

MCP1703

250 mA, 16V, Low Quiescent Current LDO Regulator

Features:

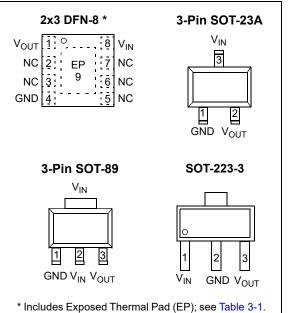
- · Passes automotive AEC-Q100 reliability testing
- 2.0 µA Typical Quiescent Current
- Input Operating Voltage Range: 2.7V to16.0V
- 250 mA Output Current for Output Voltages ≥ 2.5V
- 200 mA Output Current for Output Voltages < 2.5V
 Low Dropout Voltage, 625 mV typical @ 250 mA
- Low Dropout voltage, 625 mV typical @ 250 mA for $V_R = 2.8V$
- 0.4% Typical Output Voltage Tolerance
- Standard Output Voltage Options:
- 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V,
 5.0V
- Output Voltage Range: 1.2V to 5.5V in 0.1V Increments (50 mV increments available upon request)
- Stable with 1.0 μF to 22 μF Ceramic Output Capacitance
- Short-Circuit Protection
- Overtemperature Protection

Applications:

- · Battery-Powered Devices
- Battery-Powered Alarm Circuits
- Smoke Detectors
- CO² Detectors
- Pagers and Cellular Phones
- Smart Battery Packs
- Low Quiescent Current Voltage Reference
- PDAs
- Digital Cameras
- Microcontroller Power
- Solar-Powered Instruments
- Consumer Products
- Battery-Powered Data Loggers

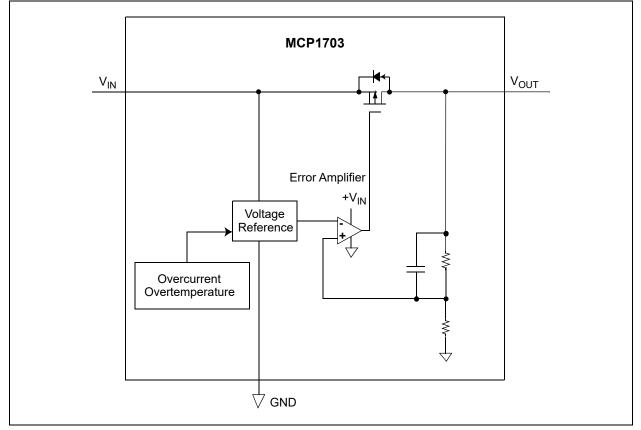
Related Literature:

- AN765, "Using Microchip's Micropower LDOs", DS00765, Microchip Technology Inc., 2002
- AN766, "Pin-Compatible CMOS Upgrades to Bipolar LDOs", DS00766, Microchip Technology Inc., 2002
- AN792, "A Method to Determine How Much Power a SOT23 Can Dissipate in an Application", DS00792, Microchip Technology Inc., 2001

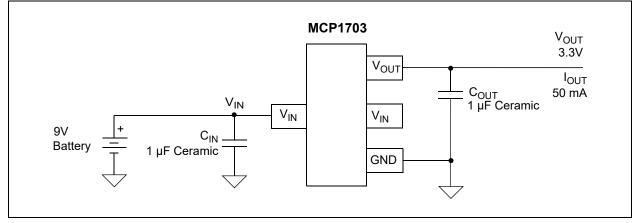

Description:

The MCP1703 is a family of CMOS low dropout (LDO) voltage regulators that can deliver up to 250 mA of current while consuming only 2.0 μ A of quiescent current (typical). The input operating range is specified from 2.7V to 16.0V, making it an ideal choice for two to six primary cell battery-powered applications, 9V alkaline and one or two cell Li-lon-powered applications.

The MCP1703 is capable of delivering 250 mA with only 625 mV (typical) of input to output voltage differential (V_{OUT} = 2.8V). The output voltage tolerance of the MCP1703 is typically ±0.4% at +25°C and ±3% maximum over the operating junction temperature range of -40°C to +125°C. Line regulation is ±0.1% typical at +25°C.


Output voltages available for the MCP1703 range from 1.2V to 5.5V. The LDO output is stable when using only 1 μ F of output capacitance. Ceramic, tantalum, or aluminum electrolytic capacitors can all be used for input and output. Overcurrent limit and overtemperature shutdown provide a robust solution for any application. Package options include the SOT-223-3, SOT-23A, 2x3 DFN-8, and SOT-89-3.

Package Types



MCP1703

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings[†]

V _{DD}	+18V
All inputs and outputs w.r.t.	(V _{SS} –0.3V) to (V _{IN} +0.3V)
Peak Output Current	
Storage temperature	–65°C to +150°C
Maximum Junction Temperature	+150°C
ESD protection on all pins (HBM;MM)	$\ldots \ge 4 \text{ kV}; \ge 400 \text{V}$

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all limits are established for $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$, **Note 1**, $I_{LOAD} = 100 \ \mu$ A, $C_{OUT} = 1 \ \mu$ F (X7R), $C_{IN} = 1 \ \mu$ F (X7R), $T_A = +25^{\circ}$ C.

Boldface	type a	pplies fo	r junct	tion 1	tem	peratu	ires	, Т _Ј	(Note	7) of –40°C to +125°C.

Parameters	Symbol	Min	Тур	Max	Units	Conditions
Input / Output Characteristic	S		•	•		•
Input Operating Voltage	V _{IN}	2.7	_	16.0	V	Note 1
Input Quiescent Current	۱ _q	_	2.0	5	μA	I _L = 0 mA
Maximum Output Current	I _{OUT_mA}	250	_	_	mA	For $V_R \ge 2.5V$
	_	50	100	—	mA	For V _R < 2.5V, V _{IN} \ge 2.7V
		100	130	_	mA	For V _R < 2.5V, V _{IN} \ge 2.95V
		150	200	_	mA	For V _R < 2.5V, V _{IN} \ge 3.2V
		200	250	—	mA	For V _R < 2.5V, V _{IN} \ge 3.45V
Output Short Circuit Current	I _{OUT_SC}	_	400	_	mA	V _{IN} = V _{IN(MIN)} (Note 1), V _{OUT} = GND, Current (average current) mea- sured 10 ms after short is applied.
Output Voltage Regulation	V _{OUT}	V _R -3.0%	V _R ±0.4%	V _R +3.0%	V	Note 2
		V _R -2.0%	V _R ±0.4%	V _R +2.0%	V	
		V _R -1.0%	V _R ±0.4%	V _R +1.0%	V	1% Custom
V _{OUT} Temperature Coefficient	TCV _{OUT}		50		ppm/°C	Note 3
Line Regulation	ΔV _{OUT} / (V _{OUT} XΔV _{IN})	-0.3	±0.1	+0.3	%/V	$(V_{OUT(MAX)} + V_{DROPOUT(MAX)}) \le V_{IN} \le 16V$, Note 1

Note 1: The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.7V$ and $V_{IN} \ge (V_{OUT(MAX)} + V_{DROPOUT(MAX)})$.

2: V_R is the nominal regulator output voltage. For example: V_R = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. The input voltage V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)} or Vi_{IN} = 2.7V (whichever is greater); I_{OUT} = 100 μA.

