the nextthree rising clockedges. The order of these three addresses are defined by the internal burst counter and the $\overline{\mathrm{LBO}}$ input pin.

The IDT71V25761 SRAMs utilizes a high-performance CMOS process and are packaged ina JEDEC standard $14 \mathrm{~mm} \times 20 \mathrm{~mm} 100$-pinthin plastic quad flatpack (TQFP).

Pin Description Summary

A0-A17	Address Inputs	Input	Synchronous
$\overline{C E}$	Chip Enable	Input	Synchronous
CSO, $\overline{C S}_{1}$	Chip Selects	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
$\overline{\text { GW }}$	Global Write Enable	Input	Synchronous
$\overline{\text { BWE }}$	Byte Write Enable	Input	Synchronous
$\overline{\mathrm{BW}}_{1}, \overline{\mathrm{BW}}_{2}, \overline{\mathrm{BW}}_{3}, \overline{\mathrm{BW}}_{4}^{(1)}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
$\overline{\text { ADV }}$	Burst Address Advance	Input	Synchronous
$\overline{\text { ADSC }}$	Address Status (Cache Controller)	Input	Synchronous
$\overline{\text { ADSP }}$	Address Status (Processor)	Input	Synchronous
$\overline{\text { LBO }}$	Linear / Interleaved Burst Order	Input	DC
ZZ	Sleep Mode	Input	Asynchronous
//Oo-\|/031, //Op1-1/Op4	Data Input / Output	$1 / 0$	Synchronous
Vdo, VDDQ	Core Power, I/O Power	Supply	N/A
Vss	Ground	Supply	N/A

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	$1 / 0$	Active	Description
A0-A17	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK and
$\overline{\text { ADSC }}$	Address Status (Cache Controller)	1	LOW	Synchronous Address Status from Cache Controller. $\overline{\operatorname{ADSC}}$ is an active LOW input that is used to load the address registers with new addresses.
$\overline{\text { ADSP }}$	Address Status (Processor)	1	LOW	Synchronous Address Status from Processor. $\overline{\text { ADSP }}$ is an active LOW input that is used to load the address registers with new addresses. $\overline{A D S P}$ is gated by $\overline{\mathrm{E}}$.
$\overline{\text { ADV }}$	Burst Address Advance	1	LOW	Synchronous Address Advance. $\overline{\text { ADV }}$ is an active LOW input that is used to advance the internal burst counter, controlling burst access atter the initial address is loaded. When the input is HIGH the burst counter is not incremented; that is, there is no address advance.
$\overline{\text { BWE }}$	Byte Write Enable	1	LOW	Synchronous byte write enable gates the byte write inputs $\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}$. If $\overline{\mathrm{BWE}}$ is LOW at the rising edge of CLK then $\overline{B W} x$ inputs are passed to the next stage in the circuit. if $\overline{B W E}$ is HIGH then the byte write inputs are blocked and only $\overline{G W}$ can initiate a write cycle.
$\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}$	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. $\overline{\mathrm{BW}} 1$ controls $/ / 00-7, / / \mathrm{Op}_{1}, \overline{\mathrm{BW}}_{2}$ controls $/ / \mathrm{O}_{8-15}, / / \mathrm{Op}_{2}$, etc. Any active byte write causes all outputs to be disabled.
$\overline{\mathrm{CE}}$	Chip Enable	1	LOW	Synchronous chip enable. $\overline{\mathrm{CE}}$ is used with CS 0 and $\overline{\mathrm{CS}} 1$ to enable the IDT71V25761/781. $\overline{\mathrm{CE}}$ also gates $\overline{\mathrm{ADSP}}$.
CLK	Clock	1	N/A	This is the clock input. All timing references for the device are made with respect to this input.
CSo	Chip Select 0	1	HIGH	Synchronous active HIGH chip select. CS 0 is used with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CS}} 1$ to enable the chip.
$\overline{\mathrm{CS}} 1$	Chip Select 1	1	LOW	Synchronous active LOW chip select. $\overline{\mathrm{CS}} 1$ is used with $\overline{\mathrm{CE}}$ and CS 0 to enable the chip.
$\overline{\mathrm{GW}}$	Global Write Enable	1	LOW	Synchronous global write enable. This input will write all four 9-bit data bytes when LOW on the rising edge of CLK. $\overline{G W}$ supersedes individual byte write enables.
$\begin{aligned} & \text { /Oo-\|/O31 } \\ & \text { //Op1-//Op4 } \end{aligned}$	Data Input/Output	I/0	N/A	Synchronous data input/output (//O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Asynchronous burst order selection input. When $\overline{\mathrm{BO}}$ is HIGH, the interleaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is LOW the Linear burst sequence is selected. $\overline{\mathrm{LBO}}$ is a static input and must not change state while the device is operating.
$\overline{\mathrm{OE}}$	Output Enable	1	LOW	Asynchronous output enable. When $\overline{\mathrm{OE}}$ is LOW the data output drivers are enabled on the VO pins if the chip is also selected. When $\overline{\mathrm{OE}}$ is HIGH the I/O pins are in a high-impedance state.
ZZ	Sleep Mode	1	HIGH	Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT71V25761/781 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.This pin has an internal pull down.
Vdo	Power Supply	N/A	N/A	3.3V core power supply.
VDDQ	Power Supply	N/A	N/A	2.5V IIO Supply.
Vss	Ground	N/A	N/A	Ground.
NC	No Connect	N/A	N/A	NC pins are not electrically connected to the device.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Pin Configuration ${ }^{(3)}-128 \mathrm{~K} \times 36$, PKG100

NOTES:

1. Pin 14 can either be directly connected to VDD , or connected to an input voltage $\geq \mathrm{VIH}$, or left unconnected.
2. Pin 64 can be left unconnected and the device will always remain in active mode.
3. This text does not indicate orientation of actual part-marking.

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	 Industrial	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM $^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA $^{(7)}$	Commercial Operating Temperature	-0 to +70	${ }^{\circ} \mathrm{C}$
	Industrial Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
lout	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supplies have ramped up. Power supply sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. TA is the "instant on" case temperature.

100 pin TQFP Capacitance

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	5	pF
C//o	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature $^{(1)}$	Vss	VDD	VDDQ
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$2.5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$2.5 \mathrm{~V} \pm 5 \%$

NOTES:
5297 tol 04

1. TA is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Core Supply Voltage	3.135	3.3	3.465	V
VDDQ	I/O Supply Voltage	2.375	2.5	2.625	V
VSS	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\mathrm{H}}$	Input High Voltage - Inputs	1.7	-	VDD +0.3	V
$\mathrm{~V}_{\mathrm{H}}$	Input High Voltage - I/O	1.7	-	VDDQ $+0.3^{(1)}$	V
VIL^{2}	Input Low Voltage	$-0.3^{(2)}$	-	0.7	V

NOTES:
5297 tbl 05

1. $\mathrm{V}_{\mathrm{IH}}(\max)=\mathrm{VDDQ}+1.0 \mathrm{~V}$ for pulse width less than tcyc/2, once per cycle.
2. $\mathrm{VIL}(\mathrm{min})=-1.0 \mathrm{~V}$ for pulse width less than $\mathrm{tcyc} / 2$, once per cycle.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range (VDD = 3.3V $\pm 5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max	Unit		
\| $ا$ ㄴ	Input Leakage Current	$V_{D D}=$ Max., $V_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {d }}$	-	5	$\mu \mathrm{A}$		
\|	Lzz		ZZ and $\overline{\mathrm{LBO}}$ Input Leakage Current ${ }^{(1)}$	$V_{\text {do }}=$ Max., $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {d }}$	-	30	$\mu \mathrm{A}$
\|	Lo		Output Leakage Current	Vout $=0 \mathrm{O}$ to VddQ, Device Deselected	-	5	$\mu \mathrm{A}$
VoL	Output Low Voltage	$\mathrm{loL}=+6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	-	0.4	V		
Vон	Output High Voltage	$1 \mathrm{OH}=-6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.0	-	V		

NOTE:

1. The $\overline{\mathrm{LBO}}$ pin will be internally pulled to VDD and the $Z Z$ pin will be internally pulled to Vss if they are not actively driven in the application.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ${ }^{(1)}$