- 3: TCV_{OUT} = (V_{OUT-HIGH} V_{OUT-LOW}) *10⁶ / (V_R * ∆Temperature), V_{OUT-HIGH} = highest voltage measured over the temperature range. V_{OUT-LOW} = lowest voltage measured over the temperature range.
- 4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCV_{OUT}.
- 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with an applied input voltage of V_{OUT(MAX)} + V_{DROPOUT(MAX)} or 2.7V, whichever is greater.
- 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.
- 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VOUT(MAX) + VDROPOUT(MAX), Note 1, I_{LOAD} = 100 µA, C_{OUT} = 1 µF (X7R), C_{IN} = 1 µF (X7R), T_A = +25°C. ratures T. (Note 7) of -40°C to +125°C

Bolulace type applies for junct	ion temperature	Boldface type applies for junction temperatures, $I_{\rm J}$ (Note 7) of -40°C to +125°C.								
Parameters	Symbol	Min	Тур	Max	Units	Conditions				
Load Regulation	ΔV _{OUT} /V _{OUT}	-2.5	±1.0	+2.5	%	$I_{L} = 1.0 \text{ mA to } 250 \text{ mA for } V_{R} \ge 2.5V$ $I_{L} = 1.0 \text{ mA to } 200 \text{ mA for } V_{R} < 2.5V$ $V_{IN} = 3.65V, \text{ Note 4}$				
Dropout Voltage	V _{DROPOUT}	_	330	650	mV	I _L = 250 mA, V _R = 5.0V				
Note 1, Note 5		_	525	725	mV	I_L = 250 mA, 3.3V $\leq V_R$ < 5.0V				
		_	625	975	mV	I_L = 250 mA, 2.8V $\leq V_R$ < 3.3V				
			750	1100	mV	$\rm I_L$ = 250 mA, 2.5V $\leq \rm V_R$ < 2.8V				
		—	_	_	mV	V _R < 2.5V, See Maximum Output Current Parameter				
Output Delay Time	T _{DELAY}	—	1000	—	μs	V_{IN} = 0V to 6V, V_{OUT} = 90% V_{R} , R _L = 50 Ω resistive				
Output Noise	e _N	_	8		µV/(Hz) ^{1/2}	I_L = 50 mA, f = 1 kHz, C _{OUT} = 1 µF				
Power Supply Ripple Rejection Ratio	PSRR		44	_	dB	f = 100 Hz, C _{OUT} = 1 μF, I _L = 100 μA, V _{INAC} = 100 mV pk-pk, C _{IN} = 0 μF, V _R = 1.2V				
Thermal Shutdown Protection	T _{SD}		150		°C					

Note 1: The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.7V$ and $V_{IN} \ge (V_{OUT(MAX)} + V_{DROPOUT(MAX)})$.

 V_R is the nominal regulator output voltage. For example: V_R = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. 2:

The input voltage $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$ or $Vi_{IN} = 2.7V$ (whichever is greater); $I_{OUT} = 100 \ \mu$ A. TCV_{OUT} = (V_{OUT-HIGH} - V_{OUT-LOW}) *10⁶ / (V_R * Δ Temperature), V_{OUT-HIGH} = highest voltage measured over the 3: temperature range. V_{OUT-LOW} = lowest voltage measured over the temperature range.

4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCV_{OUT}.

- Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured 5: value with an applied input voltage of V_{OUT(MAX)} + V_{DROPOUT(MAX)} or 2.7V, whichever is greater.
- The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 6: temperature and the thermal resistance from junction to air (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.
- 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

TEMPERATURE SPECIFICATIONS¹

Parameters	Sym	Min	Тур	Max	Units	Conditions	
Temperature Ranges	Temperature Ranges						
Operating Junction Temperature Range	Τ _J	-40	_	+125	°C	Steady State	
Maximum Junction Temperature	Τ _J	_	_	+150	°C	Transient	
Storage Temperature Range	Τ _Α	-65	_	+150	°C		
Thermal Package Resistance (Note 2)							
Thermal Resistance, 3LD SOT-223	θ_{JA}		62	_	°C/W	EIA/JEDEC JESD51-7	
	θ_{JC}	—	15	_	0/11	FR-4 0.063 4-Layer Board	

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.

Thermal Resistance values are subject to change. Please visit the Microchip web site for the latest packaging 2: information.

MCP1703

Parameters	Sym	Min	Тур	Max	Units	Conditions
Thermal Resistance, 3LD SOT-23A	θ_{JA}		336	_	°C/W	EIA/JEDEC JESD51-7
	θJC	—	110	_	0/11	FR-4 0.063 4-Layer Board
Thermal Resistance, 3LD SOT-89	θ_{JA}		153,3		°C/W	EIA/JEDEC JESD51-7
	θ_{JC}		100	—	0/00	FR-4 0.063 4-Layer Board
Thermal Resistance, 8LD 2x3 DFN	θ_{JA}	_	93	_	°C/W	EIA/JEDEC JESD51-7
	θ _{JC}	—	26	—	C/VV	FR-4 0.063 4-Layer Board

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.

2: Thermal Resistance values are subject to change. Please visit the Microchip web site for the latest packaging information.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated: $V_R = 1.8V$, $C_{OUT} = 1 \ \mu\text{F}$ Ceramic (X7R), $C_{IN} = 1 \ \mu\text{F}$ Ceramic (X7R), $I_L = 100 \ \mu\text{A}$, $T_A = +25^{\circ}\text{C}$, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$ or 2.7V, whichever is greater.

Note: Junction Temperature (T_J) is approximated by soaking the device under test to an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.

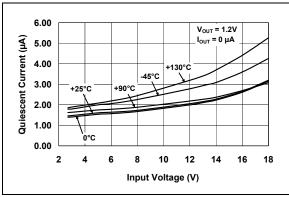


FIGURE 2-1: Quiescent Current vs. Input Voltage.

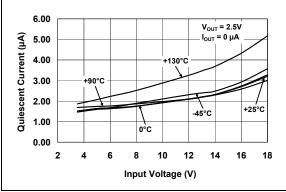
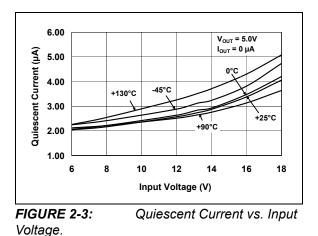



FIGURE 2-2: Quiescent Current vs. Input Voltage.

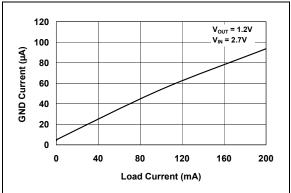
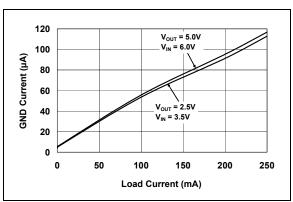
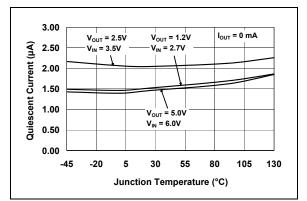
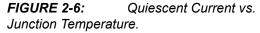
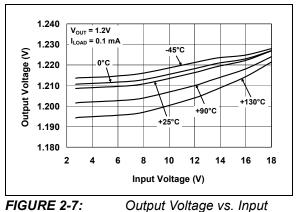


FIGURE 2-4: Current.