Symbol	Parameter	Test Conditions	200MHz	183MHz		166MHz		Unit
			Com'l Only	Com'l	Ind	Com'l	Ind	
IDD	Operating Power Supply Current	Device Selected, Outputs Open, VDD = Max., $V_{D D Q}=M_{\text {ax. }} . V_{I N} \geq V_{H}$ or $\leq V_{I L}, f=f M A X^{(2)}$	360	340	350	320	330	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VDD = Max., VDDQ $=$ Max., $\operatorname{VIN} \geq$ VHD or $\leq \operatorname{VLD}, f=0^{(2,3)}$	30	30	35	30	35	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, Vdd = Max., VDDQ $=$ Max., $\operatorname{VIN} \geq V_{H D}$ or $\leq V L D, f=f_{\text {max }}{ }^{(2,3)}$	130	120	130	110	120	mA
Izz	Full Sleep Mode Supply Current	$\mathrm{ZZ} \geq \mathrm{VHD}, \mathrm{V}$ DD $=$ Max.	30	30	35	30	35	mA

NOTES:

1. All values are maximum guaranteed values.
2. At $f=f m a x$, inputs are cycling at the maximum frequency of read cycles of $1 / t c y c$ while $\overline{A D S C}=L O W ; f=0$ means no input lines are changing.
3. For I/Os Vhd $=$ VdDQ $-0.2 \mathrm{~V}, \mathrm{~V} L \mathrm{D}=0.2 \mathrm{~V}$. For other inputs $\mathrm{VHD}=\mathrm{V} d \mathrm{D}-0.2 \mathrm{~V}, \mathrm{~V} L \mathrm{~d}=0.2 \mathrm{~V}$.

AC Test Conditions

(VDDQ = 2.5V)

Input Pulse Levels	0 to 2.5 V
Input Rise/Fall Times	2 ns
Input Timing Reference Levels	(VDDQ/2)
Output Timing Reference Levels	(VDDQ/2)
AC Test Load	See Figure 1

5297 tbl 10

AC Test Load

Figure 1. AC Test Load

Figure 2. Lumped Capacitive Load, Typical Derating

Synchronous Truth Table ${ }^{(1,3)}$

Operation	Address Used	$\overline{C E}$	CSo	$\overline{\mathrm{CS}} 1$	$\overline{\text { ADSP }}$	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	$\overline{\mathrm{G}} \mathbf{W}$	$\overline{\text { BWE }}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{O E}$ (2)	CLK	I/O
Deselected Cycle, Power Down	None	H	X	X	X	L	X	X	X	X	X	-	HI-Z
Deselected Cycle, Power Down	None	L	X	H	L	X	X	X	X	X	X	-	HI-Z
Deselected Cycle, Power Down	None	L	L	X	L	X	X	X	X	X	X	-	HI-Z
Deselected Cycle, Power Down	None	L	X	H	X	L	X	X	X	X	X	-	HI-Z
Deselected Cycle, Power Down	None	L	L	X	X	L	X	X	X	X	X	-	HI-Z
Read Cycle, Begin Burst	External	L	H	L	L	X	X	X	X	X	L	-	Dout
Read Cycle, Begin Burst	External	L	H	L	L	X	X	X	X	X	H	-	HI-Z
Read Cycle, Begin Burst	External	L	H	L	H	L	X	H	H	X	L	-	Dout
Read Cycle, Begin Burst	External	L	H	L	H	L	X	H	L	H	L	-	Dout
Read Cycle, Begin Burst	External	L	H	L	H	L	X	H	L	H	H	-	HI-Z
Write Cycle, Begin Burst	External	L	H	L	H	L	X	H	L	L	X	-	Din
Write Cycle, Begin Burst	External	L	H	L	H	L	X	L	X	X	X	-	Din
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	H	X	L	-	Dout
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	H	X	H	-	HI-Z
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	X	H	L	-	Dout
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	X	H	H	-	HI-Z
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	H	X	L	-	Dout
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	H	X	H	-	HI-Z
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	X	H	L	-	Dout
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	X	H	H	-	HI-Z
Write Cycle, Continue Burst	Next	X	X	X	H	H	L	H	L	L	X	-	Din
Write Cycle, Continue Burst	Next	X	X	X	H	H	L	L	X	X	X	-	Din
Write Cycle, Continue Burst	Next	H	X	X	X	H	L	H	L	L	X	-	Din
Write Cycle, Continue Burst	Next	H	X	X	X	H	L	L	X	X	X	-	Din
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	H	X	L	-	Dout
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	H	X	H	-	HI-Z
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	X	H	L	-	Dout
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	X	H	H	-	HI-Z
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	H	X	L	-	Dout
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	H	X	H	-	HI-Z
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	X	H	L	-	Dout
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	X	H	H	-	HI-Z
Write Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	L	L	X	-	Din
Write Cycle, Suspend Burst	Current	X	X	X	H	H	H	L	X	X	X	-	Din
Write Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	L	L	X	-	Din
Write Cycle, Suspend Burst	Current	H	X	X	X	H	H	L	X	X	X	-	Din

NOTES:

1. $\mathrm{L}=\mathrm{VIL}, \mathrm{H}=\mathrm{VIH}, \mathrm{X}=$ Don't Care.
2. $\overline{\mathrm{OE}}$ is an asynchronous input.
3. $Z Z=$ low for this table.

Synchronous Write Function Truth Table ${ }^{(1)}$

Operation	$\overline{\mathrm{G}} \overline{\mathrm{W}}$	$\overline{\text { BWE }}$	$\overline{\mathrm{BW}} 1$	$\overline{\mathrm{BW}} 2$	$\overline{\mathrm{BW}}_{3}$	$\overline{\mathrm{BW}} 4$
Read	H	H	X	X	X	X
Read	H	L	H	H	H	H
Write all Bytes	L	X	X	X	X	X
Write all Bytes	H	L	L	L	L	L
Write Byte $1^{(3)}$	H	L	L	H	H	H
Write Byte $2^{(3)}$	H	L	H	L	H	H
Write Byte $3^{(3)}$	H	L	H	H	L	H
Write Byte $4^{(3)}$	H	L	H	H	H	L

NOTES:
5297 tbl 12

1. $\mathrm{L}=\mathrm{V} \mathrm{IL}, \mathrm{H}=\mathrm{V} \mathrm{IH}, \mathrm{X}=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.

Asynchronous Truth Table ${ }^{(1)}$

Operation $^{(2)}$	$\overline{\mathrm{OE}}$	ZZ	I/O Status	Power
Read	L	L	Data Out	Active
Read	H	L	High-Z	Active
Write	X	L	High-Z - Data In	Active
Deselected	X	L	High-Z	Standby
Sleep Mode	H	High-Z	Sleep	

NOTES:

1. $\mathrm{L}=\mathrm{VIL}, \mathrm{H}=\mathrm{VIH}, \mathrm{X}=$ Don't Care.
2. Synchronous function pins must be biased appropriately to satisfy operation requirements.

Interleaved Burst Sequence Table ($\overline{\text { LBO }}=\mathrm{VDD}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:
5297 tbl 14

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

Linear Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{V}$ ss)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:
5297 tbl 15

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

AC Electrical Characteristics

(VdD $=3.3 \mathrm{~V} \pm 5 \%$, Commercial and Industrial Temperature Ranges)

Symbol	Parameter	$200 \mathrm{MHz}^{(5)}$		183MHz		166MHz		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tcyc	Clock Cycle Time	5	-	5.5	-	6	-	ns
tch ${ }^{(1)}$	Clock High Pulse Width	2	-	2.2	-	2.4	-	ns
tct ${ }^{(1)}$	Clock Low Pulse Width	2	-	2.2	-	2.4	-	ns

Output Parameters

tCD	Clock High to Valid Data	-	3.1	-	3.3	-	3.5	ns
tcDC	Clock High to Data Change	1.0	-	1.0	-	1.0	-	ns
tc_- ${ }^{(2)}$	Clock High to Output Active	0	-	0	-	0	-	ns
tchz ${ }^{(2)}$	Clock High to Data High-Z	1.5	3.1	1.5	3.3	1.5	3.5	ns
toe	Output Enable Access Time	-	3.1	-	3.3	-	3.5	ns
toz ${ }^{(2)}$	Output Enable Low to Output Active	0	-	0	-	0	-	ns
tohz ${ }^{(2)}$	Output Enable High to Output High-Z	-	3.1	-	3.3	-	3.5	ns

Set Up Times

tSA	Address Setup Time	1.2	-	1.5	-	1.5	-	ns
tss	Address Status Setup Time	1.2	-	1.5	-	1.5	-	ns
tsD	Data In Setup Time	1.2	-	1.5	-	1.5	-	ns
tsw	Write Setup Time	1.2	-	1.5	-	1.5	-	ns
tsav	Address Advance Setup Time	1.2	-	1.5	-	1.5	-	ns
tsc	Chip Enable/Select Setup Time	1.2	-	1.5	-	1.5	-	ns