Ground Current vs. Load


FIGURE 2-5: Current.

Ground Current vs. Load

DS20002049G-page 6

Note: Unless otherwise indicated: $V_R = 1.8V$, $C_{OUT} = 1 \ \mu\text{F}$ Ceramic (X7R), $C_{IN} = 1 \ \mu\text{F}$ Ceramic (X7R), $I_L = 100 \ \mu\text{A}$, $T_A = +25^{\circ}\text{C}$, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$ or 2.7V, whichever is greater.

FIGURE 2-7: Voltage.

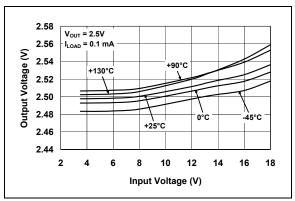


FIGURE 2-8: Voltage.

Output Voltage vs. Input

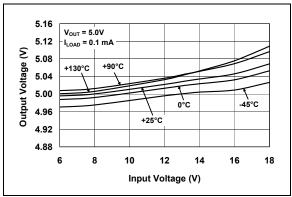


FIGURE 2-9: Voltage.

Output Voltage vs. Input

FIGURE 2-10: Current.

: Output Voltage vs. Load

FIGURE 2-11: Output Voltage vs. Load Current.

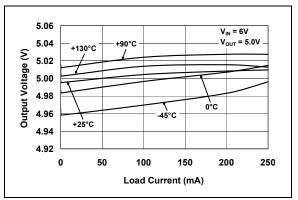


FIGURE 2-12: Output Voltage vs. Load Current.

MCP1703

Note: Unless otherwise indicated: $V_R = 1.8V$, $C_{OUT} = 1 \ \mu\text{F}$ Ceramic (X7R), $C_{IN} = 1 \ \mu\text{F}$ Ceramic (X7R), $I_L = 100 \ \mu\text{A}$, $T_A = +25^{\circ}\text{C}$, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$ or 2.7V, whichever is greater.

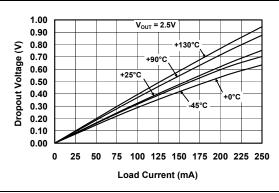


FIGURE 2-13: Dropout Voltage vs. Load Current.

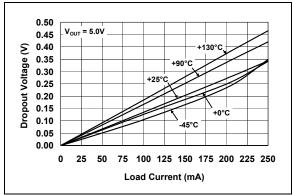


FIGURE 2-14: Dropout Voltage vs. Load Current.

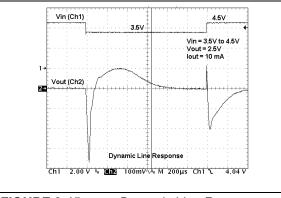


FIGURE 2-15:

Dynamic Line Response.

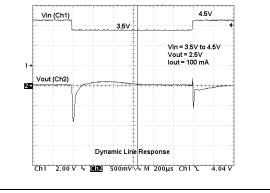


FIGURE 2-16: Dynamic Line Response.

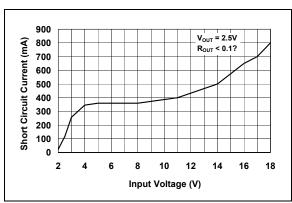
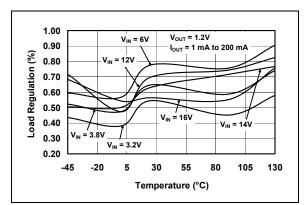
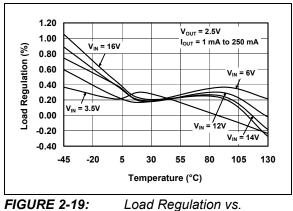
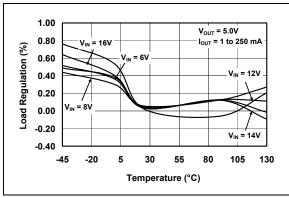


FIGURE 2-17: Short Circuit Current vs. Input Voltage.


FIGURE 2-18: Temperature.

Load Regulation vs.

Note: Unless otherwise indicated: $V_R = 1.8V$, $C_{OUT} = 1 \ \mu\text{F}$ Ceramic (X7R), $C_{IN} = 1 \ \mu\text{F}$ Ceramic (X7R), $I_L = 100 \ \mu\text{A}$, $T_A = +25^{\circ}\text{C}$, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$ or 2.7V, whichever is greater.

FIGURE 2-20: Load Regulation vs. Temperature.

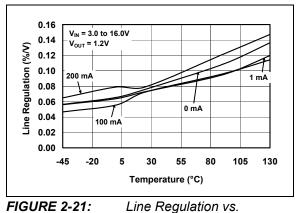


FIGURE 2-21: Temperature.

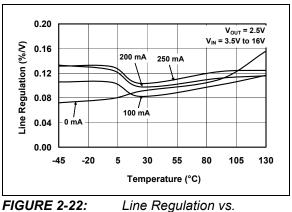
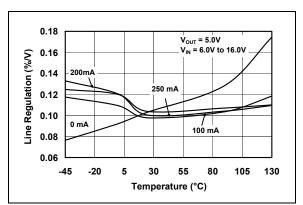
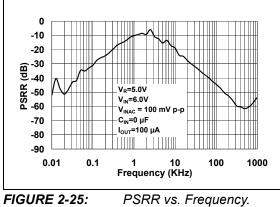



FIGURE 2-22: Temperature.


FIGURE 2-23: Line Regulation vs. Temperature.

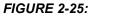
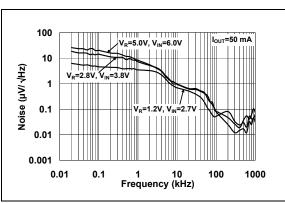
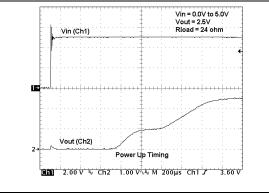
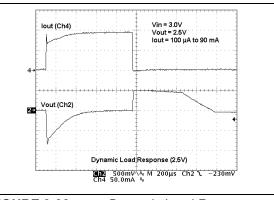
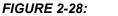


FIGURE 2-24: PSRR vs. Frequency.

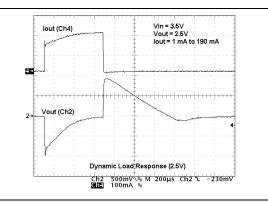
© 2011-2022 Microchip Technology Inc. and its subsidiaries

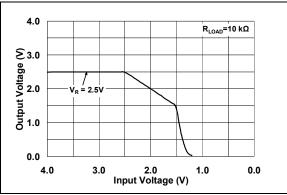
Note: Unless otherwise indicated: V_R = 1.8V, C_{OUT} = 1 μ F Ceramic (X7R), C_{IN} = 1 μ F Ceramic (X7R), I_L = 100 μ A, $T_A = +25^{\circ}C$, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$ or 2.7V, whichever is greater.


FIGURE 2-26:

Output Noise vs. Frequency.





Dynamic Load Response.

FIGURE 2-29: Dynamic Load Response.

FIGURE 2-30: Output Voltage vs. Input Voltage.