Hold Times

tHA	Address Hold Time	0.4	-	0.5	-	0.5	-	ns
thS	Address Status Hold Time	0.4	-	0.5	-	0.5	-	ns
tHD	Data In Hold Time	0.4	-	0.5	-	0.5	-	ns
tHW	Write Hold Time	0.4	-	0.5	-	0.5	-	ns
thav	Address Advance Hold Time	0.4	-	0.5	-	0.5	-	ns
thC	Chip Enable/Select Hold Time	0.4	-	0.5	-	0.5	-	ns

Sleep Mode and Configuration Parameters

tZPP	ZZ Pulse Width	100	-	100	-	100	-	ns
tZR $^{(3)}$	ZZ Recovery Time	100	-	100	-	100	-	ns
tcFG $^{(4)}$	Configuration Set-up Time	20	-	22	-	24	-	ns

NOTES:

1. Measured as HIGH above VIH^{2} and LOW below VIL.
2. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
3. Device must be deselected when powered-up from sleep mode.
4. tcFG is the minimum time required to configure the device based on the $\overline{\mathrm{LBO}}$ input. $\overline{\mathrm{LBO}}$ is a static input and must not change during normal operation
5. Commercial temperature range only.

Timing Waveform of Pipeline Read Cycle ${ }^{(1,2)}$

3. CSO timing transitions are identical but inverted tothe $\overline{\mathrm{CE}}$ and $\overline{\mathrm{C}}$ 1signals. For example, when $\overline{\mathrm{C}}$ and $\overline{\mathrm{C}}$ 1 are LOW on this waveform, CSO is HIGH .

Timing Waveform of Combined Pipelined Read and Write Cycles ${ }^{(1,2,3)}$

NOTES:

1. Device is selected throughentire cycle; $\overline{\mathrm{C}} \overline{\mathrm{E}}$ and $\overline{\mathrm{CS}} 1$ are LOW, CSO is HIGH.
2. ZZinput is LOWand $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
3. $\mathrm{OI}(\mathrm{Ax})$ represents thefirst output fromtheexternal add
4. O1 (Ax) representsthe first output from the external address $A x$. II(Ay) represents the first input fromtheexternal address $A y ; O 1$ (Az) representsthe first output fromtheexternal address $A Z$;
$O 2$ (Az) representsthenext outputdataintheburst sequence of the base address $A z$, etc. whereAOandA1 are advancing for the four word burstinthe sequence defined bythe state of the $\overline{L B O}$ input

Timing Waveform of Write Cycle No. 1 - $\overline{\mathbf{G W}}$ Controlled ${ }^{(1,2,3)}$

Timing Waveform of Write Cycle No. 2 - Byte Controlled ${ }^{(1,2,3)}$

[^0]Timing Waveform of Sleep (ZZ) and Power-Down Modes ${ }^{(1,2,3)}$

[^1]3. It is not necessary to retain the state of the input registers throughout the Power-down cycle.
4. CSo timing transitionsare identical but inverted to the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{C}}_{1}$ signals. For example, when CE and CS1 are LOWonthis waveform, CS is HIGH .

Non-Burst Read Cycle Timing Waveform

NOTES:

1. ZZ input is LOW, $\overline{\mathrm{ADV}}$ is HIGH and $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
2. $(A x)$ represents the data for address $A x$, etc.
3. For read cycles, $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ function identically and are therefore interchangeable.

Non-Burst Write Cycle Timing Waveform

NOTES:

1. ZZ input is LOW, $\overline{\mathrm{ADV}}$ and $\overline{\mathrm{OE}}$ are HIGH, and $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
2. (Ax) represents the data for address $A x$, etc.
3. Although only $\overline{\mathrm{GW}}$ writes are shown, the functionality of $\overline{\mathrm{BWE}}$ and $\overline{\mathrm{BW}} \times$ together is the same as $\overline{\mathrm{GW}}$.
4. For write cycles, $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ have different limitations.

Ordering Information

NOTE:

1. Contact your local sales office for industrial temp range for other speeds, packages and powers.

Orderable Part Information

Speed (MHz)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
166	71V25761S166PFG	PKG100	TQFP	C
	71V25761S166PFG8	PKG100	TQFP	C
	71V25761S166PFGI	PKG100	TQFP	1
	71V25761S166PFG18	PKG100	TQFP	1
183	71V25761S183PFG	PKG100	TQFP	C
	71V25761S183PFG8	PKG100	TQFP	C
	71V25761S183PFGI	PKG100	TQFP	1
	71V25761S183PFGI8	PKG100	TQFP	1
200	71V25761S200PFG	PKG100	TQFP	C
	71V25761S200PFG8	PKG100	TQFP	C
	71V25761S200PFGI	PKG100	TQFP	1
	71V25761S200PFG18	PKG100	TQFP	1