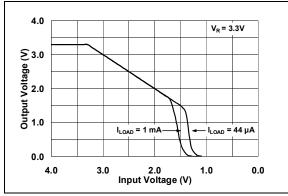


FIGURE 2-31: Output Voltage vs. Input Voltage.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

Pin No. 2x3 DFN-8	Pin No. SOT-223-3	Pin No. SOT-23A	Pin No. SOT-89-3	Name	Function
4	2,Tab	1	1	GND	Ground Terminal
1	3	2	3	V _{OUT}	Regulated Voltage Output
8	1	3	2,Tab	V _{IN}	Unregulated Supply Voltage
2, 3, 5, 6, 7	_	_	_	NC	No Connection
9	—	_	_	EP	Exposed Thermal Pad (EP); must be connected to VSS

TABLE 3-1: MCP1703 PIN FUNCTION TABLE

3.1 Ground Terminal (GND)

Regulator ground. Tie GND to the negative side of the output and the negative side of the input capacitor. Only the LDO bias current (2.0 μ A typical) flows out of this pin; there is no high current. The LDO output regulation is referenced to this pin. Minimize voltage drops between this pin and the negative side of the load.

3.2 Regulated Output Voltage (V_{OUT})

Connect V_{OUT} to the positive side of the load and the positive terminal of the output capacitor. The positive side of the output capacitor should be physically located as close to the LDO V_{OUT} pin as is practical. The current flowing out of this pin is equal to the DC load current.

3.3 Unregulated Input Voltage (V_{IN})

Connect V_{IN} to the input unregulated source voltage. Like all low dropout linear regulators, low source impedance is necessary for the stable operation of the LDO. The amount of capacitance required to ensure low source impedance will depend on the proximity of the input source capacitors or battery type. For most applications, 1 μ F of capacitance will ensure stable operation of the LDO circuit. For applications that have load currents below 100 mA, the input capacitance requirement can be lowered. The type of capacitor used can be ceramic, tantalum, or aluminum electrolytic. The low ESR characteristics of the ceramic will yield better noise and PSRR performance at high-frequency.

3.4 Exposed Thermal Pad (EP)

There is an internal electrical connection between the Exposed Thermal Pad (EP) and the V_{SS} pin; they must be connected to the same potential on the Printed Circuit Board (PCB).

4.0 DETAILED DESCRIPTION

4.1 Output Regulation

A portion of the LDO output voltage is fed back to the internal error amplifier and compared with the precision internal band gap reference. The error amplifier output will adjust the amount of current that flows through the P-Channel pass transistor, thus regulating the output voltage to the desired value. Any changes in input voltage or output current will cause the error amplifier to respond and adjust the output voltage to the target voltage (refer to Figure 4-1).

4.2 Overcurrent

The MCP1703 internal circuitry monitors the amount of current flowing through the P-Channel pass transistor. In the event of a short-circuit or excessive output current, the MCP1703 will turn off the P-Channel device for a short period, after which the LDO will attempt to restart. If the excessive current remains, the cycle will repeat itself.

4.3 Overtemperature

The internal power dissipation within the LDO is a function of input-to-output voltage differential and load current. If the power dissipation within the LDO is excessive, the internal junction temperature will rise above the typical shutdown threshold of 150°C. At that point, the LDO will shut down and begin to cool to the typical turn-on junction temperature of 130°C. If the power dissipation is low enough, the device will continue to cool and operate normally. If the power dissipation remains high, the thermal shutdown protection circuitry will again turn off the LDO, protecting it from catastrophic failure.

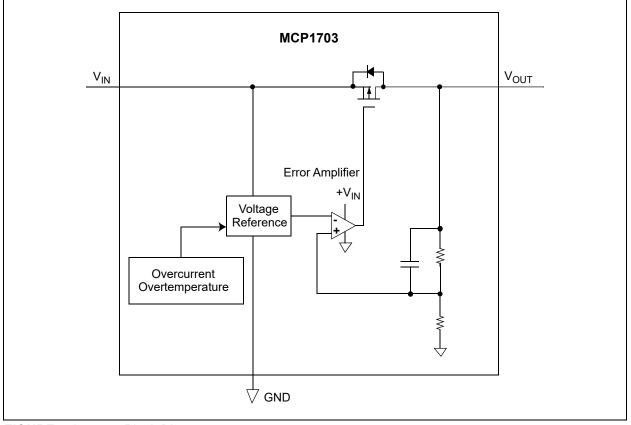


FIGURE 4-1:

Block Diagram.

5.0 FUNCTIONAL DESCRIPTION

The MCP1703 CMOS low dropout linear regulator is intended for applications that need the lowest current consumption while maintaining output voltage regulation. The operating continuous load range of the MCP1703 is from 0 mA to 250 mA (V_R \geq 2.5V). The input operating voltage range is from 2.7V to 16.0V, making it capable of operating from two or more alkaline cells or single and multiple Li-lon cell batteries.

5.1 Input

The input of the MCP1703 is connected to the source of the P-Channel PMOS pass transistor. As with all LDO circuits, a relatively low source impedance (10Ω) is needed to prevent the input impedance from causing the LDO to become unstable. The size and type of the capacitor needed depends heavily on the input source type (battery, power supply) and the output current range of the application. For most applications (up to 100 mA), a 1 µF ceramic capacitor will be sufficient to ensure circuit stability. Larger values can be used to improve circuit AC performance.

5.2 Output

The maximum rated continuous output current for the MCP1703 is 250 mA (V_R \geq 2.5V). For applications where V_R < 2.5V, the maximum output current is 200 mA.

A minimum output capacitance of 1.0 μ F is required for small signal stability in applications that have up to 250 mA output current capability. The capacitor type can be ceramic, tantalum, or aluminum electrolytic. The Equivalent Series Resistance (ESR) range on the output capacitor can range from 0 Ω to 2.0 Ω .

The output capacitor range for ceramic capacitors is 1 μ F to 22 μ F. Higher output capacitance values may be used for tantalum and electrolytic capacitors. Higher output capacitor values pull the pole of the LDO transfer function inward that results in higher phase shifts which in turn cause a lower crossover frequency. The circuit designer should verify the stability by applying line step and load step testing to their system when using capacitance values greater than 22 μ F.

5.3 Output Rise Time

When powering up the internal reference output, the typical output rise time of $1000 \ \mu s$ is controlled to prevent overshoot of the output voltage.

6.0 APPLICATION CIRCUITS & ISSUES

6.1 Typical Application

The MCP1703 is most commonly used as a voltage regulator. Its low quiescent current and low dropout voltage make it ideal for many battery-powered applications.

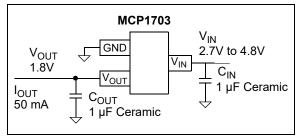


FIGURE 6-1: Typical Application Circuit.

6.1.1 APPLICATION INPUT CONDITIONS

Package Type = SOT-23A Input Voltage Range = 2.7V to 4.8V $V_{\text{IN}} \text{ maximum} = 4.8V$ $V_{\text{OUT}} \text{ typical} = 1.8V$ $I_{\text{OUT}} = 50 \text{ mA maximum}$

6.2 Power Calculations

6.2.1 POWER DISSIPATION

The internal power dissipation of the MCP1703 is a function of input voltage, output voltage and output current. The power dissipation, as a result of the quiescent current draw, is so low, it is insignificant (2.0 μ A x V_{IN}). The following equation can be used to calculate the internal power dissipation of the LDO.