Datasheet Document History

12/31/99		Created new datasheetfrom 71V2576 and 71V2578datasheets
	Pg. 1, 4, 8, 19	Added Industrial Temperature range offerings
04/04/00	Pg. 18	Added 100pin TQFP Package Diagram Outine
	Pg. 4	Add capacitance table for BGA package; Add Industrial temperature to table;Insertnote to Absolute MaxRatings and Recommended Operating Temperaturetables
06/01/00		Add new package offering, $13 \times 15 \mathrm{~mm} 165$ fBGA
	Pg. 20	CorrectBG119 Package Diagram Outine
07/15/00	Pg. 7	Add note reference to BG119 pinout
	Pg. 8	Add DNU note to BQ165 pinout
	Pg. 20	Update BG119 Package Diagram Outine Dimensions
10/25/00		Remove Preliminary from datasheet
	Pg. 8	Add reference note to pin N5 in BQ165 pinout, reserved for JTAG, TRST
04/22/03	Pg. 4	Updated 165BGA table information from TBD to 7
06/30/03	Pg. 1,2,3,5-9	Updated datasheetwith JTAG information
	Pg. 5-8	Removed note for NC pins (38,39(PF package); L4, U4 (BG package) H2, N7 (BQ package)) requiring NC or connection to Vss.
	Pg. 19,20	Added two pages of JTAG Specification, AC Electrical, Definitions and Instructions
	Pg. 21-23	Removed old package informationfrom the datasheet
	Pg. 24	Updated ordering information with JTAG and Y stepping information. Added information regarding packages available IDT website.
03/13/09	Pg. 21	Removed "IDT" from orderable part number
05/27/10	Pg. 20	Added "Restricted hazardous substance device" to the ordering information
	Pg.1-20	Removed IDT71V25781S/SA from datasheet.
07/24/14	Pg. 20	Updated Ordering Information changed indicator from "Restricted hazardous substance device" to"Green" and added Tape \& Reel
07/27/20	Pg. 1-18	Rebranded as Renesas datasheet
	Pg. 1 \&16	Deleted Y die stepping from partnumber and Ordering Information
	Pg. 1\&16	Added Industrial temp range and Green to Features and Ordering Information
	Pg. 1-3,6,14 \& 15	Removed JTAG information
	Pg. 1-3, 6,7 \& 16	Deleted obsolete119BGA Ball Grid Array and 165fBGA fine pitch Ball Grid Array information
	Pg. 5	Updated package code
	Pg. 16	Added Orderable PartInformationtable

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Renesas Electronics:
71V25761S166BG8 71V25761S200PFG 71V25761S166BG 71V25761S200BG8 71V25761S166BGI 71V25761S166PFG 71V25761S183PFGI8 71V25761S166BGI8 71V25761S200PFG8 71V25761S166PFG8 71V25761S183BGI 71V25761S200BG 71V25761S183PFG 71V25761S183BGI8 71V25761S183PFGI 71V25761S183PFG8 71V25761S183BG8 71V25761S183BG 71V25761S200PFGI 71V25761S200PFGI8

[^0]: NOTES:

 1. ZZinput is LOW, $\overline{\mathrm{GW}}$ is HIGH and $\overline{\mathrm{LB}} \overline{\mathrm{O}}$ is Don't Care for this cycle.
 2. $O 4$ (Aw) represents the final output datainthe burst sequence of the base address $A w$. 11 ($A x$) represents the first input fromtheexternal address $A x$. II(Ay) represents the first input fromthe external address $A y$, 12 (Ay) represent the next input datainthe burst sequence of the base address $A y$, etc. where AO and A1 are advancing for the four word burst in the sequence defined by the state of the $\overline{\mathrm{LBO}}$ input. In the case of input I2 (Ay) this datais validfor two cycles because $\overline{\mathrm{A}} \overline{\mathrm{V}}$ is highand has suspended the burst.
 3. CSOtiming transitions are identical but inverted to the $\overline{\mathrm{C}}$ and $\overline{\mathrm{C}}$ 1signals. For example, when $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CS}} 1$ are LOW on thiswaveform, CSO is HIGH .
[^1]: NOTES:

 1. Devicemust power up indeselected Mode.
 2. $\overline{\mathrm{L} B \bar{O}}$ is Don't Care for this cycle.