EQUATION 6-1:

$P_{LDO} = (1)$	V_{IN}	$_{MAX))} - V_{OUT(MIN)}) \times I_{OUT(MAX))}$
Where:		
P _{LDO}	=	LDO Pass device internal power dissipation
V _{IN(MAX)}	=	Maximum input voltage
V _{OUT(MIN)}	=	LDO minimum output voltage

The maximum continuous operating junction temperature specified for the MCP1703 is +125°C. To estimate the internal junction temperature of the MCP1703, the total internal power dissipation is multiplied by the thermal resistance from junction to ambient (R θ_{JA}). The thermal resistance from junction to ambient for the SOT-23A pin package is estimated at 336°C/W.

EQUATION 6-2:

$$T_{J(MAX)} = P_{TOTAL} \times R\theta_{JA} + T_{AMAX}$$

Where:

$T_{J(MAX)}$	=	Maximum continuous junction temperature
P _{TOTAL}	=	Total device power dissipation
$R\theta_{JA}$	=	Thermal resistance from junction-to-ambient
T_{AMAX}	=	Maximum ambient temperature

The maximum power dissipation capability for a package can be calculated given the junction-toambient thermal resistance and the maximum ambient temperature for the application. The following equation can be used to determine the package maximum internal power dissipation.

EQUATION 6-3:

$$P_{D(MAX)} = \frac{(T_{J(MAX)} - T_{A(MAX)})}{R\theta_{JA}}$$

Where:

P _{D(MAX)} T _{J(MAX)}	Maximum device power dissipation Maximum continuous junction temperature
Τ _{Α(MAX)} Rθ _{JA}	Maximum ambient temperature Thermal resistance from junction-to-ambient

EQUATION 6-4:

	T_{j}	$P_{U(RISE)} = P_{D(MAX)} \times R\theta_{JA}$
Where:		
$T_{J(RISE)}$	=	Rise in device junction temperature over the ambient temperature
P _{TOTAL}	=	Maximum device power dissipation
$R\theta_{JA}$	=	Thermal resistance from junction to ambient

EQUATION 6-5:

		$T_J = T_{J(RISE)} + T_A$
Where:		
T_J	=	Junction temperature
$T_{J(RISE)}$	=	Rise in device junction temperature over the ambient temperature
T _A	=	Ambient temperature

© 2011-2022 Microchip Technology Inc. and its subsidiaries

6.3 Voltage Regulator

Internal power dissipation, junction temperature rise, junction temperature and maximum power dissipation are calculated in the following example. The power dissipation, as a result of ground current, is small enough to be neglected.

6.3.1 POWER DISSIPATION EXAMPLE

Package

Package Type: SOT-23A

Input Voltage:

 $V_{IN} = 2.7V \text{ to } 4.8V$

LDO Output Voltages and Currents

 $V_{OUT} = 1.8V$

I_{OUT} = 50 mA

Maximum Ambient Temperature

 $T_{A(MAX)} = +40^{\circ}C$

Internal Power Dissipation

Internal Power dissipation is the product of the LDO output current times the voltage across the LDO (V_{IN} to V_{OUT}).

$$\begin{split} \mathsf{P}_{\mathsf{LDO}(\mathsf{MAX})} &= (\mathsf{V}_{\mathsf{IN}(\mathsf{MAX})} \cdot \mathsf{V}_{\mathsf{OUT}(\mathsf{MIN})}) \times \mathsf{I}_{\mathsf{OUT}(\mathsf{MAX})} \\ \mathsf{P}_{\mathsf{LDO}} &= (4.8\mathsf{V} \cdot (0.97 \times 1.8\mathsf{V})) \times 50 \text{ mA} \\ \mathsf{P}_{\mathsf{LDO}} &= 152.7 \text{ milli-Watts} \end{split}$$

Device Junction Temperature Rise

The internal junction temperature rise is a function of internal power dissipation and the thermal resistance from junction to ambient for the application. The thermal resistance from junction to ambient ($R\theta_{JA}$) is derived from an EIA/JEDEC standard for measuring thermal resistance for small surface mount packages. The EIA/JEDEC specification is JESD51-7, "High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages". The standard describes the test method and board specifications for measuring the thermal resistance from junction to ambient. The actual thermal resistance for a particular application can vary depending on many factors, such as copper area and thickness. Refer to AN792, "A Method to Determine How Much Power a SOT23 Can Dissipate in an Application", (DS00792), for more information regarding this subject.

$$\begin{split} T_{J(\text{RISE})} &= P_{\text{TOTAL}} \text{ x } \text{Rq}_{J\text{A}} \\ T_{J\text{RISE}} &= 152.7 \text{ milli-Watts x } 336.0^{\circ}\text{C/Watt} \\ T_{J\text{RISE}} &= 51.3^{\circ}\text{C} \end{split}$$

Junction Temperature Estimate

To estimate the internal junction temperature, the calculated temperature rise is added to the ambient or offset temperature. For this example, the worst-case junction temperature is estimated below.

$$T_J = T_{JRISE} + T_{A(MAX)}$$

 $T_J = 91.3^{\circ}C$

Maximum Package Power Dissipation at +40°C Ambient Temperature Assuming Minimal Copper Usage.

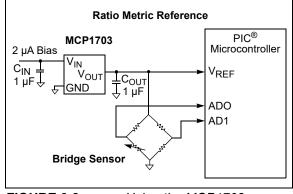
SOT-23A (336.0°C/Watt = Rθ_{JA})

 $P_{D(MAX)} = (+125^{\circ}C - 40^{\circ}C) / 336^{\circ}C/W$

P_{D(MAX)} = 253 milli-Watts

SOT-89 (153.3°C/Watt = Rθ_{JA})

P_{D(MAX)} = (+125°C - 40°C) / 153.3°C/W

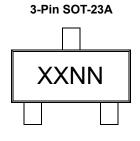

 $P_{D(MAX)} = 0.554$ Watts

SOT-223 (62.9°C/Watt = R0_{JA})

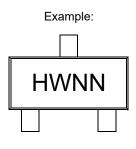
 $P_{D(MAX)} = (+125^{\circ}C - 40^{\circ}C) / 62.9^{\circ}C/W$ $P_{D(MAX)} = 1.35$ Watts

6.4 Voltage Reference

The MCP1703 can be used not only as a regulator, but also as a low quiescent current voltage reference. In many microcontroller applications, the initial accuracy of the reference can be calibrated using production test equipment or by using a ratio measurement. When the initial accuracy is calibrated, the thermal stability and line regulation tolerance are the only errors introduced by the MCP1703 LDO. The low-cost, low quiescent current and small ceramic output capacitor are all advantages when using the MCP1703 as a voltage reference.


FIGURE 6-2: Using the MCP1703 as a Voltage Reference.

6.5 Pulsed Load Applications


For some applications, there are pulsed load current events that may exceed the specified 250 mA maximum specification of the MCP1703. The internal current limit of the MCP1703 will prevent high peak load demands from causing non-recoverable damage. The 250 mA rating is a maximum average continuous rating. As long as the average current does not exceed 250 mA, pulsed higher load currents can be applied to the MCP1703. The typical current limit for the MCP1703 is 500 mA (T_A +25°C).

7.0 PACKAGING INFORMATION

7.1 Package Marking Information

Voltage Options for SOT-23A					
Symbol	nbol Voltage * Symbol Voltag				
	Standard To	lerance (2%)			
HM	1.2	HU	3.3		
HP	1.5	GF	3.5		
HQ	1.8	GE	3.6		
JA	2.4	HV	4.0		
HR	2.5	HZ	4.5		
HS	2.8	HW	5.0		
HT	3.0	—	_		
Custom Tolerance (1%)					
JQ	3.3	JQ	5.0		

* Custom output voltages available upon request. Contact your local Microchip sales office for more information.

3-Lead SOT-89


Voltage Options for SOT-89					
Symbol	Symbol Voltage * Symbol		Voltage *		
Standard Tolerance (2%)					
HM	1.2	HT	3.0		
HP	1.5	HU	3.3		
HQ	1.8	HV	4.0		
HR	2.5	HZ	4.5		
HS	2.8	HW	5.0		

* Custom output voltages available upon request. Contact your local Microchip sales office for more information.

Legend	: XXX Y YY WW NNN (e3) *	Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.
	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information. Package may or not include the logo.

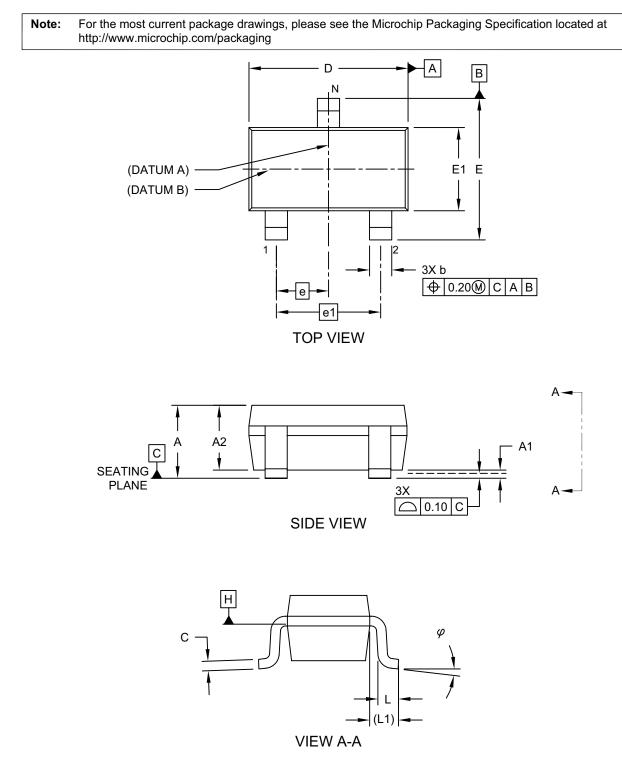
Voltage Options for SOT-223					
Symbol	Voltage *	Symbol	Voltage *		
Standard Tolerance (2%)					
12	1.2	28	2.8		
15	1.5	30	3.0		
18	1.8	33	3.3		
24	2.4	40	4.0		
25	2.5	50	5.0		
Custom Tolerance (1%)					
33	3.3				
* Custom out	out voltages ava	allable upon rec	west Contact		

Example: Tab is GND MCP1703 15E1014 State 256

* Custom output voltages available upon request. Contact your local Microchip sales office for more information.

8-Lead DFN (2 x 3)

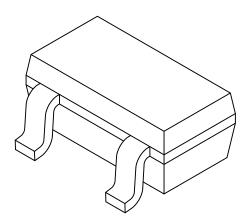
Voltage Options for 8-Lead DFN (2 x 3)					
Symbol	Voltage *	Symbol	Voltage *		
Standard Tolerance (2%)					
AAU	1.2	AAY	3.3		
AAV	1.8	AFR	4.0		
AAW	2.5	AAZ	5.0		
AAT	3.0	—	_		


Example

	AAU	
	014	
_	25	
0		

* Custom output voltages available upon request. Contact your local Microchip sales office for more information.

Legen	d: XXX Y YY WW NNN @3 *	Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information. Package may or not include the logo.


3-Lead Plastic Small Outline Transistor (CB) [SOT-23A]

Microchip Technology Drawing C04-130 Rev C Sheet 1 of 2

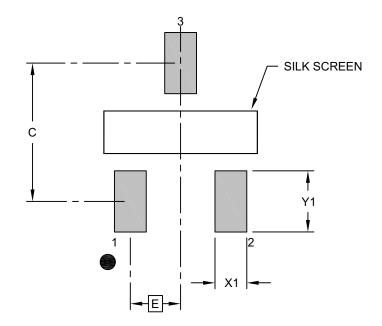
3-Lead Plastic Small Outline Transistor (CB) [SOT-23A]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER:	S	
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		3	
Lead Pitch	е		0.95 BSC	
Outside Lead Pitch	e1		1.90 BSC	
Overall Height	Α	0.90	-	1.45
Molded Package Thickness	A2	0.90	-	1.30
Standoff	A1	0.00	-	0.15
Overall Width	E	2.10	-	3.00
Molded Package Width	E1	1.20	-	1.80
Overall Length	D	2.70	-	3.10
Foot Length	L	0.15	-	0.60
Footprint	(L1)	0.54 REF		
Foot Angle	φ	0°	-	30°
Lead Thickness	С	0.09	-	0.26
Lead Width	b	0.30	-	0.51

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127mm per side.


2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

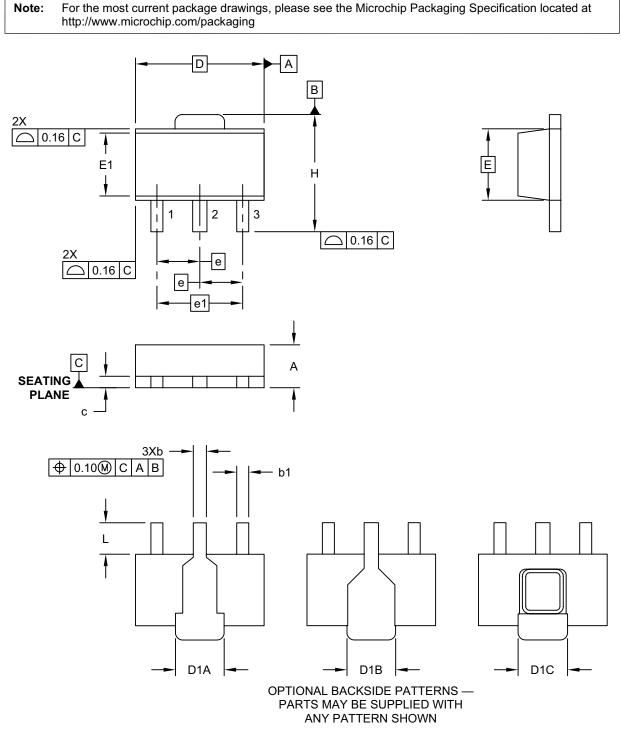
Microchip Technology Drawing C04-130 Rev C Sheet 2 of 2

3-Lead Plastic Small Outline Transistor (CB) [SOT-23A]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.95 BSC	
Contact Pad Spacing	С		2.60	
Contact Pad Width (X3)	X1			0.30
Contact Pad Length (X3)	Y1	Y1 1.1		

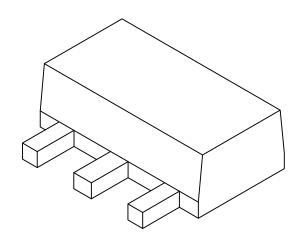

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2130 Rev B



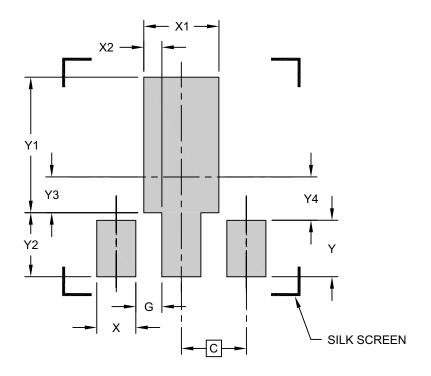
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Microchip Technology Drawing C04-029C Sheet 1 of 2

3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	N		3	
Pitch	е		1.50 BSC	
Outside Lead Pitch	e1		3.00 BSC	
Overall Height	Α	1.40	1.50	1.60
Overall Width	Н	3.94	4.10	4.25
Molded Package Width at Base	E	2.50 BSC		
Molded Package Width at Top	E1	2.13	2.20	2.29
Overall Length	D	4.50 BSC		
Tab Length (Option A)	D1A	1.63	1.73	1.83
Tab Length (Option B)	D1B	1.40	1.60	1.75
Tab Length (Option C)	D1C	1.62	1.73	1.83
Foot Length	L	0.79	1.10	1.20
Lead Thickness	С	0.35	0.40	0.44
Lead 2 Width	b	0.41	0.50	0.56
Leads 1 & 3 Width	b1	0.36	0.42	0.48


Notes:

- 1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-029C Sheet 2 of 2

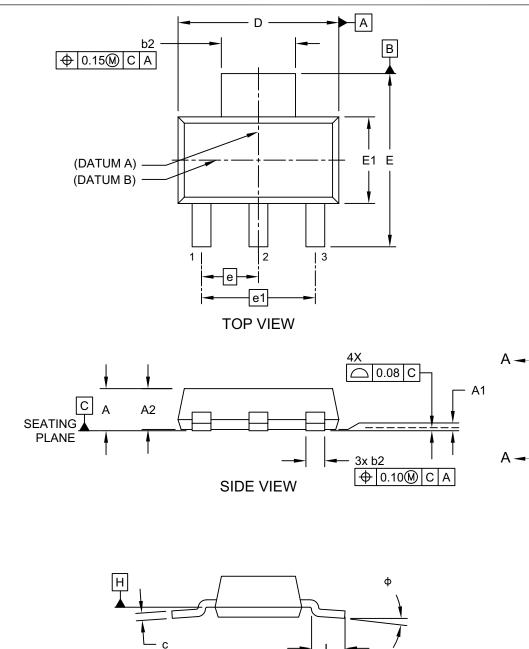
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units	MILLIMETERS				
Dimension Limits	MIN	NOM	MAX		
С		1.50 (BSC)			
X (3 PLACES)		0.900			
X1		1.733			
X2 (2 PLACES)		0.416			
G (2 PLACES)		0.600			
Y (2 PLACES)		1.300			
Y1		3.125			
Y2		1.475			
Y3		0.825			
Y4		1.000			

Notes:

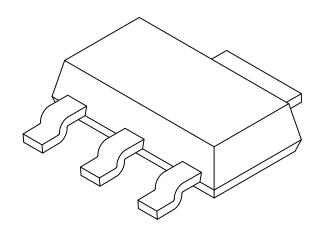

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2029C

3-Lead Plastic Small Outline Transistor (DB) [SOT-223]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



VIEW A-A

Microchip Technology Drawing C04-032 Rev D Sheet 1 of 2

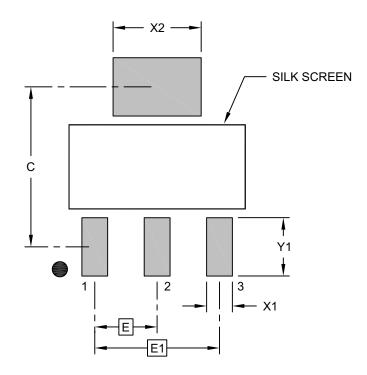
3-Lead Plastic Small Outline Transistor (DB) [SOT-223]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Number of Leads	3						
Lead Pitch	е	2.30 BSC					
Outside lead pitch	e1		4.60 BSC				
Overall Height	Α	-	1.80				
Standoff	A1	0.02	-	0.10			
Molded Package Height	A2	1.50	1.60	1.70			
Overall Width	E	6.70	6.70 7.00				
Molded Package Width	E1	3.30	3.30 3.50				
Overall Length	D	6.30	6.30 6.50				
Lead Thickness	С	0.23	0.23 0.30				
Lead Width	b1	0.60	0.76	0.84			
Tab Lead Width	b2	2.90	3.00	3.10			
Foot Length	L	0.75	-	-			
Lead Angle	φ	0°	0° -				

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127mm per side.


2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

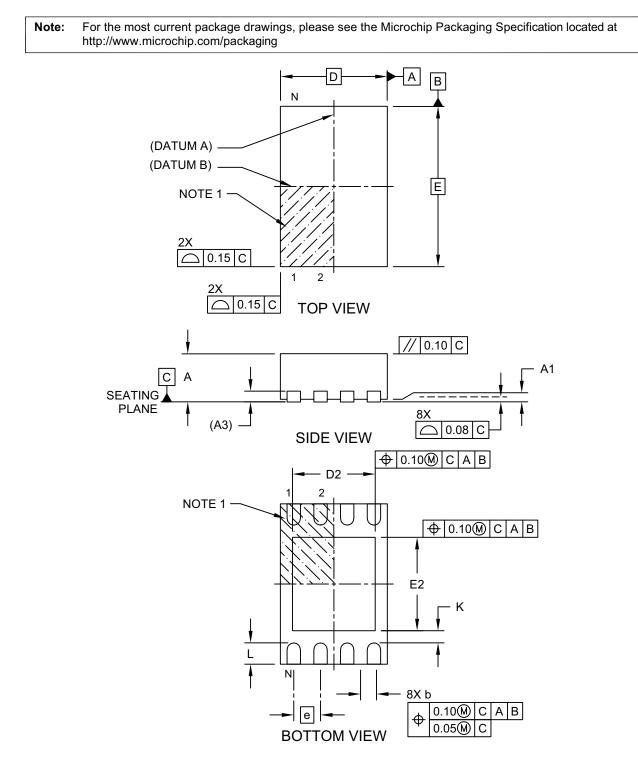
Microchip Technology Drawing C04-032 Rev D Sheet 2 of 2

3-Lead Plastic Small Outline Transistor (DB) [SOT-223]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

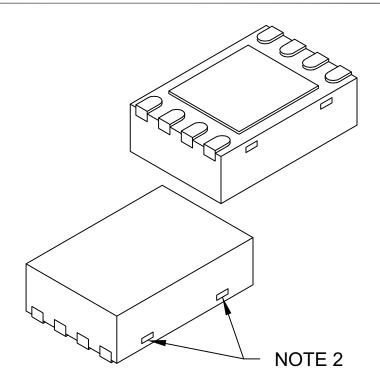
	Units			MILLIMETERS			
Dimension	Dimension Limits		MIN NOM				
Contact Pitch	2.30 BSC						
Contact Pitch	E1	4.60 BSC					
Contact Pad Spacing	5.90						
Contact Pad Width (X3)	X1			0.95			
Contact Pad Width	X2			3.25			
Contact Pad Length (X4)			2.15				


Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2032 Rev D


8-Lead Plastic Dual Flat, No Lead Package (MC) - 2x3x1 mm Body [DFN]

Microchip Technology Drawing C04-123 Rev E Sheet 1 of 2

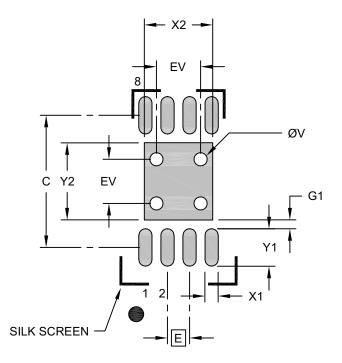
8-Lead Plastic Dual Flat, No Lead Package (MC) - 2x3x1 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	MIN	NOM	MAX				
Number of Terminals	Ν	8					
Pitch	е		0.50 BSC				
Overall Height	Α	0.80 0.90 1.00					
Standoff	A1	0.00	0.00 0.02				
Terminal Thickness	A3	0.20 REF					
Overall Length	D	2.00 BSC					
Exposed Pad Length	D2	1.30 - 1.55					
Overall Width	E	3.00 BSC					
Exposed Pad Width	E2	1.50	-	1.75			
Terminal Width	b	0.20	0.20 0.25				
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed-Pad	K	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated
- 4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123 Rev E Sheet 2 of 2

8-Lead Plastic Dual Flat, No Lead Package (MC) - 2x3x1 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	0.50 BSC			
Optional Center Pad Width	X2			1.55
Optional Center Pad Length	Y2			1.75
Contact Pad Spacing	С		3.00	
Contact Pad Width (X8)	X1			0.30
Contact Pad Length (X8)	Y1			0.85
Contact Pad to Center Pad (X8)	G1	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2123 Rev E

MCP1703

NOTES:

APPENDIX A: REVISION HISTORY

Revision G (September 2022)

- Added automotive qualification to Features and examples to Product Identification System.
- Made minor corrections.
- Updated Section 7.0 "Packaging Information" and Product Identification System.

Revision F (February 2011)

- Added a new line to Output Voltage Regulation in the DC Characteristics table.
- Added Figure 2-30 and Figure 2-31.
- Added a new line to the Tolerance field in the Product Identification System section.
- Added a new custom part to the **Standard Options for SOT-223** table in **Section 7.0 "Packaging Information"**.

Revision E (November 2010)

 Updated the Thermal Resistance Typical value for the SOT-89 package in the Temperature Specifications¹ table.

Revision D (September 2009)

- Added the 8-Lead 2x3 DFN package.
- Updated the Temperature Specification table.
- Updated Table 3-1.
- Added Section 3.4 "Exposed Thermal Pad (EP)".
- Updated the Package Outline Drawings and the information for the 8-Lead 2x3 DFN package.
- Added the information for the 8-Lead 2x3 DFN package in the Product Identification System section.

Revision C (June 2009)

- Absolute Maximum Ratings: Updated this section.
- DC Characteristics table: Updated.
- Temperature Specifications table: Updated.
- **Package Information:** Update Package Outline Drawings.

Revision B (February 2008)

- Updated Temperature Specifications table.
- Updated Table 3-1.
- Updated Section 5.2 "Output".
- · Added SOT-223 Landing Pattern Outline drawing.

Revision A (June 2007)

• Original Release of this Document.

MCP1703

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

			v	VI	vv	~~~	Ex	amples:	
PART NO. X Device Tape	e Out eel Volt	tput Feature	Tolerance	Temp.	Package	XXX Qual.	a)	MCP1703-1202E/DB:	1.2V Low Quiescent LDO, Standard Packaging, 3LD SOT-223 Package
							b)	MCP1703-1502E/DB:	1.5V Low Quiescent LDO, Standard Packaging, 3LD SOT-223 Package
Device:		03: 250 mA, 16V l			t LDO		c)	MCP1703T-1802E/MB:	1.8V Low Quiescent LDO, Tape and Reel, 3LD SOT-89 Package
Tape and Reel:	(Blank) T	= Standard Pacl = Tape and Ree		or tray)			d)	MCP1703T-2502E/MB:	2.5V Low Quiescent LDO, Tape and Reel, 3LD SOT-89 Package
Output Voltage*:	12 15 18	= 1.2V "Standar = 1.5V "Standar	d"				e)	MCP1703T-2802E/MB:	
	24 25 28	= 1.8V "Standar = 2.4V "Standar = 2.5V "Standar = 2.8V "Standar	d" d"				f)	MCP1703T-3002E/MC:	3.0V Low Quiescent LDO, Tape and Reel, 8LD DFN Package
	30 33 35	= 3.0V "Standar = 3.3V "Standar = 3.5V "Standar	d" d"				g)	MCP1703T-3301E/DB:	3.3V Low Quiescent LDO, Tape and Reel, 3LD SOT- 223 Package
	36 40 45	= 3.6V "Standar = 4.0V "Standar = 4.5V "Standar	d" d"				h)	MCP1703T-3602E/CB:	3.6V Low Quiescent LDO, Tape and Reel, 3LD SOT-23A Package
		= 5.0V "Standar ently available vol king Information t	tage options			Pack-	i)	MCP1703T-4002E/MC:	4.0V Low Quiescent LDO, Tape and Reel, 8LD DFN Package
	Custom	output voltages a crochip sales offic	re available u	pon requ	iest. Contac	t your	j)	MCP1703T-5001E/CB:	5.0V Low Quiescent LDO, Tape and Reel, 3LD SOT-23A Package
Extra Feature Code:	0	= Fixed					k)	MCP1703-5002E/DBVA	AC: 5.0V Low Quiescent LDO, Standard Packaging, 3LD SOT-223 Package, Automotive Qualified
Tolerance:	1	= 1.0% (Custom)				I)	MCP1703T-1502E/CBV	AO: 1.5V Low Quiescent LDO, Tape and Reel, 3LD
	2	= 2.0% (Standar							SOT-23A Package, Automotive Qualified
							m)	MCP1703T-3002E/CB	AO: 3.0V Low Quiescent
Temperature:	E	= -40°C to +125	ο°C						LDO, Tape and Reel, 3LD SOT-23A Package, Automotive Qualified
Package Type:	CB DB MB MC	= Plastic Small (= Plastic Small (= Plastic Small (= Plastic Dual F	Dutline Transi Dutline Transi	stor (SO stor (SO	T-223) 3-lea T-89) 3-leac	d	n)	MCP1703T-3302E/CBV	AO: 3.3V Low Quiescent LDO, Tape and Reel, 3LD SOT-23A Package, Automotive Qualified
		8-lead.	,	5	() -,		o)	MCP1703T-5002E/CBV	AO: 5.0V Low Quiescent LDO, Tape and Reel, 3LD SOT-23A Package,
Qualification**:	(Blank) VAO	= Standard Part = Automotive AE		lified					Automotive Qualified
	(entries Contact	rently available V/ k to o). your local Microc l variants for othe	hip sales offic	e to requ					

MCP1703

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2011-2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-1227-8

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

DS20002049G-page 38

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

1 Italy - Padova Tel: 39-049-7625286

> Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820